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Abstract: In spite of its fundamental importance, inference has not been an inherent function of multidimensional 
models and analytical applications. These models are mainly aimed at numeric analysis where the notion of 
inference is not well defined. In this paper we define inference using only multidimensional terms like axes 
and coordinates as opposed to using logic-based approaches. We propose an inference procedure which is 
based on a novel formal setting of nested partially ordered sets with operations of projection and de-
projection. 

1 INTRODUCTION  

Euclidean geometry is an axiomatic system which 
dominated for more than 2000 years until René 
Descartes revolutionized mathematics by developing 
Cartesian geometry also known as analytic 
geometry. The astounding success of analytical 
geometry was due to its ability to reason about 
geometric objects numerically which turned out to 
be more practical and intuitive in comparison with 
the logic-based Euclidean geometry. 

The area of data modeling and analysis can also 
be characterized as having two branches or patterns 
of thought. The first one follows the Euclidean 
axiomatic approach where data is described using 
propositions, predicates, axioms, inference rules and 
other formal logic constructs. For example, 
deductive data models and the relational model are 
based on the first-order logic where the database is 
represented as a number of predicates. The second 
major branch in data modeling relies on the 
Cartesian conception where data is thought of as a 
set of points in a multidimensional space with 
properties represented as coordinates along its axes. 
The multidimensional approach has been proven to 
be extremely successful in analytical applications, 
data warehousing and OLAP. 

Although multidimensional data models have 
been around for a long time (Pedersen and Jensen, 
2001); (Pedersen, 2009), all of them have one 
serious drawback in comparison with logic-based 
models: they do not have a mechanism of inference. 
Yet it is an essential function which allows for 

automatically deriving relevant data in one part of 
the model given constraints in another part without 
the need to specify how it has to be done. For 
example, if we need to retrieve a set of writers by 
specifying only a set of publishers then this could be 
represented by the following query:  
GIVEN  (Publishers  WHERE  name  ==  'XYZ')  
GET (Writers)  

Importantly, this query does not have any indication 
of what is the schema and how Publishers are 
connected with Writers. 

Answering such queries especially in the case of 
complex schemas is a highly non-trivial task because 
multidimensional data modeling has been 
traditionally aimed at numeric analysis rather than 
reasoning. Currently existing solutions rely on data 
semantics (Peckham and Maryanski, 1988), 
inference rules in deductive databases (Ullman and 
Zaniolo, 1990), and structural assumptions as it is 
done in the universal relation model (URM) (Fagin 
et al., 1982); (Vardi, 1988). Yet, to the best of our 
knowledge, no concrete attempts to exploit 
multidimensional space for inference have been 
reported in the literature, apart from some 
preliminary results described in (Savinov, 2006a); 
(Savinov, 2006b). 

In this paper we present a solution to the problem 
of inference which relies on the multidimensional 
structure of the database. More specifically, the 
paper makes the following contributions: 1) We 
introduce a novel formal setting for describing 
multidimensional spaces which is based on nested 
partially ordered sets. 2) We define operations of 
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projection and de-projections which serve as a basis 
for inference. 3) We define procedures of constraint 
propagation and inference as well as describe how 
they are supported by the query language. 

The paper has the following layout. Section 2 
describes the formal setting by defining the notion of 
nested partially ordered set and how it is used to 
represent hierarchical multidimensional spaces. 
Section 3 defines main operations on nested posets 
and how they are used for inference. Section 4 
makes concluding remarks. 

2 CONCEPT-ORIENTED MODEL  

The approach to inference described in this paper 
relies on a novel unified model, called the concept-
oriented model (COM) (Savinov, 2011a); (Savinov, 
2011b); (Savinov, 2012). One of the main principles 
of COM is that an element consists of two tuples: 
one identity tuple and one entity tuple. These 
identity-entity couples are modeled by a novel data 
modeling construct, called concept (hence the name 
of the model), which generalizes classes. Concept 
fields are referred to as dimensions. Yet, in this 
paper we will not distinguish between identities and 
entities by assuming that an element is one tuple. 

 
Figure 1: Database is a partially ordered set. 

For this paper, another COM major principle is 
important which postulates that a set of data 
elements is a partially ordered set (poset). Another 
approach where posets are used for data modeling is 
described in (Raymond, 1996). In COM, posets are 
represented by tuples themselves, that is, tuple 
membership relation induces partial order relation 
‘<’ (less than): ee 1,, <〉〈 KK . Here <1 means 
‘immediately less than’ relation (‘less than’ of 
rank 1). If ba <  then a is referred to as a lesser 
element and b is referred to as a greater element. 
Thus tuple members are supposed to be immediately 
greater than the tuples they are included in. And 
conversely, a tuple is immediately less than any of 
its member tuples it is composed of. Since tuple 
membership is implemented via references (which 
are identity tuples), this principle essentially means 

that an element references its greater elements. 
Fig. 1 is an example of a poset graphically 
represented using a Hasse diagram where an element 
is drawn under its immediate greater elements and is 
connected with them by edges. 

At the level of concepts, tuple order principle 
means that dimension types specify greater concepts. 
Then a set of concepts is a poset where each concept 
has a number of greater concepts represented by its 
dimension types and a number of lesser concepts 
which use this concept in its dimensions. For 
example, assume that each book has one publisher: 
CONCEPT Books // Books < Publishers  
  IDENTITY  
    CHAR(10) isbn  
  ENTITY  
    CHAR(256) title  
    Publishers publisher //Greater concept 

According to this principle, Publishers is a 
greater concept because it is specified as a type 
(underlined) of the dimension publisher. 

The main benefit of using partial order is that it 
has many semantic interpretations: attribute-value 
(greater elements are values characterizing lesser 
elements), containment (greater elements are sets 
consisting of lesser elements), specific-general 
(greater elements are more general than lesser 
elements), entity-relationship (lesser elements are 
relationships for greater elements), and 
multidimensional (greater elements are coordinates 
for lesser elements). These interpretations allow us 
to use COM as a unified model. 

In the context of this paper, the most important 
property of partial order is that it can be used for 
representing multidimensional hierarchical spaces. 
The basic idea is that greater elements are 
interpreted as coordinates with respect to their lesser 
elements which are interpreted as points. Thus an 
element is a point for its greater elements and a 
coordinate for its lesser elements. In Fig. 1, e is a 
point with coordinates d and f (its greater elements) 
and at the same time it is a coordinate for two points 
a and c (its lesser elements). 

In multidimensional space, any coordinate 
belongs to some axis and any point belongs to some 
set. The question is how the notions of axes and sets 
can be formally represented within the order-
theoretic setting. To solve this problem we assume 
that a poset consists of a number of subsets, called 
domains: mXXXO ∪∪∪= K21 , 0=∩ ji XX , 

ji ≠∀ . Domains are interpreted as either sets of 
coordinates (axes) or sets of points (spaces), and any 
element is included in some domain: OXe k ⊂∈ . 
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Domains are also�partially ordered and represented 
by tuples so that a domain is defined as a tuple 
consisting of its immediate greater domains: 

〉〈= nXXXX ,,, 21 K , iXX 1< . 
Any element participates in two structures 

simultaneously: (i) it is included in some domain via 
the membership relation ‘∈ ’, and (ii) it has some 
greater and lesser elements via the partial order 
relation ‘<’. In addition, the two structures are 
connected via the type constraint: 

ODe ⊂∈   ⇒   xDxe .. ∈  
Here e.x is a greater element of e along dimension x 
and D.x is a greater domain of D along the same 
dimension x. This constraint means that an element 
may take its greater elements only from the greater 
domains. Such a set is referred to as a nested poset.  

An example of a nested poset representing a 2-
dimensional space is shown in Fig. 2. This set 
consists of 3 domains X, Y and Z where 〉〈= YXZ ,  
which means that Z has two greater domains X and 
Y. Element 1z  is defined as a tuple 〉〈 11, yx , that is, 

1x and 1y  are greater elements for 1z . Therefore, 
Zz ∈1  is interpreted as a point while Xx ∈1  and 
Yy ∈1  are its coordinates. According to the type 

constraint, elements from Z may take their greater 
elements only in X and Y. 

 
Figure 2: Nested poset representing 2-dimensional space. 

A schema is defined as a partially ordered set of 
concepts where greater concepts are types of this 
concept dimensions. A database schema is defined 
as a partially ordered set of domains (collections) 
where elements within each domain have a type of 
some concept from the schema. A database is a 
partially ordered set of elements each belonging to 
one collection and having a number of greater 
elements referenced from its dimensions.  

3 INFERENCE 

3.1 Projection and De-projection 

Geometrically, projection of a set of points is a set of 
their coordinates. De-projection is the opposite 

operation which returns all points with the selected 
coordinates. In terms of partial order, projection 
means finding all greater elements and de-projection 
means finding all lesser elements for the selected of 
elements. Taking into account that greater elements 
are represented by references, projection is a set of 
elements referenced by the selected elements and de-
projection is a set of elements which reference the 
selected elements. 

To formally describe these two operation we 
need to select a subset 'Z  of points from the source 
domain, ZZ ⊂' , and then choose some dimension x 
with the destination in the target greater domain 

ZD > . Then projection, denoted as DxZ →→' , 
returns a subset of elements DD ⊂'  which are 
greater than elements from 'Z  along dimension x: 

DZzdzDdDDxZ x ⊂∈<∈==→→ }',|{''  

Note that any element can be included in projection 
only one time even if it has many lesser elements.  

De-projection is the opposite operation. It returns 
all points from the target lesser domain F which are 
less than the elements from the source subset 'Z : 

FZzzfFfFFxZ x ⊂∈<∈==←← }',|{''  

 
Figure 3: Projection and de-projection in schema. 

In the concept-oriented query language (COQL), 
a set of elements is written in parentheses with 
constraints separated by bar symbol. For example, 
(Books | price < 10) is a set of all cheap 
books. Projection operation is denoted by right 
arrow '‐>' followed by a dimension name which is 
followed by the target collection. In the database 
schema, projection means moving up to the domain 
of the specified dimension (Fig. 3). It returns all 
(greater) elements which are referenced by the 
selected elements. For example (Fig. 4), all 
publishers of cheap books can be found by 
projecting them up to the Publishers collection 
along the publisher dimension: 
(Books | price < 10)  
  ‐> publisher ‐> (Publishers) 

De-projection is the opposite operation denoted by 
left arrow '<‐'. It returns all (lesser) elements 
which reference elements from the selected source 
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collection. For example, all books published by a 
selected publisher can be found as follows (Fig. 4):  
(Publishers | name=="XYZ")  
  <‐ purchase <‐ (Books) 

Projection and de-projection operations have two 
direct benefits: they eliminate the need in join and 
group-by operations. Joins are not needed because 
sets are connected using multidimensional 
hierarchical structure of the model. Group-by is not 
needed because any element is interpreted as a group 
consisting of its lesser elements. Given an element 
(group) we can get its members by applying de-
projection operation. For example, if it is necessary 
to select only publishers with more than 10 books 
then it can be done it as follows: 
(Publishers |  
  COUNT(publisher <‐ (Books)) > 10) 

Here de-projection publisher <‐ (Books) 
returns all books of this publisher and then their 
count is compared with 10. 

 
Figure 4: Example of projection and de-projection. 

3.2 Constraint Propagation 

A query can be defined as consisting of constraints 
and propagation rules. Constraints specify 
conditions for selecting elements from one domain. 
Propagation rules indicate how constraints imposed 
on one domain are used to select elements from 
another domain. For example, we can select a book 
title, publishing date or price while the task is to find 
all publishers which satisfy these selected values. 
Since source constraints and target elements belong 
to different parts of the model, propagation rules are 
needed to connect them. 

The main benefit of having projection and de-
projection operations is that they allow us to easily 
propagate arbitrary constraints through the model by 
moving up (projection) and down (de-projection). 
For example, given a collection of Books we can 
find all related addresses by projecting it up to the 
Addresses collection (Fig. 3): 

(Books | price < 10)  
  ‐> publisher ‐> (Publishers)  
  ‐> address ‐> (Addresses) 

In most cases either intermediate dimensions or 
collections can be omitted by allowing for more 
concise queries:  
(Books | price < 10)  
  ‐> publisher ‐> address 
(Books | price < 10)  
  ‐> (Publishers) ‐> (Addresses) 

De-projection allows us to move down through the 
partially ordered structure of the model which is 
interpreted as finding group members. For example, 
given a country code we can find all related Books 
using the following query (Fig. 3): 
(Addresses | country == 'DE')  
  <‐ address <‐ (Publishers)  
  <‐ publisher <‐ (Books)  
(Addresses | country == 'DE')  
  <‐ (Publishers) <‐ (Books)  

Note that such queries are very useful for nested 
grouping which are rather difficult to describe using 
the conventional group-by operator. 

Constraint propagation can be further simplified 
if instead of a concrete dimension path we specify 
only source and target collections. The system then 
reconstructs the propagation path itself. Such 
projection and de-projection with an undefined 
dimension path will be denoted by '*‐>' and  
'<‐*' (with star symbol interpreted as any 
dimension path). The previous two queries can be 
then rewritten as follows: 
(Books | price < 10) *‐> (Addresses) 

(Addresses | country == 'DE') <‐* (Books)  

3.3 Inference 

Automatically propagating constraints only up or 
down is a restricted version of inference because 
only more general (projection) or more specific (de-
projection) data can be derived. If source and target 
collections have arbitrary positions in the schema 
then this approach does not work because they do 
not belong to one dimension path that can be used 
for projecting or de-projecting. In the general case, 
constraint propagation path consists of more than 
one projection and de-projection steps. Of course, 
this propagation path can be specified explicitly as 
part of the query but our goal is to develop an 
automatic procedure for finding related items in the 
database which is called inference. 
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The main idea of the proposed solution is that 
source and target collections have some common 
lesser collection which is treated as dependency 
between them. Such common lesser collections are 
also used to represent relationships between their 
greater collections as opposed to the explicit use of 
relationships in the entity-relationship model 
(Savinov, 2012). Constraints imposed on the source 
collection can be used to select a subset of elements 
from this lesser collection using de-projection. And 
then the selected elements are used to constrain the 
target elements using projection. In OLAP terms, we 
impose constraints on dimension tables, propagate 
them down to the fact table, and then finally use 
these facts to select values from the target dimension 
table. In terms of multidimensional space this 
procedure means that we select points along one 
axis, then de-project them to the plane by selecting a 
subset of points, and finally project these points to 
the target axis by using these coordinates as the 
result of inference. 

If X and Y are two greater collections, and Z is 
their common lesser collection then the proposed 
inference procedure consists of two steps: 
1. [De-projection] Source constraints XX ⊂'  are 
propagated down to the set Z using de-projection: 

ZZXZ ⊂←←= *''  
2. [Projection] The constrained set ZZ ⊂'  is 
propagated up to the target set Y using projection: 

YYZY ⊂→→= *''  
Here by star symbol we denote an arbitrary 
dimension path. In the case of n independent source 
constraints ''

2
'
1 ,,, nXXX K  imposed on sets 

nXXX ,,, 21 K  the de-projection step is computed as 
an intersection of individual de-projections: 

I ZXZ i ←←= *' ' . 

 
Figure 5: Inference via de-projection and projection. 

In COQL, inference operator is denoted as  
'<‐*‐>' (de-projection step followed by projection 
step via an arbitrary dimension path). It connects 

two collections from the database and finds elements 
of the second collection which are related to the first 
one. To infer the result, the system chooses their 
common lesser collection and then builds de-
projection and projection dimensions paths. After 
that, inference is performed by propagating source 
constraints to the target along this path. For example 
(Fig. 5a), given a set of young writers we can easily 
find related countries by using only one operator: 
(Writers | age < 30)  
  <‐*‐> (Addresses) ‐> countries  

To answer this query, the system first chooses a 
common lesser collection, which is WriterBooks 
in this example, and then transforms this query to 
two operations of de-projection and projection: 
(Writers | age < 30)  
  <‐* (WriterBooks) // De‐project  
  *‐> (Addresses) ‐> countries // Project 

After that, the system reconstructs the complete 
constraint propagation path:  
(Writers | age < 30)  
  <‐ writer <‐ (WriterBooks)  
  ‐> book ‐> (Books)  
  ‐> publisher ‐> (Publishers)  
  ‐> address ‐> (Addresses) ‐> countries 

In the case of many dependencies (common lesser 
collections) or many de-projection/projection paths 
between them, the system propagates constraints 
using all of them. This means that all source 
constraints are first propagated down along all paths 
to all lesser collections using de-projection. After 
that, all the results are propagated up to the target 
collection using all existing dimension paths. 

If the user wants to customize inference and use 
only specific dimensions or collections then they can 
be provided as part of the query. For example, 
assume that both Publishers and Writers have 
addresses (Fig. 5b). Accordingly, there are two 
alternative paths from the source to the target and 
two alternative interpretations of the relationship: 
writers living in some country or writers publishing 
in this country. This ambiguity can be explicitly 
resolved in the query by specifying the required 
common collection to be used for inference: 
(Addresses | country == 'DE')  
  <‐* (WriterBooks) *‐> (Writers)  

In this way, we can solve the problem of having 
multiple propagation paths. In the next section we 
consider the problem of having no propagation path 
between source and target collections. 
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3.4 Use of Background Knowledge 

If the model has a bottom collection which is less 
than any other collection then inference is always 
possible because it connects any pair of source and 
target collections. The question is how to carry out 
inference in the case the bottom collection is absent. 
Formally, collections which do not have a common 
lesser collection are independent, that is, their 
elements are unrelated. 

For example (Fig. 6), if books are being sold in 
different shops then the model has two bottom 
collections: WriterBooks and Sellers. Assume 
now that it is necessary to find all shops related to a 
set of writers:  
(Writers | age < 30) <‐*‐> (Shops) 

The propagation path should go through a common 
lesser collection which is absent in this example and 
therefore inference is not possible. 

One solution to this problem is to formally 
introduce a bottom collection which is equal to the 
Cartesian product of its immediate greater 
collections. In COQL, this operation is written as a 
sequence of collections in parentheses separated by 
comma: 
Bottom = (WriterBooks, Sellers) 

However, this artificial bottom collection (shown as 
a dashed rectangle in Fig. 6) does not impose any 
constraints and hence Writers and Shops are still 
independent. 

 
Figure 6: Use of background knowledge.  

To get meaningful results we have to impose 
additional constraints on the bottom collection. 
These constraints represent implicit dependencies 
between data elements, called background 
knowledge. They can be expressed via any condition 
which selects a subset of elements from the bottom 
collection, for instance, as a dependency between its 
attributes. In our example, we assume that a written 
book is the same as a sold book: 
Bottom = (WriterBooks wb, Sellers s |  
  wb.book == s.book) 

Now the Bottom collection contains only a subset 
of the Cartesian product of its two greater 
collections and can be used for inference. We simply 
specify this bottom collection as part of the query: 
(Writers | age < 30)  
  <‐* (WriterBooks bw, Sellers s |  
    bw.book == s.book)  
  *‐> (Shops) 

Here the selected writers are de-projected down to 
the bottom collection. Then this constrained bottom 
collection is propagated up to the target. As a result, 
we will get all shops selling books written by the 
selected authors. Note how simple this query is 
especially in comparison with its SQL equivalent 
which has to contains many joins and explicit 
intermediate tables. What is more important, it is 
very natural because we specify what we want to get 
rather than how the result set has to be built. 

4 CONCLUSIONS 

In this paper we have described the idea of having 
inference capabilities as an inherent part of 
multidimensional data models and analytical query 
languages. The proposed approach is very simple 
and natural in comparison to logic-based approaches 
because it relies on only what is already in the 
database: dimensions and data. Its main benefit is 
that now inference can be made integral part of 
multidimensional databases by allowing not only 
doing complex numeric analysis but also performing 
tasks which have always been a prerogative of logic-
based models. 
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