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Abstract: This paper presents a novel methodology for the trajectory tracking control of nonholonomic wheeled 
mobile robots using multiple identification models. The overall control system includes two stages. In the 
first stage, a kinematic controller developed by using kinematic model provides the required linear and 
angular velocities of the robot for tracking a reference trajectory. In the second stage, the required velocities 
are taken as the inputs to an adaptive dynamic controller which uses multiple adaptive models for the 
parameter identification. The proposed adaptive dynamic controller is developed using a combined direct 
and indirect adaptive control approach where both prediction and tracking errors are used for identification. 
Simulation results show the effectiveness of the proposed combined direct and indirect control scheme and 
multiple models approach. 

1 INTRODUCTION 

Tracking control of a wheeled mobile robot (WMR) 
is one of the most attractive research areas for the 
several decades. Many WMR models and control 
schemes have been presented. Generally, the aim of 
such schemes is either to utilize a kinematic 
trajectory tracking controller or to construct and 
integrate kinematic and dynamic controllers to track 
a desired trajectory. Yutaka et al. (1990) proposed a 
control rule to determine reasonable linear and 
rotational velocities for a stable tracking control. An 
integrated kinematic controller and a torque 
controller with a dynamic extension for a 
nonholonomic mobile robot have been presented by 
Fierro and Lewis (1995). Yun and Yamamoto 
(1992) have studied feedback linearization of a 
WMR and its dynamic system. A complete dynamic 
model of a WMR which makes it suitable to 
consider rotational and translational velocities as 
control signals has been given by De La Cruz and 
Carelli (2006).  

For the tracking control of a WMR, there are also 
adaptive control frameworks in literature. Felipe et 
al. (2008) have proposed an adaptive controller to 

guide a WMR during trajectory tracking. In this 
study reference velocities are generated using a 
kinematic model, and then these values are 
processed to compensate for the robot dynamics. An 
adaptive trajectory tracking controller for a 
nonholonomic WMR with a nonlinear control law 
based on input-output feedback linearization has 
been proposed by Khoshnam et al. (2010). Cao et al. 
(2011) has proposed an adaptive kinematic 
controller to generate the command of velocity 
based on backstepping method, and then Zhengcai et 
al. (2011) has proposed adopting the reference 
model with a dynamic adaptive controller. Similarly, 
a new kinematic adaptive controller integrated with 
a torque controller for the dynamic model of a 
nonholonomic WMR has been proposed by 
Takanori et al.(2000).  Pourboghrat and Karlsson 
(2002) has used adaptive control rules for the 
dynamics level of nonholonomic WMRs with 
unknown dynamic parameters and a fixed posture 
backstepping technique for tracking a reference 
trajectory and stabilization. Petrov (2010) has 
proposed an adaptive dynamic based path control for 
a differential drive mobile robot. 

The studies previously mentioned provide the 
schemes of trajectory tracking, but they did not 
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focus on the transient behaviour. However, when the 
parameter errors are very large, the transient 
response of the system may include unacceptably 
large peaks. Although the system is asymptotically 
stable, the adaptive control approach may be in 
applicable for some systems due to the transient 
peaks. To overcome this difficulty, the enhancement 
of the transient response using multiple models and 
switching has been proposed for the linear systems 
by Narendra and Balakrishnan (1997). Some 
approaches using multiple models and switching for 
nonlinear systems have been presented in several 
studies. Narendra and George (2002) have presented 
a multiple model, switching and tuning methodology 
which improves the transient performance for a class 
of nonlinear systems. A novel approach which 
makes use of multiple identification models and 
switching based on direct adaptive control scheme 
has been proposed by Cezayirli and Ciliz (2007). 
Besides composite approach where both prediction 
and tracking errors are used in a combined direct and 
indirect adaptive control framework has been 
studied by (Ciliz and Narendra, 1995) and (Ciliz and 
Cezayirli, 2004). Ye (2008) has proposed a multiple 
model adaptive controller for nonlinear systems in 
parametric-strict-feedback form. An adaptive control 
of a class of single-input single-output (SISO) 
nonlinear systems considering transient performance 
improvement by using multiple models and 
switching has been considered by Cezayirli and Ciliz 
(2006 and 2008). Ciliz and Narendra (1994), Ciliz 
and Tuncay (2005) have used a scheme consisting of 
multiple models, switching and tuning for the 
adaptive control of robotic manipulators. 

 

 
Figure 1: Nonholonomic WMR. 

The purpose of this paper is to present an 
integrated kinematic and dynamic controller for the 
trajectory tracking of a WMR that includes 
parametric uncertainties in the dynamics. A 
composite approach, in which both prediction and 
tracking errors are used in a combined direct and 
indirect adaptive control framework with multiple 
identification models and switching, is used. There 
are a few works which make use of the multiple 
models approach for the control of the WMRs. De 
La Cruz et al. (2008) has proposed a switching 
control for a novel tracking adaptive control of 
WMRs. Another method that uses multiple models 
of the robot for its identification in an adaptive and 
learning control framework has been presented by 
D’Amico et al. (2006). 

2 KINEMATICS AND DYNAMICS  

Consider the WMR model given by (1). The 
parameters are given in Table 1 and the system is 
shown in Figure 1. The system is subjected to m 
constraints: 

 ( ) ( , ) ( ) ( )TM q q C q q q B q A qτ λ+ = +&& & &  (1) 

where nq R∈  is generalized coordinates,  rRτ ∈  is 
the input vector, mRλ ∈  is the vector of constraint 
forces, ( ) n nM q R ×∈  is a symmetric positive-definite 
inertia matrix, ( , ) n nC q q R ×∈&  is coriolis matrix, 

( ) n rB q R ×∈  is the input transformation matrix, and 
( ) m nA q R ×∈  is the matrix associated with the 

constraints.  

 Table 1: Model Parameters of WMR. 

Parameter Description 
r Driving wheel radius 
2b Distance between two wheels 
d Distance point Pc from point P0 
a Distance from P0 to Pa 
mc The mass of the platform without the driving 

wheels and the rotors of the DC motors 
mw The mass of each driving wheel plus the 

rotor of its motor 
IC The moment of inertia of the platform 

without the driving wheels and the rotors of 
the motors about a vertical axis through Pc 

Iw The moment of inertia of each wheel and the 
motor rotor about the wheel axis 

Im The moment of inertia of each wheel and the 
motor rotor about a wheel diameter 

 

Assuming that the velocity of 0P  is in the direction 
of x-axis of the local frame and there is no side  slip,   
and    considering [ ]0 0

Tq x y ϕ= ,  the   following 
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constraint with respect to 0P  is obtained 
 

0 0sin cos 0x yϕ ϕ− =& &                    (2) 
 

By writing this constraint in matrix form, matrices 
( )A q  and ( )S q  are given by 

[ ]
cos 0

( ) sin cos 0 ,    ( ) sin 0
0 1

A q S q
ϕ

ϕ ϕ ϕ
⎡ ⎤
⎢ ⎥= − = ⎢ ⎥
⎢ ⎥⎣ ⎦

  (3) 

Therefore, it can be written as 
 ( ) ( ) 0A q S q⋅ =  (4) 
 

It is possible to write the kinematic equation of the 
wheeled mobile robot motion in terms of the pseudo 
velocities vector ( ) n mv t R −∈  as 
 

 ( ) ( )q S q v t= ⋅& , (5) 
 

where [ ]( ) ( ) ( ) Tv t v t tω∈  is made up of linear and 
angular velocities. Taking the time derivative of (5) 
 

 ( ) ( )q S q v S q v= ⋅ + ⋅&&& &  (6) 
 

Next, by replacing (5) and (6) into (1), 
multiplying the result by TS and considering (4), the 
following equation can be obtained 
 

 ( ) ( ) ( ) ( )Mv t C v v t B q τ+ =& , (7) 
 

where TM S MS= , ( )TC S MS CS= +  and TB S B= . 
By denoting ( )B q τ  as τ  

 

 ( ) ( ) ( )Mv t C v v t τ+ =& , (8) 
 

The matrices M and C are obtained as follows: 
ഥܯ  = ቂ݉ 00 ܥ̅ ,ቃܫ = ൤ 0 ݉௖݀ ሶ߮−݉௖݀ ሶ߮ 0 ൨            (9) 
 

where 2c Wm m m= + and 2 22 2C m C WI I I m d m b= + + + . 
There is a parametric vector θ  on dynamics that 
satisfies 
 

 ( ) ( ) ( ) ( , , , )Mv t C v v t Y q q v v θ+ =& & & , (10) 
 

where the parameters , 1, , 4i iθ = K  are bounded and 
defined as follows 
 

 1 2 3,   ,    cm I m dθ θ θ= = =  (11) 
 
 
 

3 CONTROLLER DESIGN 

3.1 Kinematic Controller 

In the proposed control scheme, a kinematic 
controller is used (Felipe et al., 2008). The design of 
the kinematic controller is based on the kinematic 
model of the WMR. The WMR’s kinematic model is 
given by  

 
cos sin
sin cos

0 1

x a
v

y a
ϕ ϕ
ϕ ϕ

ω
ϕ

−⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

&

&

&

, (12) 

 
where ,  x y  are the coordinates of the point of 
interest aP , and the outputs. By assuming 

[ ], Th x y=  

 
cos sin
sin cos

x a v v
h T

y a
ϕ ϕ
ϕ ϕ ω ω

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

&&
&

, (13) 

where 

 
cos sin
sin cos

a
T

a
ϕ ϕ
ϕ ϕ

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

. (14) 

 

The inverse of the matrix T  is 
 

 1
cos sin
1 1sin cos

T
a a

ϕ ϕ

ϕ ϕ
−

⎡ ⎤
⎢ ⎥=
⎢ ⎥−
⎢ ⎥⎣ ⎦

. (15) 

 
Therefore, the inverse kinematics is given by 
 

 
cos sin
1 1sin cos

v x
y

a a

ϕ ϕ

ω ϕ ϕ

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

&

&
, (16) 

 

and the proposed kinematic controller is given by 
 

tanhcos sin

1 1
sin cos

tanh

x
d x

xref

ref y
d x

y

k
x I x

Iv

k
y I ya a

I

ϕ ϕ

ω ϕ ϕ

+

=
−

+

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎡ ⎤ ⎝ ⎠⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎛ ⎞⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

& %

& %

 (17)  

 

Here, dx x x= −% , and dy y y= −%  are the current 
position errors in the direction of x axis−  and 
y axis− , respectively. 0xk >  and 0yk >  are the 

gains of the controller, xI R∈ , and yI R∈  are 
saturation constants, and ( ),x y  and ( ),d dx y  are the 
current and desired coordinates of the point of 
interest, respectively. The purpose of the kinematic 
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Figure 2: Block diagram of the control architecture. 

controller is to generate the reference linear and 
angular velocities for the dynamic controller as 
shown in Figure 2. 

3.2 Adaptive Dynamic Controller 

A Proportional-Integral (PI) filtered velocity 
tracking error signal is given as (Wilson and 
Robinett, 2001) 

 v vs e e dtλ= + ∫  (18) 

where λ  is a positive definite control gain and  
velocity tracking error is defined as 
 

 v de v v= − . (19) 

where ݒௗ = ሾݒௗ ߱ௗሿ் is the vector of the desired 
linear and rotational velocities. Taking the derivative 
of (18), 

ሶݏ  = ሶ݁௩ +  e୴ (20)ߣ

can be obtained. Considering (8) and adding the PI 
filtered error terms yields 

 2( ) ( , )d dMs C v s Y v v θ τ+ = −& &  (21) 

2 ( , ) ( ) ( )( )d d d v d vY v v M v e C v v e dtθ λ λ= + + + ∫& & (22) 
To determine the control law and adaptive parameter 
update rule, consider the following Lyapunov-like 
function (Lewis et al., 2004) 

 11
2

T TV s Ms θ θ−= + Γ% %  (23) 

and differentiating the function with respect to time 

 11
2

T T TV s Ms s Ms θ θ−= + + Γ && % %& &  (24) 

By taking Ms&  from (21) and adding to (24), the 
following equation can be obtained 

 
( )2

1

( , ) ( )

1     
2

T
d d

T T

V s Y v v C v s

s Ms

θ τ

θ θ−

= − −

+ + Γ

& &

&& % %
. (25) 

By choosing the control law 

 2
ˆ( , )d d vY v v K sτ θ= +&  (26) 

and adding (26) into the (25), the following equation 
can be obtained 

 ( )
2

1

( , )
1     2 ( )
2

T T
d d v

T T

V s Y v v s K s

s M C v s

θ

θ θ−

= −

+ − + Γ

%& &

&& % %
 (27) 

Reader should note that the matrix 2 ( )M C v−& is a 
skew-symmetric matrix. By choosing the parameter 
update rule as 

 ( )1 2( , , ) ( , )T T
f d dY q v v Y v v sθ τ= −Γ +∫&% % &  (28) 
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with an identification error model 
 1 ( , , )f Y q v vτ θ= ∫ %%  (29) 

and inserting (28) into (27) 

( )
( )( )

2

1
1 2

( , )
1     2 ( )
2

     ( , , ) ( , )

T T
d d v

T

T T T
f d d

V s Y v v s K s

s M C v s

Y q v v Y v v s

θ

θ τ−

= −

+ −

+ Γ −Γ +∫

%& &

&

% % &

 (30) 

where 1 ( , , )Y q v v∫  is the filtered regressor matrix 
and fτ  is the filtered torque term (Ciliz and 
Narendra, 1994). Rearranging (29) 

 
( )

1

1 2 ( )
2

     ( , , )

T T
v

T T

V s K s s M C v s

Y q v vθ τ

= − + −

− ∫

&&

% %
 (31) 

may be obtained. By considering the identification 
error model in (29) and adding into (31) 

 
( )

1 1

1 2 ( )
2

     ( , , ) ( , , )

T T
v

T T

V s K s s M C v s

Y q v v Y q v vθ θ

= − + −

− ∫ ∫

&&

% %
 (32) 

may be obtained. For the proof of stability, the same 
procedures should be followed (Lewis et al., 2004). 
It should be noted that V&  is negative definite. It can 
be stated that V in (23) is upper bounded and that 

( )M q  is a positive definite matrix it can be stated 
that s  and θ%  are bounded. Standard linear control 
arguments can be used to state that ve  and 

v
e∫  are 

bounded. Since , , ,v ve e s θ∫ %  are bounded it can be 
shown that s&  and V&  are also bounded. The reader 
should note that since ( )M q  is lower bounded, it 
can be stated that V  is also lower bounded. Since 
V&  is lower bounded, V  is negative definite and V&  
is bounded, the Barbalat’s Lemma can be used to 
state that 
 lim 0

t
V

→∞
=&  (33) 

which means that by Rayleigh-Ritz Theorem 

 { } 2
minlim 0 or lim 0vt t

K s sλ
→∞ →∞

= =  (34) 

Using the standart linear control arguments the 
following can be written 
 lim 0 and lim 0vvt t

e e
→∞ →∞

= =∫  (35) 

3.3 Adaptive Dynamic Controller with 
Multiple Models 

Identification models have  the  following  structure 

 ˆˆ ˆˆ ( ) ( ) ( ) ( , , , )j j j jM v t C v v t Y q q v vτ θ= + =& & &  (36) 
 

where 1, ,j N= K , ˆ
jθ  denoting the parameter 

estimate vector and ( , , , )Y q q v v& &  is the non-linear 
regressor matrix. The regressor matrix common to 
all models, but the parameter vector ˆ

jθ  has different 
initializations chosen from a given compact 
parameter set. Using the filtering technique 
previously mentioned nonlinear regressor matrix 
without acceleration signal can be obtained and will 
be denoted as 1 ( , , )Y q v v∫ . Each model is updated 
using simple gradient algorithm as it is in single 
model case: 

 1 2( ( , , ) ( , ) )
j

T T
j f d dY q v v Y v v sθ τ= −Γ +∫&% % &  (37) 

 

based on the error model which is defined as, 
 1

ˆ ( , , )
j j jf I f f je Y q v vτ τ τ θ= = − = ∫ %%  (38) 

where fτ%  is the filtered torque prediction error. 

2 ( , )r rY v v& is the regressor matrix common to all 
models which is given in (22). The torque vector jτ  
of jth  identification model is given as: 

 2
ˆ( , )j d d j vY v v K sτ θ= +& . (39) 

Adding the equations and (21) into (8), the closed 
loop dynamics can be obtained as: 

( ) ( ) ( )( )j j v j d j dv v
M s C v s K s M v e C v v eλ λ+ + = + + + ∫%%& &  (40) 

which can further be written as 
 2( ) ( , )j j v d d jM s C v s K s Y v v θ+ + = %& &  (41) 

At any instant, the identification errors of the N  
models are available, but only one of the torque 
vectors jτ  is chosen as the input to the WMR. 

In order to choose a switching criterion, first a 
permissible switching sequence and a switching rule 
must be given (Ciliz and Narendra, 1994 & 1995). A 
finite or infinite sequence +∈ RTT ii : is defined as a 
switching sequence if 0 0T =  and 1,  i ii T T +∀ < . 
Additionally, if there is a number min 0T >  such that

1 min,  i ii T T T+∀ − ≥ , then the sequence is called 
permissible switching scheme. 

A switching rule is a function of time that takes 
values in the set 1, , NK is constant in [ )1,i iT T +  and 
is continuous from right. In other words, a function 

( ) : 1, ,h t R N+ → K  is called switching rule, if there 
exists a switching sequence 

0ii
T

=
 such that if 

[ )1,i it T T +∈  for some i < ∞ , then ( ) ( )ih t h T= . With 
this definition torque input in (21) can be defined as: 
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 ( )( ) ( )           0.h tt t tτ τ= ≥  (42) 

The torque vector combined with a permissible 
switching rule given as 

 
( )( ) 2

ˆ( , )
h th t d d j vY v v K sτ θ= +&  (43) 

For the proof of stability, the same procedure will be 
followed as in the single model case. The additional 
requirement is that under any permissible switching 
rule, all signals should remain bounded. We have a 
Lyapunov-like function  

 11
2

T T
j j j jV s M s θ θ−= + Γ% %  (44) 

The derivative of (44) can be obtained as in the 
following equation 

 
( )

1 1

1 2 ( )
2

     ( , , ) ( , , )

T T
j v j j

T T
j j

V s K s s M C v s

Y q v v Y q v vθ θ

= − + −

− ∫ ∫

&&

% %
 (45) 

jV&  is negative definite. It can be stated that jV  in 
(44) is upper bounded and that ( )jM q  is a positive 
definite matrix, it can be stated that s  and jθ%  are 
bounded. Standard linear control arguments can be 
used to state that ve  and 

v
e∫  are bounded. Since 

, , ,v ve e s θ∫ %  are bounded it can be shown that s&  and 

jV&  are also bounded. The reader should note that 
since ( )jM q  is lower bounded, it can be stated that 

jV  is also lower bounded. Since jV&  is lower 
bounded, jV  is negative definite and jV&  is bounded, 
the Barbalat’s Lemma can be used to state that 

 lim 0jt
V

→∞
=& , (46) 

which means that by Rayleigh-Ritz Theorem 

 { } 2
minlim 0 or lim 0vt t

K s sλ
→∞ →∞

= = . (47) 

Using the standard linear control arguments as in 
single model case the following can be written 

 lim 0 and lim 0vvt t
e e

→ ∞ → ∞
= =∫ . (48) 

3.4 Proof of Stability for the Kinematic 
Controller 

In order to understand the rest of the proof, the 
reader may read (Martins et al., 2008). By 
considering (13) and (14): 

 1

2

tanh
0

0
tanh

x

xx

y y

y

k
x

IIx
Iy k

y
I

ε
ε

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎡ ⎤⎡ ⎤ ⎝ ⎠ ⎡ ⎤⎢ ⎥+ =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎛ ⎞ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

%
&%

&%
%

 (49) 

One can see that the error vector ε  can also be 
written asTe , where e  is the velocity tracking error 
and matrix T  is defined before. Rewriting (49) 

 

( ) ,  

tanh
0

( )
0

tanh

x

xx

y y

y

h L h Te

k
x

II
L h

I k
y

I

+ =

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎡ ⎤ ⎝ ⎠⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎛ ⎞⎣ ⎦ ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

&% %

%

%

%

 (50) 

Now considering Lyapunov candidate function 
and its derivative 

 
( )

1 ,
2

( )

T

T T

V h h

V h h h Te L h

=

= = −

% %

&% % % %&
 (51) 

and a sufficient condition for 0V <&  can be 
expressed as 

 ( )T Th L h h Te>% % %  (52) 

For small values of the control error h%  following 
can be written 

 
0

( ) ,
0

x
xy xy

y

k
L h K h K

k
⎡ ⎤

≈ = ⎢ ⎥
⎣ ⎦

% % K  (53) 

Now the sufficient condition for 0V <&  can be 
written as 

 
2

,

min( , ) ,

min( , )

T T
xy

x y

x y

h K h h Te

k k h h Te

Te
h

k k

>

>

>

% % %

% %

%

 (54) 

It is shown that e  tend to zero as t → ∞ , which 
implies that condition in (43) is verified for any 
value of h% . Thus, ( ) 0h t →%  as t → ∞ . 

3.5 Switching Criterion 

A cost function is considered in the form 

( )
1 2

0

( ) ( ) ( ) ( ) ( )
j j j j

t
T t T

j I I I IJ t e t G e t e e t G e t dλ τ τ− −= + ∫ (55) 

where jJ  is the cost function of the jth model, 
jIe  is 
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the identification error associated with the jth model, 
1 2, n nG G R ×∈  are positive (semi)-definite weight 

matrices and 0λ ≥  is a scalar forgetting factor. aJ  
is denoted as the cost function of the current model. 
If ( ) ( )a jJ t J t>  with defined switching sequence, it 
means that adaptive model must be switched to the 
jth model according to the switching criterion. 

4 SIMULATIONS 

In the simulations, the WMR should track an eight-
shaped trajectory given by 

 
( )
( )

sin 2 ,

sin
r g r

r g r

x x R t

y y R t

ω

ω

= +

= +
 (56) 

where 2.5gx = , 5.5gy = , 0.04rω =  and 7.5R = . 
Initially robot 0 2x =  and 0 6.5y =  and robot has 

zero velocities and 6
πϕ = − . 

The  parameters of the WMR are taken as 
20.0025 .mI Kg m= , 

215.625 .cI Kg m= , 0.15r m= , 
0.75b m= , 0.3 a m= , 0.3d m= , 0.1L m= , 

1wm Kg= , 36cm Kg= , 
20.005 .wI Kg m= , 

10vK = , (10,10)diagλ = , (2,2, 2)diagΓ = , 1α = , 
10xk = , 10yk = , 1yI = , 1xI = . The switching 

sequence has a time step of 5 ms. 
The real values of the unknown parameters are
[38 19.95 10.8]Tθ = , and the initial estimates for 

the parameters are ˆ [20 7 3]Tθ = . 
In order to show effectiveness of the developed 

solution ten identification model has been chosen as ߠ෠ଵ = ሾ29 11 5ሿ், ߠ෠ଶ = ሾ32 14 7ሿ், ߠ෠ଷ = ሾ35 17 9ሿ், ߠ෠ସ = ሾ38 20 11ሿ், ߠ෠ହ = ሾ41 23 13ሿ், ߠ෠଺ = ሾ44 26 15ሿ், ߠ෠଻ = ሾ47 29 17ሿ், ߠ෠଼ = ሾ50 32 19ሿ், ߠ෠ଽ = ሾ53 35 21ሿ், ߠ෠ଵ଴ = ሾ56 38 23ሿ் 

It can be seen from the figures that proposed control 
approach enhances the performance of both velocity 
tracking and trajectory tracking. In Fig. 3, there is a 
trajectory tracking results for both single model and 
multiple model cases. The controller provides the 
reference trajectory tracking with a similar 
performance for two cases. However, if one focus on 
the trajectories for the first five seconds as seen in 
Fig. 4, he can see the differences.  Also, Fig. 5 
shows the tracking errors on the x and y axis. In Fig. 

6 and 8, there are linear and rotational velocity 
errors, respectively. In order to show the 
enhancement of the transient behaviour, Fig. 7 and 9 
shows the linear and rotational errors for the first 5 
seconds of the simulation. Similarly, Fig. 10-13 
show the results for the integral of the linear and 
rotational velocities. Fig. 14 shows the switching 
between models during the simulation.        

 
Figure 3: Robot position in single model case and multiple 
model case vs. Reference Trajectory. 

 
Figure 4: Robot position in single model case and multiple 
model case vs. reference trajectory (five seconds to see the 
effect). 

Trajectory�Tracking�Control�of�Nonholonomic�Wheeled�Mobile�Robots�-�Combined�Direct�and�Indirect�Adaptive�Control
using�Multiple�Models�Approach

101



 

 
Figure 5: Position Errors on the x and y axis. 

 
Figure 6: Linear velocity tracking error in single model 
case and multiple models case. 

 
Figure 7: Linear velocity tracking error in single model 
case and multiple models case (five seconds to see the 
effect). 

 
Figure 8: Rotational velocity tracking error in single 
model case and multiple models case. 

 
Figure 9: Rotational velocity tracking error in single 
model case and multiple models case (five seconds to see 
the effect). 

 
Figure 10: Integral of linear velocity tracking error in 
single model case and multiple models case. 
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Figure 11: Integral of linear velocity tracking error in 
single model case and multiple models case (ten seconds 
to see the effect). 

 
Figure 12: Integral of rotational velocity in single model 
case and multiple models case. 

 
Figure 13: Integral of rotational velocity in single model 
case and multiple models case (ten seconds to see the 
effect). 

 
Figure 14: Switching between models. 

5 CONCLUSIONS 

An adaptive control algorithm with a multiple 
models approach is proposed for the trajectory 
tracking of a WMR. The controller uses a combined 
direct and indirect adaptive control approach where 
both prediction and tracking errors are used in 
identification and switches between multiple models 
of the WMR dynamics and the control input is 
applied based on the model which closely describes 
the WMR dynamics. This dynamic controller 
provides fast velocity tracking under parameter 
uncertainties. The proposed kinematic controller 
provides the velocity profile needed for the 
trajectory tracking of the WMR in Cartesian 
coordinates. The stability of the overall control 
system was proved. As a result, simulations show 
that the proposed control system is applicable to the 
WMR and it significantly enhances the transient 
behavior during the trajectory tracking.  
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