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Abstract: At ISPEC’12,Samelinet al. show that the redactable signature scheme introduced at VLDB’08 byKundu
andBertinodoes not always preserve the structural integrity of the tree signed. In particular, they show how
redaction of non-leaves promotes descendants and allows a third party to add new edges to the signed tree.
This alters the semantic meaning of the tree and is not acceptable in certain scenarios. We generalize the
model, such that it offers the signer the flexibility to sign trees where every node is transparently redactable.
This includes intermediates nodes, i.e, to allow redacting a hierarchy, but also the tree’s root. We present a
provably secure construction, where this possibility is given, while remaining under explicit control of the
signer. Our security model is as strong asBrzuskaet al.’s introduced at ACNS’10. We have implemented our
secure construction and present a detailed performance analysis.

1 INTRODUCTION

Trees are commonly used to organize data; XML is
just one of today’s most prominent examples. To pro-
tect these documents against unauthorized modifica-
tions, digital signature algorithms like RSA (Rivest
et al., 1983) can be used. Using these digital signa-
tures schemes, two important properties of the data
are protected: integrity of the data itself and verifiabil-
ity of the signer and hence the data’s origin. However,
in certain scenarios, it is desirable to remove parts of
a signed document without invalidating the protecting
signature. Additionally, the remaining document shall
still retain the integrity protection and origin verifia-
bility offered by the signature.

This could be simply achieved by requesting a
new signature from the signer with the parts removed
before generating the new signature. While this
roundtrip allows to satisfy the above requirements,
the “digital document sanitization problem”, as in-
troduced in (Miyazaki et al., 2003), adds another re-
quirement: the original signer shall not be involved
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again. This is useful in cases where the signer is not
reachable or must not know that parts of a signed doc-
ument are passed to third parties. Redactable signa-
ture schemes (RSS) have been designed to fulfill these
needs, i.e., they allow that parts of a signed document
can be removed without invalidating the signature. As
standard signatures scheme like RSA, they allow to
detect unauthorized changes of the signed data. In
our case, the data is tree-structured, e.g., XML. More-
over, the tree’s integrity needs to include the structure,
i.e., the edges of the tree, as it carries information as
well (Liu et al., 2009).

We found that existingRSS for trees have two ma-
jor shortcomings: (1) they differ in the integrity pro-
tection they offer for the tree’s structure (structural
integrity protection) (Kundu and Bertino, 2009). (2)
they differ in the flexibility of redactions they allow
(non-leaf redaction) (Brzuska et al., 2010a). We will
explain the shortcomings of existing schemes, using
the trees depicted in Fig. 1-4. Next, we will highlight
the importance of each problems using illustrating ex-
amples:

Intermediate Node Redaction. Information stored
in the tree’s nodes might need to be redacted. Con-
sider the tree depicted in Fig. 1, ignore the labels for
now. To remove the leafn4, the noden4 itself and the
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edgee3,4 is redacted from the treeT = (V,E). Al-
lowing leaf removal also allows to remove sub-trees,
i.e., by consecutive removal of firstn4 andn3 after-
wards (Brzuska et al., 2010a). However, schemes
only allowing for redaction of leaves fail to redact the
data stored inn3 only. In other words, we want that
n3 is redacted, while the nodesn1,n2 andn4 are not
subject to redaction. The resulting tree is depicted
in Fig.2. To connectn4 to the remaining tree, the
third party requires to add a new edge, which was not
present before, i.e.,e1,4. However,e1,4 is in thetran-
sitive closureof T, as shown in Fig. 3. Hence, aRSS
which is generally restricted to (consecutive) redac-
tion of leaf nodes does not cater for all use cases. The
scheme introduced byKunduandBertinodoes allow
redaction of intermediate nodes, while also claiming
that this flexibility is a useful property (Kundu and
Bertino, 2009). However, this behavior may be prob-
lematic, as we will show next.

n1 (0.3;0.7)

n2

(0.6;0.1)

n3 (0.8;0.4)

n4 (0.9;0.2)

Figure 1: Original TreeT with Randomized Traversal Num-
bers.

n1(0.3;0.7)

n2

(0.6;0.1)

n3

n4 (0.9;0.2)

Implicit edge
e1,4 after
redactingn3

Figure 2: Intermediate Node RedactionT ′ following
Kundu.

n1

n2 n3

n4

Figure 3: Transitive Closure ofT implicitly addse1,4.

n1

n2 n3

n4

Figure 4: Allow Relocation (e3,4) and Level-Promotion of
n4 (e1,4). A dotted line denotes an explicit edge.

Structural Integrity Protection. Imagine the in-
formation stored in a treeT is a chart showing the em-

n1

n2 n3

n4

Relocaten4
usinge3,4 after
redactingn3

Figure 5: Redaction ofn3 and Re-location ofn4 usinge2,4.

ployees’ names as nodes and their position within the
companies hierarchy (Liu et al., 2009). Hence, pro-
tecting structural integrity is equal to protecting the
correctness of the employees’ hierarchical positions
in the given example. If one would only protect the
ancestor relationship of nodes inT, one would only
have a protection of all edges that are part of the tran-
sitive closure ofT. This is depicted in Fig. 3. This
allows a third party to add edges to the treeT ′ that
were not present inT. Samelinet al. show that the
scheme ofKunduandBertino(KB-Scheme) is subject
to this attack and name it “Level Promotion” (Samelin
et al., 2012). In particular, an employee can be “pro-
moted”. We will give a more detailed description of
the attack on the KB-Scheme here and want to see it
in the light of allowing flexibility. However, it mo-
tivates the need for structural integrity protection. A
full description of the s is given in our extended nota-
tion in App. 4. Their scheme builds upon the idea that
a party who has all pre- and post-order traversal num-
bers (See Fig. 1) of all nodes contained in the treeT
is always able to correctly reconstructT. They argue
that signing each nodeni ∈ T along with both traver-
sal numbers is enough to protect the tree’s integrity.

Their verification checks all signatures on the
nodes individually — with an additional step: A ver-
ifier has to check if all nodes are structured correctly
using the traversal numbers (Kundu and Bertino,
2009). This leads to the problem that a verifier is
not able to determine whether a given edge existed
in the original treeT, just if it could have existed.
Assume that a third party redactsn3 from T, as de-
picted in Fig. 2. On verification the new edgee1,4,
which has not explicitly been present in the origi-
nal treeT becomes valid. This implies, that the tree
TA = ({n1,n2,n4},{e1,2,e1,4}) is valid.

To be more precise, let us compute the traver-
sal numbers for the example tree in Fig. 1. The
pre-order traversal ofT will output (1,2,3,4), while
the post-order traversal will output(4,3,2,1). To
make their scheme not leaking occurred redaction,
these traversal numbers are randomized in an order-
preserving manner, which does not have an impact
on the reconstruction algorithm. The randomization
step may transform them into(0.3,0.6,0.8,0.9) and
(0.7,0.4,0.2,0.1) resp. Hence, the noden1 has a
structural position ofρ1 = (0.3;0.7). For n2, n3 and
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n4 this is done accordingly. We redactn3, an inter-
mediate node ofn1, andn4. For the redacted tree in
Fig. 2, the traversal-numbers are still in the correct
order. Hence, the created signature verifies.

The impact of attacks on the structural integrity
are significant, as the structure of a tree carries part
of the document’s information (Liu et al., 2009).
One might argue that nesting of elements must ad-
here to a specific codified structure, i.e., XML-
Schemata. Henceforth, attacks like level-promotions
will be detected by any XML-Schema validator, if
redactions are not valid. However, whenever an el-
ement can contain itself, like hierarchically structured
lists of employees or hospital treatments composed of
treatments, grandchildren can be promoted to direct
children, without Kundu’s traversal-number based
validation-algorithm detecting it (Kundu and Bertino,
2009) and without breaking an XML-Schemata.

This destroys the structure of the tree and directly
impacts on the semantics, maybe resulting in a differ-
ent way on how a patient is treated in a hospital or
impacting on the rights that one might believe an em-
ployee can have (Liu et al., 2009). Obviously, this is
not acceptable in the generic case and could lead to
several other attack vectors, similar to the ones XPath
has introduced (Gottlob et al., 2003).

We conclude that the signer mustexplicitly sign
the edges which can be used by the sanitizer rather
then implicitly “signing” all of them. Currently, a
signer is not able to control this behavior, neither in
the KB-Scheme nor in other existing schemes.

State of the Art. Next, we provide an overview
of the state of the art. The general concept ofRSS
were introduced at the same time byJohnsonet
al. in (Johnson et al., 2002) andSteinfeldand Bull
in (Steinfeld and Bull, 2002). The latter approach
was named ”content extraction signatures”. A dif-
ferent but related concept are sanitizable signature
schemes (Ateniese et al., 2005; Brzuska et al., 2009).
Instead of only redaction of parts they allow to ar-
bitrarily modify parts of the signed document. In
this work, we concentrate on redactable signatures for
trees. We take into account solutions that allow flexi-
ble redaction or offer full protection of structural- and
content-integrity.

A recent work isAhn et al. who cater for a spe-
cial sub-case of redaction called ”quoting” (Ahn et al.,
2011). Quoting is not as flexible as redacting as it
resembles “content extraction” by allowing quoting
consecutive parts of a list. Hence,Ahn et al.’s ap-
proach is different and does not target trees.

Also recently,CamachoandHevia have showed
how to build more efficient transitive signatures for

directed trees (Camacho and Hevia, 2012). This idea
from Rivestand Micali (Micali and Rivest, 2002),
however, focuses on how to authenticate single edges
within a signed treeT.

KunduandBertinowere the first to develop aRSS
which addresses the specific needs of tree-structured
documents (Kundu and Bertino, 2008; Kundu and
Bertino, 2009).Brzuskaet al. already broke the KB-
Scheme and showed that it does not hide redactions,
based on a probabilistic attack (Brzuska et al., 2010a).
One may argue thatKundu and Bertino do not see
their scheme in the context ofRSS, since they just
want to prohibit “leakage” due to structural informa-
tion (Kundu and Bertino, 2009).

The solution byBrzuskaet al. only allows redac-
tions of leaves (Brzuska et al., 2010a). Another
scheme for trees, byWuet al. is also not flexible (Wu
et al., 2010). Moreover, it relies on theMerkle-Hash-
Tree-Technique with standard cryptographic hashes
like SHA-512. Hence, their scheme does neither hide
redactions nor preserve privacy (Kundu and Bertino,
2008; Kundu and Bertino, 2009).

Table 1: ExistingRSS Schemes’ Capabilities.

Redaction Structural Invisibility
of Non-leaves Integrity of Redaction

Kundu Yes, No, implicit No.
andBertino allowed level-promotion
Brzuskaet al. No. Yes. Yes.
Wuet al. No. Yes. No.
Comacho Yes, allows all different
andHevia allowed transitive edges goal
Ahnet al. No, only Yes. Yes, stronger

quoting context-hidinga

aWe discuss this in detail in Sect.2

Other schemes do not explicitly consider tree-
structured data, even though they mention XML as an
application: In (Pöhls et al., 2011) existing sanitizable
and redactable signature schemes are integrated into
XML Signatures, extending the work done in (Tan
and Deng, 2009). Neither the approach ofTanet al.,
nor the work ofPöhls et al. do secure trees, since
neither of them caters explicitly for the structure.

Our Contribution and Outline. Our contribution
is twofold and motivated by a lack of flexibility or
integrity protection of many existingRSS for trees:
Either no redaction of intermediate nodes is allowed
or, if allowed, the structural integrity protection is
relaxed to the transitive closure of the trees. As
shown, protecting transitive closures, i.e., ancestor-
descendant relations, is a weaker structural integrity
protection which leads to semantic attacks which go
unnoticed by the integrity protection.

Our first contribution is the rigid security model
for a flexible RSS for trees offering full structural
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integrity protection. We followBrzuskaet al.’s se-
curity requirements forRSS for trees with leaf-only
redaction (Brzuska et al., 2010a). In Sect. 2, we
give precise, game-based definitions of the secu-
rity properties: unforgeability, privacy, and trans-
parency (Brzuska et al., 2010a). Our flexibility is al-
lowing the signer to partially weaken the structural
integrity protection at his leisure. Hence, the security
requirements need to additionally capture the signer’s
flexibility to allow redaction of any node. This al-
lows level promotions due tore-locationsof speci-
fied sub-trees, which resembles theimplicit possibil-
ity of previous schemes. In particular, our signing
algorithm adds an additional edge to the tree to al-
low re-locations. A verifying party needs to decide
which edge to use. This allows the sanitizer to main-
tain transparency after occurred modifications. On
the other hand, the signer remains in charge when
describing how an occurred redaction is hidden by
re-locating the sub-tree. This leads to signerexplic-
itly prohibiting the redaction of nodesindividually, as
the signer mustexplicitlysign an edge for re-location.
Additionally, in our construction the signer controls
the protection of the order of siblings. Hence, our
scheme is capable of signing unordered trees. Our
flexibility to redact an node of the tree does include in
its generality the tree’s root. Without loss of security,
the signer can add an annotation to the root to prohibit
redacting the roots by adapting the signing and veri-
fication algorithms. In particular, they must check, if
the annotated root still exists.

Our second contribution is our secure construction
presented in Sect. 3, including a performance mea-
surement. Our construction is based upon a collision-
resistant one-way accumulator (Benaloh and Mare,
1993; Barić and Pfitzmann, 1997) in combina-
tion with the Merkle-Hash-Tree-Technique (Merkle,
1989). Employing theMerkle-Hash-Tree-Technique
enforces the protection of structural integrity. Hence,
our scheme fulfills the defined security requirements
using only standard cryptographic primitives.

We conclude our work in Sect. 4. The appendix
contains the security proofs, the existing notations,
the security model from (Brzuska et al., 2010a) and
the KB-Scheme (Kundu and Bertino, 2009).

2 EXTENDED SECURITY
MODEL FOR RSS FOR TREES

We will use the following notation throughout this
paper: The root, usuallyn1, is the only node with-
out a parent. Nodes are addressed byni. With ci ,
we refer to all the content of nodeni , which is an

additional information that might be associated with
a node, i.e., data, element name and so forth. The
first rigid model for secureRSS for trees was given
in (Brzuska et al., 2010a).Brzuskaet al. formalized
the requirements for redactable signatures for tree-
structured documents. Their model only allows re-
moving leaves; sequentially running their leaf-cutting
algorithm only removes complete sub-trees. How-
ever, the model is restrictive with the respect, that
it only allows redacting leaves of the tree. (Brzuska
et al., 2010a) We restate their model and review it
in App. 4. We will now rework theBrzuskaet al.’s
model to securely allow the possibility to redact any
node. After we have stated our new security model,
we will shortly compare the new model toBrzuskaet
al.’s andAhnet al.’s (Ahn et al., 2012; Brzuska et al.,
2010a). Keep in mind, that our flexibility allows to
work on ordered and un-ordered trees, and generally
we also allow redacting a tree’s root.

Flexible Redactable Signature Scheme
for Trees. A RSS R SST for trees con-
sists of the four efficient (PPT)3 algorithms:
R SST := (KeyGen,Sign,Verify,Modify). Note, all
algorithms may output⊥ in case of an error.

KeyGen. The algorithmKeyGen outputs the pub-
lic and private key of the signer, i.e.,(pk,sk)←
KeyGen(1λ), λ being the security parameter.

Sign. On input of the secret keysk, the treeT and
ADM the algorithmSign outputs the signatureσT .
ADM controls what changes byModify are admis-
sible. In detail, ADM is the set containing all
signed edges, including the ones where a sub-tree
can be re-located to. In particular,(ni ,n j) ∈ ADM ,
iff the edge(ni ,n j) is to be signed. These edges
cannot be derived fromT alone. For simplicity,
we assume thatADM is always correctly deriv-
able from(T,σT). The output:(T,σT ,ADM)←
Sign(sk,T,ADM ).

Verify. On input of the public keypk, the treeT and
the signatureσT the algorithmVerify outputs a bit
d ∈ {0,1} indicating the correctness of the sig-
natureσT , w.r.t. pk, protecting the treeT. The
output:d← Verify(pk,T,σT).

Modify. The algorithm Modify takes as input the
signer’s public keypk, the treeT, the signature
σT andADM of T, and an instructionMOD. MOD

contains the actual change to be made: redact a
leafni , relocate a sub-treeTψ, distribute a sub-tree
Tυ without the original root, or prohibit relocating

3Probabilistic polynomial-time (PPT).
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a sub-treeTω. A modification ofT w.r.t. MOD is
denoted asT⊗MOD.
Apart from potentially changingT, the oldADM

must be adjusted: In particular, if a nodeni is
redacted, the edge to its father needs to be re-
moved as well. Moreover, if there exists a sub-
tree which could be relocated under the redacted
node, the corresponding edges need to be removed
from ADM as well. A modification ofADM w.r.t.
MOD will be denoted asADM ⊗MOD. The alter-
ation of ADM is crucial to maintain privacy and
transparency. Note, runningModify multiple times
is the same as aMOD containing more than one
change to be made. The output:(T ′,σ′T ,ADM ′)←
Modify(pk,T,σT ,ADM ,MOD).

Correctness. Genuinely signed or signed and mod-
ified trees are considered valid by the verification al-
gorithm. We usespan⊢(T,ADM) to denote all valid
trees that can be generated from a signed treeT by
running Modify never, once or more times, with a
MOD which respectsADM . Hence, we require all el-
ements ofspan⊢(T,ADM ) have valid signatures, iffT
has a valid signature. Note: Prohibiting additionalre-
locationsis allowed in our scheme. We will always
explicitly denoteADM in our algorithms for clarity.

The Extended Security Model. As discussed be-
fore, Ahn et al.’s framework has a stronger notation
for privacy thanBrzuskaet al. Our scheme is as se-
cure asBrzuskaet al.’s. We extend this model to cater
for the flexibility of intermediate node redaction and
re-locations, so the security properties must hold also
when the signer is given the new freedom to allow any
node being removed.

1. Unforgeability: No one should be able to com-
pute a valid signature on a treeT∗ for pk out-
side span⊢(T,ADM) without access to the cor-
responding secret keysk. This is analogous to
the standard unforgeability requirement for signa-
ture schemes, as already noted in (Brzuska et al.,
2010a). A schemeRSSis unforgeable, iff for any
efficient (PPT) adversaryA , the probability that
the game depicted in Fig. 6 returns 1, is negligi-
ble (as a function ofλ). In the game the attacker
is given access to a signature generating oracle
Sign(sk, ·, ·) and the public keypk, but not the se-
cret key. The attacker wins if he has a valid signa-
ture forT∗, which is a tree for which he has never
queried the oracle directly, nor can he generateT∗

by modifying a previously queried signed tree.

2. Privacy: No one should be able to gain any
knowledge about the unmodified tree without hav-

Experiment UnforgeabilityRSST
A (λ)

(pk,sk)← KeyGen(1λ)

(T∗,σ∗T)← ASign(sk,·,·)(pk)
let i = 1,2, . . . ,q index the queries

return 1 iff
Verify(pk,T∗,σ∗T) = 1 and
for all 1≤ i ≤ q, T∗ /∈ span⊢(Ti ,ADM i)

Figure 6: Game for Unforgeability.

ing access to it. This is similar to the stan-
dard indistinguishability notation for encryption
schemes (Brzuska et al., 2010a). A schemeRSS
is private, iff for any efficient (PPT) adversaryA ,
the probability that the game shown in Fig. 7 re-
turns 1, is negligibly close to12 (as a function of
λ). In the game the attacker is given a signature
generating oracle and the public key. He con-
trols two inputs to theLoRModify oracle (Fig. 8)
and also how they need to be modified to result
in the same tree. The oracle modifies both of
them into the same tree and outputs one of them
to the attacker. The attacker needs to identify the
used input to win. So the attacker controls all the
inputs Tj ,0,ADM j ,0,MOD j ,0,Tj ,1,ADM j ,1,MOD j ,1,
but need to guess which of the (now modified)
trees is returned. Note, that the two inputs need
to be modified such that they are equal w.r.t.T, σ
and alsoADM .

3. Transparency: A party who receives a signed
tree T cannot tell whether he received a freshly
signed tree or a tree which has been created via
Modify (Brzuska et al., 2010a). We say that a
schemeRSSis transparent, if for any efficient
(PPT) adversaryA , the probability that the game
shown in Fig. 9 returns 1, is negligibly close to1

2
(as a function ofλ). In the game for transparency,
the attacker has access to the public key and a sig-
nature generation oracle. He controls the input to
theModifyOrSign oracle (Fig. 10). Hence, he can
choose the original treeT with admissible modi-
ficationsADM and byMOD also the modified tree.
Note, MOD can contain several modification in-
structions. To win, the attacker has to guess if
the signed outputtedT ′ was created through the
modification algorithm from a signedT (b = 0)
or through modifyingT andADM before signing
them (b= 1).

Separation of Security Properties. The implica-
tions and separations ofBrzuskaet al. do not change:
Unforgeability is independent; Transparency⇒ Pri-
vacy; Privacy; Transparency. We omit the proofs
in this paper; they are essentially the same as given
in (Brzuska et al., 2010a).
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Experiment PrivacyRSST
A (λ)

(pk,sk)← KeyGen(1λ)

b
$
← {0,1}

d← ASign(sk,·,·),LoRModify(·,·,·,·,·,·,sk,b)(pk)
return 1 iffb= d

Figure 7: Game for Privacy.

Oracle LoRModify(Tj,0,ADM j,0,MOD j,0,
Tj,1,ADM j,1,MOD j,1,sk,b)

if MOD j,0(Tj,0) 6= MOD j,1(Tj,1) return⊥
(Tj,0,σT,0,ADM j,0)← Sign(sk,Tj,0,ADM j,0)
(Tj,1,σT,1,ADM j,1)← Sign(sk,Tj,1,ADM j,1)
(T ′j,0,σ

′
T,0,ADM ′j,0)← Modify(pk,Tj,0,σT,0,ADM j,0,

MOD j,0)
(T ′j,1,σ

′
T,1,ADM ′j,1)← Modify(pk,Tj,1,σT,1,ADM j,1,

MOD j,1)
if ADM ′j,0 6= ADM ′j,1 abort returning⊥
return(T ′j,b,σ

′
T,b,ADM ′j,b)

Figure 8: LoRModify Oracle (from Privacy).

Experiment TransparencyRSST
A (λ)

(pk,sk)← KeyGen(1λ)

b
$
← {0,1}

d← ASign(sk,·,·),ModifyOrSign(·,·,·,sk,b)(pk)
return 1 iffb= d

Figure 9: Game for Transparency.

Oracle ModifyOrSign(T,ADM ,MOD,sk,b)
if MOD /∈ ADM , return⊥
if b= 0:(T,σT ,ADM)← Sign(sk,T,ADM),

(T ′,σ′T ,ADM ′)←Modify(pk,T,σT ,ADM ,MOD)
if b= 1:T ′← T⊗MOD , ADM ′← ADM ⊗MOD

(T ′,σ′T ,ADM ′)← Sign(sk,T ′,ADM ′)
return(T ′,σ′T ,ADM ′).

Figure 10: ModifyOrSign Oracle (from Transparency).

Security of our Model. Our security model offers
the same security asBrzuskaet al.’s: unforgeability,
privacy and transparency notations (Brzuska et al.,
2010a).

The security model ofAhn et al.’s important
work (Ahn et al., 2012) introduces “strong context-
hiding” as a very strong privacy notation. Compared
to Brzuskaet al.’s privacy notation, context-hiding
will even hide the fact “whether it[(T ′,σ′,ADM ′)] was
derived from a given signed message” when the at-
tacker has access to a real original message and sig-
nature, i.e.,(T,σ,ADM) and the secret keysk. This is
considered a very strong privacy property by (Boneh
and Freeman, 2011) and we do not achieve this, as we
do not achieve unlinkability (Brzuska et al., 2010b).
However, in some use cases this strong privacy no-
tation is not needed, since the existing side-channel
information already links two signatures, i.e., non-

personal governmental datasets being released to fos-
ter Open Government initiatives.

Redacting any Node. To show the full flexibility of
allowing any node to be redactable we do treat the
tree’s root as a redactable node. Note, redacting the
root, as shown in Fig. 11 (3c), is possible. In the
example (3c)n2 transparently becomes the new root.
However, in general redacting, the root might leave
one with a forest of trees, i.e., two or more uncon-
nected sub-trees. Each sub-tree is than a valid signed
sub-tree, however the connection between the sub-
trees is lost. Iff the signer provided re-location edges
that allow to connect the sub-trees into one tree then
this is a possible option after having redacted the root.

Adding signer control, to prohibit this is straight
forward: During signing we annotaten1 as root and
additionally indicate that redacting the root is prohib-
ited. Complementary, the verify algorithm will check
for that indicator and, iff present, it will verify, if one
node with the annotation is present in the root node
received.

3 OUR NEW SECURE FLEXIBLE
SCHEME

Merkle-hash-Tree (M H ). Our construction fol-
lows the ideas of theMerkle-Hash-Tree (Merkle,
1989): We use the following notation for the recur-
sively constructed extended version, which works on
arbitrary trees with content. We denote a concate-
nation of two stringsx,y with x||y. The extended
Merkle-Hash M H is calculated as: M H (x) =
H (H (cx)||M H (x1)|| . . . ||M H (xn)), whereH is a
cryptographic hash function like SHA-512,cx the
content of the nodex, xi a child ofx, andn the num-
ber of children ofx. M H (n1)’s output, called root
hash, depends on all nodes and on theright order of
the siblings. Hence, signing the root hash protects the
integrity of the nodes in an ordered tree and the tree’s
structural integrity. Obviously, this technique does
not allow to hash unordered trees; an altered order
will most likely cause a different digest value. One
may argue that annotating an unordered sub-tree is
sufficient. However, this does not allow to rearrange
items and hence enforces a given order, which may
not be wanted in certain use-cases, e.g., if invoices
are signed. Hence, an unsorted list or tree should be
signed and verified as such. A more detailed analy-
sis of theMerkle-Hash-Tree is given in (Kundu and
Bertino, 2009), which also gives an introduction on
the possible inference attacks on non-private schemes.
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Accumulating Hash-functions (AH ). One-way
accumulators have been introduced by in (Benaloh
and Mare, 1993). The basic idea is to construct a
collision- and preimage-resistant family of functions
AH K , where∀AH k ∈ AH K : Xk×Yk→ Xk which
members fulfill an additional property:

∀k∈ K : ∀x∈ X : ∀y1,y2 ∈ Y :

AH k(AH k(x,y1),y2) = AH k(AH k(x,y2),y1)
(1)

named quasi-commutativity. We just need the basic
operations of an accumulator, e.g., no dynamic up-
dates or revokation techniques are required. A ba-
sic accumulator consists of three efficient algorithms,
i.e.,AH := {KeyGen,Hash,Check}:

KeyGen. Outputs the system parametersprm on
input of a security parameterλ, i.e., prm←
KeyGen(1λ)

Hash. Outputs the accumulated digestd along with
the set of witnessesW = {w1, . . . ,wn}, i.e.,
(d,W )← Hash(prm,I ), on input of a set of to-
be-digested itemsI = {v1, . . . ,vn} and the param-
etersprm. The accumulatation ofI = {v1; . . . ;vn}
is denoted asAH k(prm,{v1; . . . ;vn}), wherek∈
K. Each witnesseswℓ in W allows to prove the
membership of the corresponding valuevℓ.

Check. Outputs a bitd ∈ {0,1} indicating if a given
valuevi was accumulated into the digestd with
respect toprmand a witnesswi . In particular,b←
Check(prm,vi ,d,wi)

We require the usual soundness requirements (Barić
and Pfitzmann, 1997) to hold, while the concrete in-
stantiation of an accumulator must be strongly one-
way (Barić and Pfitzmann, 1997). In particular, an
outsider should not be able to guess members, to de-
cide how many additional values have been accumu-
lated, to forge a digest or to generate membership
proofs. The formal descriptions of our needs are rel-
egated to App. 4. Additional information about accu-
mulators can be found in (Barić and Pfitzmann, 1997;
Benaloh and Mare, 1993; Camenisch and Lysyan-
skaya, 2002). To maintain transparency, we require
that any output ofAH is distributed uniformly over
the co-domain of the hash-function. An accumula-
tor not fulfilling these requirements has been pro-
posed byNyberg in (Nyberg, 1996); the underlying
Bloom-Filter can be attacked by probabilistic meth-
ods and therefore leaks the amount of members. This
is not acceptable. To prohibit recalculations of a di-
gest, we require a nonce as the seed. This has al-
ready been proposed in (Nyberg, 1996) and (Barić
and Pfitzmann, 1997). The idea to use accumulat-
ing hashes has already been proposed byKunduand
Bertinoin (Kundu and Bertino, 2008). However, they

state that accumulators are not able to achieve the de-
sired functionality. We will show that they are suffi-
cient by giving a concrete construction.

The Construction. We want to allow explicit re-
location of sub-trees. If a non-leaf is subject to redac-
tion, all sub-trees of the node need to be relocated. If
this is possible and what their new ancestor will be
must be under the sole control of the signer. We will
first sketch our solution, and give a concrete instanti-
ation and the algorithms afterwards. Our re-location
definition does not require to delete the intermediate
node. This behaviour will be discussed, after the con-
struction has been introduced.

Sketch. Our solution requires that the signer repli-
cates all re-locatable nodes and the underlying sub-
trees to all the locations where a sanitizer is allowed to
relocate the sub-tree to. The replicas of the nodes are
implicitly used just to produce the re-locatable edges
as our algorithms all work on nodes. Each additional
edge is also noted inADM . In Fig. 11(1+2), the dot-
ted area corresponds to the sub-treen3 andn4 under
the re-locatablen3. The sub-treen3 andn4 must be
re-located as a whole. The dashed curved edgee1,3
corresponds to such an additional edge contained in
ADM to indicate the allowed re-location ofn3 as di-
rect child ofn1. All algorithms work on nodes not on
edges, hence always imagine one builds all allowed
re-locations by replicating nodes before one runs an
algorithm like MODIFY, as depicted in Fig. 11(1).

We allow to re-locate a re-locatable sub-tree with-
out redaction of nodes. We prohibit simple copy
attacks, i.e., leaving a relocated sub-treeTω in two
locations, because each nodeni gets an associated
unique noncer i . The whole tree gets signed as in
the standardMerkle-Hash-Tree, with one notable ex-
ception: Instead of using a standard hash like SHA-
512, we use an accumulator which allows the san-
itizer to remove values without changing the digest
value. To remove parts the sanitizer is removing the
redacted elements and no longer provides the corre-
sponding witnesses of the redacted elements. The
quasi-commutative behavior of the accumulators also
allows us to sign unordered trees; it does not matter
in what order the members are checked. However, if
ordered trees are present, the ordering between sib-
lings has to be explicitly signed. To allow distribu-
tion of sub-trees without the root, we sign each node’s
Merkle-Hash individually using a standard signature
scheme. As said, redaction is therefore a simple re-
moval of the nodes and the corresponding witnesses.
Re-location is similar: Apply the necessary changes
to T. Additionally, a sanitizer can prohibit consec-
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utive re-locations, this could be seen equal to con-
secutive sanitization control (Miyazaki et al., 2005).
To prohibit further re-location one removes the cor-
responding witnesses. This implies thatADM is ad-
justed accordingly.

Verification: For a nodex check, ifx’s content,x′s
children andx’s order to other siblings is contained in
x’s Merkle-Hash. This is done for each node. A seed
is used to prohibit simple recalculation attacks (Barić
and Pfitzmann, 1997). To sign the ordering between
siblings, we sign the “left-of” relation, as already used
and proposed in (Brzuska et al., 2010a), (Chang et al.,
2009) and (Samelin et al., 2012).

The Algorithmic Description. We assume that wit-
nesses are generated, distributed and used to verify
memberships, and, of course, removed from distribu-
tion, if the corresponding values are removed. This
does not introduce any security problems, since the
sanitizer could give away the original tree anyway.
How the witnesses are generated depends on the ac-
tual accumulator used and is therefore omitted.

KeyGen(λ):
//Choose a suitable accumulator
ChooseAH k ∈ AH K
Generateprm← AHKeyGenk(λ)
//Choose an unforgeable signature schemeΠ
ChooseΠ and set(pkS,skS)←Π.AKeyGen(λ)
//Return all generated material
return(pk= (pkS, prm,AH k,Π),sk= (skS))

Expand(T,ADM ):
For all edgesei ∈ ADM

Replicate the sub-tree underneath the
node addressed byei
to the designated position
this must be done bottom-up

Note: This implies thatr i are copied as well.
Return this expanded tree, denoted asΩ

Sign(sk,T,ADM ):
For each nodeni ∈ T:

r i
$
←{0,1}λ

If r i has already been drawn, draw again
Expanded treeΩ← Expand(T,ADM)
For each nodex∈Ω:

Draw a random seedsx
$
←{0,1}λ

Let xi denote a children ofx
If the tree is un-ordered:

dx = M H (x)← AH k(prm,{sx;cx||rx;
M H (x1); . . . ;M H (xn)})

σx←Π.ASign(skS,dx||unordered)
Else: //ordered tree

dx = M H (x)← AH k(prm,{sx;cx||rx;
M H (x1); . . . ;M H (xn);Ξx})

// Build Ξx, the set of
// all “left-of” relations of xi :
Ξx = {r i ||r j | 0< i < j ≤ n}
σx←Π.ASign(skS,dx||ordered)

// Build list of all witnesses:
Let W = {wi |ni ∈Ω}.
returnσT = ({σi}ni∈Ω,W ,ADM)

Modify(pk,T,σT ,ADM ,MOD):
useVerify to verify the treeT
Expanded treeΩ← Expand(T, ADM)
Case 1: Redact nodenl :

//1. removeall nl (incl. replicas) fromΩ:
SetΩ′← Ω\nl
//2. removethe nodenl from T:
SetT ′← T \nl
returnσ′T = (T ′,{σi}ni∈Ω′ ,{wi}ni∈Ω′ ,ADM)

Case 2: Share sub-treeTυ, wheren1 /∈ Tυ:
returnσ′T = (Tυ,{σi}ni∈Tυ ,{wi}ni∈Tυ ,ADM)

Case 3: Re-locateTψ:
SetT ′← MOD(T)
returnσ′T = (T ′,{σi}ni∈Ω,{wi}ni∈Ω,ADM)

Case 4: Remove re-location edgeel :
SetADM ′← ADM \el
Expanded treeΩ′← Expand(T,ADM ′)
//Note: This expansion is done with the modified

ADM ′.
returnσ′T = (T,{σi}ni∈Ω′ ,{wi}ni∈Ω′ ,ADM ′)

Verify(pk,T,σT):
Check if eachr i ∈ T is unique.
For each nodex∈ T:

Let the value protected byσx bedx
Let d← Check(prm,cx||rx,dx,wx)
If d = 0, return 0
For all childrenci of c do:

let the value protected byσci bedc
//Note: checks if children are signed
Let d← Check(prm,dc,dx)
If d = 0, return 0
If σx = dx||ordered:

//Is every “left-of”-relation signed?
//Note: just linearly many checks
For all 0< i < n:

d← Check(prm, r i ||r i+1,dx,wx,x+1)
If d = 0, return 0

return 1

Arguably, allowing re-location without redaction
may also be too much freedom. However, it allows
the signer to allow a flattening of hierarchies, i.e., to
remove the hierarchical ordering of treatments in a
patients record. A third party can prohibit consecu-
tive re-locations by removing the associated witnesses
from distribution. An example of an resulting tree is
depicted in Fig.11(3a). Note, the algorithm Modify
actually works by removing the duplicated nodes, and
hence removes the allowed edgee1,3.

Runtime Complexity. For generation ofσT , the
sibling’s order requiresn(n−1)

2 hashing steps. All
other steps require to touch the nodes only once. Con-
sequently, the runtime approximation of our signing
algorithm is linear in the number of nodes, while be-
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Figure 11: (1) Expanded tree with duplicates for all possible re-locations of sub-trees, (2) Tree with allowed Level-Promotion
of n3, (3) Examples of valid trees with 3 or 4 nodes after: (3a) redact re-locatability, (3b) redactn4, (3c) redactroot, (3d)
relocate-onlyn3, (3e) re-locaten3 and redactn4, (3f) redactn2 and level-promoten3.

Table 2: Median Runtime; in ms.

Generation ofσ Verification ofσ
P
P
P
P
P
P
P

Nodes
10 100 1,000 10 100 1,000

Ordered 276 6,715 57,691 26 251 2,572
Unordered 103 599 5,527 21 188 1,820
SHA-512 4 13 40 4 13 40

ing quadratic in the number of siblings. Redacting
is just removing values. Verification isO(|V|), since
a verifier has to check, if each digest is contained
in its parent’s digest and if the content has been di-
gested. Checking the order of siblings can be done in
linear time due to the transitive behaviour. We have
implemented our scheme to demonstrate the practi-
cal usability. As the accumulator, we have choosen
the original construction (Benaloh and Mare, 1993).
Tests were performed on aLenovo Thinkpad T61with
an Intel T8300 Dual Core @2.40 GHz and4 GiB
of RAM. The OS wasUbuntu Version 10.04 LTS
(64 Bit) with Java-Framework1.6.0 26-b03 (Open-
JDK). Source code will be made available upon re-
quest. We took the median of 10 runs. We measured
trees with unordered siblings and one with ordered
siblings. Time for generation of keys for the hash is
included. We excluded the time for creating the re-
quired key pairs; it becomes negligible in terms of
the performance for largen. On digest calculation
we store all intermediate results in RAM to avoid any
disk access impact.

As shown, our construction is useable, but be-
comes slow for large branching factors. The ad-
vanced features come at a price; our scheme is con-
siderably slower than a standard hash like SHA-512.
Signatures are more often verified than generated, so
the overhead for verification has a greater impact.
All other provable secure and transparent schemes,
i.e., (Brzuska et al., 2010a) and (Chang et al., 2009),
have the same complexity and therefore just differ by
a constant factor, but do not provide a performance
analysis on real data.

Security of the Construction. Our scheme is un-
forgeable, private and transparent. AssumingAH
is collision-resistant and one-way, and the signature
schemeΠ is strongly unforgeable, our scheme is un-
forgeable. AssumingAH to always output uniformly
distributed digests and the digests are therefore in-
distinguishable from random numbers, our scheme
is transparent and also private. Note, it is enough
to show that Transparency and Unforgeability hold
because Transparency=⇒ Privacy (Brzuska et al.,
2010a). The formal proofs are relegated to App. 4 for
readability.

4 CONCLUSIONS

The lack of flexibility for redacting any node of a tree
and the lack of signer control motivated the construc-
tion of a new RSS. The scheme can sign ordered and
unordered trees. It allows the sanitizer to redact non-
leaf nodes and keeps the redaction transparent by al-
lowing level-promotions, but level promotions are un-
der the signer’s sole control. Keeping the signer in
control gives him the decision for which intermedi-
ate nodes he wants to weaken the structural integrity
protection and allow a re-location, but allows trans-
parency.

Furthermore, our construction is the first which al-
lows a signer to explicitly sign ordered and unordered
trees. How to sign trees where both, ordered and
unordered siblings, are present is still an open prob-
lem. We allow re-locations without redaction so that
a signer can allow a sanitizer to redact the hierarchy
from a sub-tree which contains hierarchically struc-
tured, but otherwise equal, nodes. In these cases, our
scheme allows redacting just the structure. Such a vi-
olation of structural integrity requires explicit confir-
mation by the signer.

Allowing the flexibility required us to give an ex-
tended security model. Finally, we have proven our
scheme using the extended security model. The per-
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formance analysis demonstrates that the scheme is
considerably slower than SHA-512. It therefore re-
mains an open problem how to construct transparent
schemes with an overhead ofO(n) and how to mix
ordered and unordered trees.
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APPENDIX

A Security Proofs of the Construction

Our changes to the security model do not affect the
implications and separations as presented in (Brzuska
et al., 2010a). Hence, unforgeability is independent,
while transparency⇒ privacy and privacy; trans-
parency (Brzuska et al., 2010a). The proofs are es-
sentially the same as already given in (Brzuska et al.,
2010a). Following from that it is sufficient to show
that transparency and unforgeability hold to show that
our scheme are secure. We will show this for each
property on its own.

The Construction is Unforgeable. If AH is
collision-resistant and one-way, and the signature
schemeΠ is strongly unforgeable, our scheme is un-
forgeable.

Proof. Let Aun f be an algorithm winning our un-
forgeability game. We can then useAun f to forge
the underlying signature scheme, to find collisions in
the hash-domain, or to calculate membership proofs.
Hence, our scheme’s security relies upon the security
of the signature scheme andAH . Given the game in
Fig. 6 we can derive that a forgery must fall in at least
one of the three cases, for at least one node in the tree:

Type 1 Forgery: The valued protected byσT has
never been queried byAun f to OSign Type 2 Forgery:
The valued protected byσT has been queried byAun f

to OSign, butT∗ /∈ span⊢(T,ADM); so the treeT∗ with
valid signatureσT is not in the transitive closure ofT.
This case has to be divided as well:

Type 2a Forgery:T /∈ span⊢(T
∗,ADM) Type 2b

Forgery: T ∈ span⊢(T
∗,ADM ) To win Aun f, the at-

tacker must be able to construct one of the three above
forgeries. This forgery can be used to break at least
one of the underlying primitives.

Type 1 Forgery: In the first case, we can use the
Type 1 Forgery ofAun f to createAun f Sigwhich forges
a signature. We constructAun f Sig usingAun f as fol-
lows:
(1) Aun f Sig chooses a hash-functionAH and passes
prm to Aun f. This is also true forpk of the signature
scheme to forge.
(2) All queries toOSign from Aun f are forwarded to

Aun f Sig’s oracle and genuinely returned toAun f.
(3) Eventually, Aun f will output a pair (T∗,σ∗T).
Aun f Sig returns (T∗,σ∗T), as a valid forgery. The
concrete signature forged can easily be extracted by
defining a tree-traversal algorithm looking for the sig-
nature not queried for the particular value. This is
due to the fact, that we allow to distribute sub-trees.
Hence, any node may be forged, not just the root
node.

Type 2a Forgery: In the case of 2a, we can use
the Type 2a Forgery produced byAun f to construct
Acol which breaks the collision-resistance of the un-
derlying hash-function. To do so, (1)Acol generates
a key pair of a signature scheme to emulateOSign and
choosesAH .
(2) It passespkandprm to Aun f.
(3) For every request to the signing oracle,Acol gen-
erates the signatureσ usingskand returns it toAun f.
(4) Eventually, Acol will output (T∗,σ∗T). Given
the transcript of the simulation,Acol searches for
a pair M H (n1) = M H (n2) with different content
resp. sub-trees. If such a pair is found andT∗ /∈
span⊢(Ti ,ADM i), Acol outputs exactly this pair, else
it aborts. The outputted pair is a collision of the hash-
function.

Type 2b Forgery: If Aun f returns a Type 2b
Forgery, we can buildAonewhich calculates member-
ship proofs of the underlying accumulator. To do so,
(1) Aonegenerates a key pair of a signature scheme to
emulateOSign and choosesAH .
(2) It passespkandAH to Aun f.
(3) For every request to the signing oracle,Aone gen-
erates the signatureσ usingskand returns it toAun f.
(4) Eventually, Aun f will output (T∗,σ∗T). Given
the transcript of the simulation,Aone searches for
a pair M H (n1) = M H (n2) with different content
resp. sub-trees. If such a pair is found andTi ∈
span⊢(T

∗,ADM ∗), Aone outputs (Ti ,T∗,σT ,σ∗), iff
the preimage maps to queried document. In other
words, the queried tree must be in the transitive clo-
sure of the preimage. Otherwise, we just have a
normal collision, which belongs to case 2a. The
membership proofs of the used accumulator can triv-
ially be extracted. We showed how to use all three
forgery types to break existential unforgeability of the
underlying signature schemeΠ, the one-way or the
collision-resistance property ofAH .

Our Construction is Transparent and Private. If
AH always outputs uniformly distributed digests and
the digests are therefore indistinguishable from ran-
dom numbers, our scheme is transparent and there-
fore also private (Brzuska et al., 2010a): This follows
directly from the definitions, i.e., the uniform distri-
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bution of the digests and the random numbers. In
particular, all output ofAH is computationally in-
distinguishable from random. This implies that the
output ofOModi f yOrSign is also computationally indis-
tinguishable from uniform, hence hiding the secret
bit b with overwhelming probability. In other words,
an adversary breaking transparency is able to distin-
guish between random and computed digests, which
has been assumed to be infeasible. Attacking the
nonces is not possible, since removing a random from
a uniform distribution results in a uniform distribution
again. An additional note: This is the reason why we
require a random seed for the accumulator; otherwise,
an adversary could just recalculate the digests.

B Formal Definition of the Requirements
of AH

Collision-resistance and One-wayness.The fam-
ily AH K contains only collision-resistant func-
tions (Barić and Pfitzmann, 1997). Furthermore, it
must be hard to find a digest with the same value with-
out having the preimages, i.e., we need strong one-
wayness (Barić and Pfitzmann, 1997). We can capture
both requirements:

Pr[k
$
← K;x

$
← Xk;y

$
← Yk;(x

′,y′)← A(x,y) :

AH k(x,y) = AH k(x
′,y′)∧y 6= y′]< ε(λ)

Where the probability is taken over all coin tosses.
In other words, an adversary should not be able to
reverse the hashing step and to find a valid preimage
or to find any other collision.

Indistinguishability of Output. We require that an
adversary cannot decide how many additional mem-
bers have been digested, i.e., the following distri-
butionsS1 andS2 must be computationally indistin-
guishable:

S1 = {xi | xi
$
← Xk}

S2 = {AH k(xi ,yi) | yi
$
← Yk,xi

$
← Xk,k

$
← K}

The probability is taken over all coin tosses. In other
words, an outsider not having the preimages cannot
decide how many members a given digest has.

C Brzuska et al.’s Security Model

In (Brzuska et al., 2010a)Brzuskaet al. formal-
ized the needs of signatures for tree-structured docu-
ments. A RSS for tree-structured documents requires
four efficient algorithms; in particularR SST :=
(sKg,sSign,sVf,sCut):

• sKg(1λ outputs the key-pair(sk, pk), whereλ is
the security parameter;

• sSign(sk,T) outputs a structural signatureσT ;

• sVf(pk,T,σT) outputs a bitv∈ {0,1}, which indi-
cates the correctness of the signatureσT protect-
ing the treeT and

• the redaction algorithmsCut(pk,T,σT ,Li), which
removes the leafLi from the treeT and outputs a
sub-treeT ′ ≃ T \{Li} � T and the corresponding
new signatureσ′T for which sVf(pk,T ′,σ′T) out-
puts 1.

Applying the leaf-cutting algorithmsCut subse-
quently allows removing complete sub-trees (Brzuska
et al., 2010a). It does not allow to redact non-leaves
or to express re-locations of sub-trees.

RSS Security Requirements. We informally re-
peat the existing security properties for tree-
structured documents as given and formalized by
Brzuskaet al. in (Brzuska et al., 2010a). These re-
quirements should also hold for the structure of the
treeT, not just its data. The structural integrity pro-
tection requires that all relations between nodes and
their position within the tree’s hierarchy are protected
by the signatureσT .

1. Unforgeability: No one should be able to com-
pute a valid signature on a treeT ′ for pk with-
out having access to the corresponding secret key
sk. This is analogous to the standard unforgeabil-
ity requirement for signature schemes, as already
noted in (Brzuska et al., 2010a).

2. Privacy: Given a sub-tree with a signatureσ and
two possible source treesTj ,0 and Tj ,1, no one
should be able to decide from which source tree
the , stems from. This definition is similar to the
standard indistinguishability notation for encryp-
tion schemes (Brzuska et al., 2010a).

3. Transparency:A third party should not be able
to decide which operations may have been per-
formed on a signed tree. Hence, whether a sig-
natureσT of a tree has been created from scratch
or throughsCut shall remain indistinguishable for
a party receiving a signed treeT (Brzuska et al.,
2010a).

The given notations take the tree structure of docu-
ments into account and allow public redactions, as
sCut only requires the public keypk. The formal
games are depicted in Fig. 12, Fig. 13 and Fig. 14/15.
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Experiment UnforgeabilityRSS
A (λ)

(pk,sk)← KeyGen(1λ)

(T∗,σ∗)← ADSign(sk,·)(pk)
let i = 1,2, . . . ,q index the queries

return 1 iff
DVerify(pk,T∗,σ∗) = 1 and
for all 1≤ i ≤ q, T∗ � Ti

Figure 12: Game for Unforgeability.

Experiment TransparencyRSS
A (λ)

(pk,sk)← KeyGen(1λ)

b
$
←{0,1}

d← ADSign(sk,·),DSign/DCut(·,·,sk,b)(pk)
where oracleDSign/DCut for inputT,L:

if L is not a leaf ofT, return⊥
if b= 0: (T,σ)← DSign(sk,T),

(T ′,σ′)← DCut(pk,T,σ,L)
if b= 1: T ′← T \L

(T ′,σ′)← DSign(sk,T ′),
finally return(T ′,σ′).

return 1 iffb= d

Figure 13: Game for Transparency.

D Revisiting the KB-Scheme

Here we shortly review the KB-Scheme as introduced
in (Kundu and Bertino, 2009). We omit the step that
randomizes the traversal numbers preserving their or-
dering. The KB-Scheme claims this is done to pre-
serve transparency. It has been shown in (Brzuska
et al., 2010a) that this is not sufficient to maintain
transparency. We already state the scheme in our
notation, since the original notation in (Kundu and
Bertino, 2009) and in (Brzuska et al., 2010a) is not
able to express the possibility of removing intermedi-
ate nodes. Every nodeni ∈ T will be addressed by his
pre-order traversal number, i.e., the root is denoted as
n1. Note, the amount of nodes inT, i.e., |V|, will be
denoted asn.

KeyGen. Generate a key pair(sk,pk) of an aggre-
gating signature schemeASS allowing public ag-
gregation, e.g., the BGLS-Scheme (Boneh et al.,
2003). By abuse of notation, we assume thatpk

Experiment PrivacyRSS
A (λ)

(pk,sk)← KeyGen(1λ)

b
$
←{0,1}

d← ADSign(sk,·),SignCut(...,sk,b)(pk)
return 1 iffb= d

Figure 14: Game for Privacy.

SignCut(Tj ,0,L j ,0,Tj ,1,L j ,1,sk,b)
if Tj ,0\L j ,0 ≇ Tj ,1\L j ,1 return⊥
(Tj ,b,σ j ,b)← sSign(sk,Tj ,b)
return(T ′j ,b,σ

′
j ,b)← sCut(pk,Tj ,b,σ j ,b,L j ,b)

Figure 15: SignCut Oracle.

contains all system parameters.

Sign. The signing-step outputs a signature for each
node inside the tree:

1. Compute the pre- and post-order traversal num-
bers, of the treeT.

2. Transform these lists into an randomized but
order-preserving space. For each nodeni , let
ρi denote the associated pair of randomized
traversal numbers

3. SetGT ← H (ω||ρ1||c1|| . . . ||ρn||cn), whereω
is a nonce andH a cryptographic hash-function
like SHA-512

4. ∀ni ∈ T compute:ξi ←H (GT ||ρi ||ci)

5. Sign allξi , i.e.,σi ← SIGNASS (sk,ξi)

6. Aggregate all signatures intoσT

7. Outputσ = (T,σT ,{(σi ,ρi)}0<i≤n,GT ,pk)

Modify. TheKundu-Scheme allows redaction of arbi-
trary nodes but no re-locations. Hence,MOD just
contains the description to redact the nodeni :

1. Verify the signature usingVerify
2. Removeni from T, i.e., T ′ ← MOD(T). This

can be expressed asT ′← T \ni , whereni is the
node to be redacted as specified byMOD. Both
also includes all edges from resp. toni. Note,
ni may not be a leaf

3. Aggregate all signatures{σ j} j 6=i into σ′T
4. Output the altered tupleσ′, i.e.,:

σ′ = (T ′,σ′T ,{(σi ,ρi)}0<i≤n′ ,GT ,pk)

Verify. Verification just usesσ:

1. For each nodeni ∈ T compute ξi ←
H (GT ||ρi||ci)

2. Check the validity usingASS . In particular,
eachξi calculated must be signed and contained
in σT

3. Traverse the tree using pre-order and check if
each of the associated traversal numbers is in
the correct order, i.e., the associated pre- and
post-order must remain plausible. Letf denote
the parent ofg; it must yield thatpf > pg and
r f < rg, wherepx denotes the associated pre-
order-number andrx the post-order-number as-
sociated to the nodex.

4. Output 1, if all checks pass, 0 otherwise resp.
⊥ on error
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