Flexible Redactable Signature Schemes for Trees
Extended Security Model and Construction

Henrich C. Pohis®, Kai Samelif3T, Hermann de Meé# and Joachim Posegha
1IT-Security, University of Passau, Passau, Germany
2Computer Networks and Computer Communication, University of Passau, Passau, Germany
3|nstitute of IT-Security and Security-Law (ISL), University of Passau, Passau, Germany

Keywords: Redactable Signatures, Malleable Signatures, Trees.

Abstract: At ISPEC’12,Samelinet al. show that the redactable signature scheme introduced at VLDB'@&itgu
andBertino does not always preserve the structural integrity of the tree signed. In particular, they show how

redaction of non-leaves promotes descendants and allows a third party to add new edges to the signed tree.

This alters the semantic meaning of the tree and is not acceptable in certain scenarios. We generalize the
model, such that it offers the signer the flexibility to sign trees where every node is transparently redactable.
This includes intermediates nodes, i.e, to allow redacting a hierarchy, but also the tree’s root. We present a
provably secure construction, where this possibility is given, while remaining under explicit control of the
signer. Our security model is as strongBrguskaet al.'s introduced at ACNS’10. We have implemented our
secure construction and present a detailed performance analysis.

1 INTRODUCTION again. This is useful in cases where the signer is not

reachable or must not know that parts of a signed doc-
Trees are commonly used to organize data; XML is ument are passed to third parties. Redactable signa-
just one of today’s most prominent examples. To pro- ture schemesiSS) have been designed to fulfill these
tect these documents against unauthorized modifica-needs, i.e., they allow that parts of a signed document
tions, digital signature algorithms like RSA (Rivest can be removed without invalidating the signature. As
et al., 1983) can be used. Using these digital signa- standard signatures scheme like RSA, they allow to
tures schemes, two important properties of the datadetect unauthorized changes of the signed data. In
are protected: integrity of the data itself and verifiabil- our case, the data is tree-structured, e.g., XML. More-
ity of the signer and hence the data’s origin. However, over, the tree’s integrity needs to include the structure,
in certain scenarios, it is desirable to remove parts of i.e., the edges of the tree, as it carries information as
a signed document without invalidating the protecting well (Liu et al., 2009).

signature. Additionally, the remaining document shall We found that existin@Ss for trees have two ma-
still retain the integrity protection and origin verifia- jor shortcomings: (1) they differ in the integrity pro-
bility offered by the signature. tection they offer for the tree’s structure (structural

This could be simply achieved by requesting a integrity protection) (Kundu and Bertino, 2009). (2)
new signature from the signer with the parts removed they differ in the flexibility of redactions they allow
before generating the new signature. While this (non-leaf redaction) (Brzuska et al., 2010a). We will
roundtrip allows to satisfy the above requirements, explain the shortcomings of existing schemes, using
the “digital document sanitization problem”, as in- the trees depicted in Fig. 1-4. Next, we will highlight
troduced in (Miyazaki et al., 2003), adds another re- the importance of each problems using illustrating ex-
quirement: the original signer shall not be involved amples:

*1s funded by BMBF (FKZ:13N10966) and ANR as part di d dacti f . d
of the ReSCUelT project (www.sichere-warenketten.de). Intermediate Node Redaction. Information store

*Is supported by “Regionale Wettbewerbsfahigkeit und N the tree’s nodes might need to be redacted. Con-
Beschaftigung”, Bayern, 2007-2013 (EFRE) as part of the Sider the tree depicted in Fig. 1, ignore the labels for
SECBIT project. (http://www.sechbit.de). now. To remove the leafy, the node, itself and the

Pdhls H., Samelin K., de Meer H. and Posegga J.. 1 13
Flexible Redactable Signature Schemes for Trees - Extended Security Model and Construction.

DOI: 10.5220/0004038701130125

In Proceedings of the International Conference on Security and Cryptography (SECRYPT-2012), pages 113-125

ISBN: 978-989-8565-24-2

Copyright ¢ 2012 SCITEPRESS (Science and Technology Publications, Lda.)

SECRYPT 2012 - International Conference on Security and Cryptography

edgees 4 is redacted from the tre€ = (V,E). Al-

lowing leaf removal also allows to remove sub-trees,

i.e., by consecutive removal of firsty andns after-
wards (Brzuska et al., 2010a).
only allowing for redaction of leaves fail to redact the
data stored im3 only. In other words, we want that
ns is redacted, while the nodes,n, andng are not

subject to redaction. The resulting tree is depicted

in Fig.2. To connechy to the remaining tree, the

However, schemes

Relocaten,
usingeg 4 after
redactingng

Figure 5: Redaction afi; and Re-location ofis usinge; 4.

ployees’ names as nodes and their position within the

third party requires to add a new edge, which was not companies hierarchy (Liu et al., 2009). Hence, pro-

present before, i.ee; 4. However,ey 4 is in thetran-
sitive closureof T, as shown in Fig. 3. Hence RSS

which is generally restricted to (consecutive) redac-

tecting structural integrity is equal to protecting the
correctness of the employees’ hierarchical positions
in the given example. If one would only protect the

tion of leaf nodes does not cater for all use cases. The@ncestor relationship of nodesTh one would only

scheme introduced biyunduandBertinodoes allow
redaction of intermediate nodes, while also claiming
that this flexibility is a useful property (Kundu and
Bertino, 2009). However, this behavior may be prob-
lematic, as we will show next.

(0.3,0.7)

(0.6,0.1)

Figure 1: Original Tred with Randomized Traversal Num-
bers.

(0.3;0.7)

: Implicit edge
i e after
: redactingng

(0.6,0.1) @ (0.9,0.2)

Intermediate Node Redactioll following

Figure 3: Transitive Closure af implicitly addse 4.

Figure 2:
Kundu.

Figure 4: Allow Relocationés 4) and Level-Promotion of
ng (e14). A dotted line denotes an explicit edge.

Structural Integrity Protection. Imagine the in-
formation stored in a tre€ is a chart showing the em-

114

have a protection of all edges that are part of the tran-
sitive closure ofT. This is depicted in Fig. 3. This
allows a third party to add edges to the tiEethat
were not present if. Samelinet al. show that the
scheme oKunduandBertino(KB-Scheme) is subject

to this attack and name it “Level Promotion” (Samelin
et al., 2012). In particular, an employee can be “pro-
moted”. We will give a more detailed description of
the attack on the KB-Scheme here and want to see it
in the light of allowing flexibility. However, it mo-
tivates the need for structural integrity protection. A
full description of the s is given in our extended nota-
tion in App. 4. Their scheme builds upon the idea that
a party who has all pre- and post-order traversal num-
bers (See Fig. 1) of all nodes contained in the free

is always able to correctly reconstruict They argue
that signing each nodg € T along with both traver-
sal numbers is enough to protect the tree’s integrity.

Their verification checks all signatures on the
nodes individually — with an additional step: A ver-
ifier has to check if all nodes are structured correctly
using the traversal numbers (Kundu and Bertino,
2009). This leads to the problem that a verifier is
not able to determine whether a given edge existed
in the original treeT, just if it could have existed.
Assume that a third party redaats from T, as de-
picted in Fig. 2. On verification the new edges,
which has not explicitly been present in the origi-
nal treeT becomes valid. This implies, that the tree
T2 = ({n1,n2,n4},{€12,€14}) is valid.

To be more precise, let us compute the traver-
sal numbers for the example tree in Fig. 1. The
pre-order traversal of will output (1,2,3,4), while
the post-order traversal will outpy#,3,2,1). To
make their scheme not leaking occurred redaction,
these traversal numbers are randomized in an order-
preserving manner, which does not have an impact
on the reconstruction algorithm. The randomization
step may transform them int®.3,0.6,0.8,0.9) and
(0.7,0.4,0.2,0.1) resp. Hence, the node; has a
structural position op; = (0.3;0.7). Forny, n3 and

Flexible Redactable Signature Schemes for Trees - Extended Security Model and Construction

ng this is done accordingly. We redagat, an inter- directed trees (Camacho and Hevia, 2012). This idea
mediate node o, andns. For the redacted tree in from Rivestand Micali (Micali and Rivest, 2002),
Fig. 2, the traversal-numbers are still in the correct however, focuses on how to authenticate single edges
order. Hence, the created signature verifies. within a signed tred .

The impact of attacks on the structural integrity KunduandBertinowere the first to developRSS
are significant, as the structure of a tree carries partwhich addresses the specific needs of tree-structured
of the document'’s information (Liu et al., 2009). documents (Kundu and Bertino, 2008; Kundu and
One might argue that nesting of elements must ad- Bertino, 2009).Brzuskaet al. already broke the KB-
here to a specific codified structure, i.e., XML- Scheme and showed that it does not hide redactions,
Schemata. Henceforth, attacks like level-promotions based on a probabilistic attack (Brzuska et al., 2010a).
will be detected by any XML-Schema validator, if One may argue thafundu and Bertino do not see
redactions are not valid. However, whenever an el- their scheme in the context &SS, since they just
ement can contain itself, like hierarchically structured want to prohibit “leakage” due to structural informa-
lists of employees or hospital treatments composed of tion (Kundu and Bertino, 2009).
treatments, grandchildren can be promoted to direct The solution byBrzuskaet al. only allows redac-
children, without Kundus traversal-number based tions of leaves (Brzuska et al., 2010a). Another
validation-algorithm detecting it (Kundu and Bertino, scheme for trees, byfuet al. is also not flexible (Wu
2009) and without breaking an XML-Schemata. et al., 2010). Moreover, it relies on tiverkleHash-

This destroys the structure of the tree and directly Tree-Technique with standard cryptographic hashes
impacts on the semantics, maybe resulting in a differ- like SHA-512. Hence, their scheme does neither hide
ent way on how a patient is treated in a hospital or redactions nor preserve privacy (Kundu and Bertino,
impacting on the rights that one might believe an em- 2008; Kundu and Bertino, 2009).
ployee can have (Liu et al., 2009). Obviously, this is

not acceptable in the generic case and could lead to Table 1: EX@ngRSS Schemes’ Capabilities.

several other attack vectors, similar to the ones XPath Efeﬂgﬁfilggves ittfeljcrtiltﬂa' L’}ngézigtcyﬂon
has introduced (Gottlob et al., 2003). Rundu Yes, No,?méicit No.

We conclude that the signer musstplicitly sign andBertino | allowed level-promotion
the edges which can be used by the sanitizer rather|or-is<eta. | o ves. res.
then implicitly “signing” all of them. Currently, a Comacho | Yes, allows all different
signer is not able to control this behavior, neither in igﬂ';f‘;‘la ";I'LO"CV;‘I’Y gggsm"e edges 322' -
the KB-Scheme nor in other existing schemes. ' quoting ' context-hiding?

aWe discuss this in detail in Sect.2
State of the Art. Next, we provide an overview

of the state of the art. The general concepReS Other schemes do not explicitly consider tree-
al. in (Johnson et al., 2002) ar@teinfeldand Bull application: In (Pohls et al., 2011) existing sanitizable

in (Steinfeld and Bull, 2002). The latter approach and redactable signature_ schemes are integ.rated into
was named "content extraction signatures”. A dif- XML Signatures, extending the work done in (Tan
ferent but related concept are sanitizable signature@nd Deng, 2009). Neither the approactTahet al.,
schemes (Ateniese et al., 2005; Brzuska et al., 2009).nor the work ofPohls et al. do secure trees, since
Instead of only redaction of parts they allow to ar- neither of them caters explicitly for the structure.
bitrarily modify parts of the signed document. In
this work, we concentrate on redactable signatures for Our Contribution and Outline. Our contribution
trees. We take into account solutions that allow flexi- is twofold and motivated by a lack of flexibility or
ble redaction or offer full protection of structural- and integrity protection of many existingSs for trees:
content-integrity. Either no redaction of intermediate nodes is allowed
A recent work isAhnet al. who cater for a spe- or, if allowed, the structural integrity protection is
cial sub-case of redaction called "quoting” (Ahn et al., relaxed to the transitive closure of the trees. As
2011). Quoting is not as flexible as redacting as it shown, protecting transitive closures, i.e., ancestor-
resembles “content extraction” by allowing quoting descendant relations, is a weaker structural integrity

consecutive parts of a list. HencAhn et al.'s ap- protection which leads to semantic attacks which go
proach is different and does not target trees. unnoticed by the integrity protection.
Also recently,Camachoand Hevia have showed Our first contribution is the rigid security model

how to build more efficient transitive signatures for for a flexible RSS for trees offering full structural

115

SECRYPT 2012 - International Conference on Security and Cryptography

integrity protection. We followBrzuskaet al.'s se- additional information that might be associated with
curity requirements foRSS for trees with leaf-only a node, i.e., data, element name and so forth. The
redaction (Brzuska et al., 2010a). In Sect. 2, we first rigid model for secur®SS for trees was given
give precise, game-based definitions of the secu-in (Brzuska et al., 2010aBrzuskaet al. formalized
rity properties: unforgeability, privacy, and trans- the requirements for redactable signatures for tree-
parency (Brzuska et al., 2010a). Our flexibility is al- structured documents. Their model only allows re-
lowing the signer to partially weaken the structural moving leaves; sequentially running their leaf-cutting
integrity protection at his leisure. Hence, the security algorithm only removes complete sub-trees. How-
requirements need to additionally capture the signer’s ever, the model is restrictive with the respect, that
flexibility to allow redaction of any node. This al- it only allows redacting leaves of the tree. (Brzuska
lows level promotions due tee-locationsof speci- et al., 2010a) We restate their model and review it
fied sub-trees, which resembles ih®licit possibil- in App. 4. We will now rework theBrzuskaet al.'s

ity of previous schemes. In particular, our signing model to securely allow the possibility to redact any
algorithm adds an additional edge to the tree to al- node. After we have stated our new security model,
low re-locations. A verifying party needs to decide we will shortly. compare the new model Brzuskaet
which edge to use. This allows the sanitizer to main- al.’s andAhnet al.'s (Ahn et al., 2012; Brzuska et al.,
tain transparency after occurred modifications. On 2010a). Keep in mind, that our flexibility allows to
the other hand, the signer remains in charge whenwork on ordered and un-ordered trees, and generally
describing how an occurred redaction is hidden by we also allow redacting a tree’s root.

re-locating the sub-tree. This leads to sigegplic-

itly prohibiting the redaction of nodésdividually, as . .

the signer musexplicitly sign an edge for re-location. Flexible Redactable ~ Signature Scheme
Additionally, in our construction the signer controls for- Trees. A~ RSS" RSSy - for trees con-
the protection of the order of siblings. Hence, our SiSts of the four efficient (PP?) algorithms:
scheme is capable of signing unordered trees. OurXSSt = (KeyGen, Sign, Verify,Modify). ~Note, all
flexibility to redact an node of the tree does include in@lgorithms may output. in case of an error.

its generality the tree’s root. Without loss of security, KeyGen. The algorithmKeyGen outputs the pub-
the signer can add an annotation to the root to prohibit |ic and private key of the signer, i.e(pk sk) «

rgda_cting thQ roots by ada.pting the signing and ve_ri— keyGen(1*), A being the security parameter.
fication algorithms. In particular, they must check, if)
the annotated root still exists. Sign. On input of the secret kegk the treeT and

Our second contribution is our secure construction ~ ADM the algorithmSign outputs the signaturer .
presented in Sect. 3, including a performance mea- ADM controls what changes byodify are admis-
surement. Our construction is based upon a collision- sible. In detail, ADM is the set containing all
resistant one-way accumulator (Benaloh and Mare, Signed edges, including the ones where a sub-tree

1993; Baric and Pfitzmann, 1997) in combina- canbere-located to. In particulan;, nj) € ADM,
tion with the Merkle-Hash-Tree-Technique (Merkle, iff the edge(n;,n;) is to be signed. These edges
1989). Employing theMerkle-Hash-Tree-Technique cannot be derived froril alone. For simplicity,
enforces the protection of structural integrity. Hence, =~ We assume thatbwm is always correctly deriv-
our scheme fulfills the defined security requirements ~ able from(T,or). The output:(T,0r,ADM) <
using only standard cryptographic primitives. Sign(sk T,ADM).

We conclude our work in Sect. 4. The appendix verity. On input of the public keyk, the treeT and
contains 'Fhe security proofs, the existing notations, the signaturer the algorithmverify outputs a bit
the security model from (Brzuska et al., 2010a) and d € {0,1} indicating the correctness of the sig-

the KB-Scheme (Kundu and Bertino, 2009). natureoT, w.r.t. pk protecting the tred. The
output:d «+ Verify(pk T,07).
Modify. The algorithm Modify takes as input the
2 EXTENDED SECURITY signer’s public keypk, the treeT, the signature
MODEL FOR RSS FOR TREES ot andAabpm of T, and an instructiomoD. MOD
contains the actual change to be made: redact a
We will use the following notation throughout this leafn;, relocate a sub-treRy, distribute a sub-tree
paper: The root, usuallyi, is the only node with- Ty without the original root, or prohibit relocating
out a parent. Nodes are addressednpy With c¢;,
we refer to all the content of nod®, which is an 3Probabilistic polynomial-time (PPT).

116

Flexible Redactable Signature Schemes for Trees - Extended Security Model and Construction

a sub-tre€l,,. A modification of T w.r.t. MOD is
denoted a§ ® MOD.

Apart from potentially changind@, the oldADM
must be adjusted: In particular, if a nodeis
redacted, the edge to its father needs to be re-
moved as well. Moreover, if there exists a sub-
tree which could be relocated under the redacted

node, the corresponding edges need to be removed

from ADM as well. A modification ofaDM w.r.t.
mMoD will be denoted aabM ® MOD. The alter-
ation of ADM is crucial to maintain privacy and
transparency. Note, runningpdify multiple times
is the same as ®ROD containing more than one
change to be made. The outp(if’, o, ADM’)
Modify(pk T,01,ADM,MOD).

Correctness. Genuinely signed or signed and mod-
ified trees are considered valid by the verification al-
gorithm. We usespan (T,ADM) to denote all valid
trees that can be generated from a signed Trdsy
running Modify never, once or more times, with a
MoD which respectabm. Hence, we require all el-
ements okpan.(T,ADM) have valid signatures, iff
has a valid signature. Note: Prohibiting additioreal
locationsis allowed in our scheme. We will always
explicitly denoteapm in our algorithms for clarity.

The Extended Security Model. As discussed be-
fore, Ahnet al’s framework has a stronger notation
for privacy thanBrzuskaet al. Our scheme is as se-
cure aBrzuskaet al.’'s. We extend this model to cater
for the flexibility of intermediate node redaction and
re-locations, so the security properties must hold also
when the signer is given the new freedom to allow any
node being removed.

1. Unforgeability: No one should be able to com-
pute a valid signature on a trée for pk out-
side span.(T,ADM) without access to the cor-
responding secret kesk This is analogous to
the standard unforgeability requirement for signa-
ture schemes, as already noted in (Brzuska et al.,
2010a). A schem®&SSs unforgeable, iff for any
efficient (PPT) adversaryl, the probability that
the game depicted in Fig. 6 returns 1, is negligi-
ble (as a function oh). In the game the attacker
is given access to a signature generating oracle
Sign(sk; -,-) and the public keyk, but not the se-
cret key. The attacker wins if he has a valid signa-
ture forT*, which is a tree for which he has never
queried the oracle directly, nor can he genefate
by modifying a previously queried signed tree.

. Privacy: No one should be able to gain any
knowledge about the unmodified tree without hav-

RSST

Experiment Unforgeability 7

(pk,sk) < KeyGen(1})

(T*,0%) « ASan(sk) (pig
leti=1,2,...,qindex the queries

return 1 iff
Verify(pk, T*,07) = 1 and
forall1<i<gq, T* ¢ span(Ti,ADM;)

M)

Figure 6: Game for Unforgeability.

ing access to it. This is similar to the stan-
dard indistinguishability notation for encryption
schemes (Brzuska et al., 2010a). A scheR&S

is private, iff for any efficient (PPT) adversas,

the probability that the game shown in Fig. 7 re-
turns 1, is negligibly close t(% (as a function of
A). In the game the attacker is given a signature
generating oracle and the public key. He con-
trols two inputs to the oRModify oracle (Fig. 8)
and also how they need to be modified to result
in the same tree. The oracle modifies both of
them into the same tree and outputs one of them
to the attacker. The attacker needs to identify the
used input to win. So the attacker controls all the
inputs Tj 0,ADM j 0,MODj 0, Tj 1,ADMj 1,MODj 1,

but need to guess which of the (now modified)
trees is returned. Note, that the two inputs need
to be modified such that they are equal wT.to
and alscADM .

3. Transparency: A party who receives a signed
tree T cannot tell whether he received a freshly
signed tree or a tree which has been created via
Modify (Brzuska et al., 2010a). We say that a
schemeRSSis transparent, if for any efficient
(PPT) adversary, the probability that the game
shown in Fig. 9 returns 1, is negligibly close%o

(as a function od\). In the game for transparency,
the attacker has access to the public key and a sig-
nature generation oracle. He controls the input to
the ModifyOrSign oracle (Fig. 10). Hence, he can
choose the original tre€ with admissible modi-
ficationsADM and bymoD also the modified tree.
Note, MOD can contain several modification in-
structions. To win, the attacker has to guess if
the signed outputted’ was created through the
modification algorithm from a signed (b = 0)

or through modifyingl andAabm before signing
them p=1).

Separation of Security Properties. The implica-
tions and separations Bfrzuskaet al. do not change:
Unforgeability is independent; Transpareney Pri-
vacy; Privacy= Transparency. We omit the proofs
in this paper; they are essentially the same as given
in (Brzuska et al., 2010a).

117

SECRYPT 2012 - International Conference on Security and Cryptography

Experiment Privacy’y>°" (A)

(pk,sK) < KeyGen(1})

b& {01}

d « gSign(sk-,),LoRModify(-,-, ", Skb)(pk)
return 1iffb=d

Figure 7: Game for Privacy.

Oracle LoRModify(Tj o, ADMj 0,MODj o,
Tj1,ADM | 1,MODj 1,5K b)

if MODj o(Tj0) 7 MOD; 1(Tj 1) return.L

(Tj,0,07,0,ADM j 0) <= Sign(sk Tj .0, ADM j o)

(Tj/l,O;nl,ADM 1) Slgn.(SK Tj,1,ADM j71)

(Tj 0,07 0, ADM/j o) <= Modify(pk, Tj 0,07,0, ADM j 0,
MODj o)

(Tj/’l,Ofnl,ADM/j’l) < Modify(pk Tj 1,07,1,ADM 1,
MODj 1)

if ADM] 5 # ADM ; abort returningl

r/ / ’ !
return(TLb,cT?b,ADM j7b)

Figure 8: LoRModify Oracle (from Privacy).

M)

Experiment Tra nsparencyzSST

(pk;sK) <~ KeyGen(1})

b (0,1}

d«— /qsign(sk»,»),ModifyOrSign(»,»,»,st)(pk)
return 1iffb=d

Figure 9: Game for Transparency.

Oracle ModifyOrSign(T,ADM,MOD, sk b)

if MOD ¢ ADM, return_L

if b=0:(T,07,ADM) < Sign(sk T,ADM),

. (T’,0%,ADM’) < Modify(pk, T,07,ADM, MOD)

if b=1:T' < T ®@MOD , ADM’ <~ ADM ® MOD
(T’,0%,ADM’) < Sign(sk T’,ADM)

return(T’,o%,ADM’).

Figure 10: ModifyOrSign Oracle (from Transparency).

Security of our Model. Our security model offers
the same security érzuskaet al.'s: unforgeability,
privacy and transparency notations (Brzuska et al.,
2010a).

The security model ofAhn et al’s important
work (Ahn et al., 2012) introduces “strong context-
hiding” as a very strong privacy notation. Compared
to Brzuskaet al.'s privacy notation, context-hiding
will even hide the fact “whether [{T’,0’, ADM')] was

derived from a given signed message” when the at-

personal governmental datasets being released to fos-
ter Open Government initiatives.

Redacting any Node. To show the full flexibility of
allowing any node to be redactable we do treat the
tree’s root as a redactable node. Note, redacting the
root, as shown in Fig. 11 (3c), is possible. In the
example (3ch, transparently becomes the new root.
However, in general redacting, the root might leave
one with a forest of trees, i.e., two or more uncon-
nected sub-trees. Each sub-tree is than a valid signed
sub-tree, however the connection between the sub-
trees is lost. Iff the signer provided re-location edges
that allow to connect the sub-trees into one tree then
this is a possible option after having redacted the root.

Adding signer control, to prohibit this is straight
forward: During signing we annotatg asroot and
additionally indicate that redacting the root is prohib-
ited. Complementary, the verify algorithm will check
for that indicator and, iff present, it will verify, if one
node with the annotation is present in the root node
received.

3 OUR NEW SECURE FLEXIBLE
SCHEME

Merkle-hash-Tree (M #H). Our construction fol-
lows the ideas of theMerkleHash-Tree (Merkle,
1989): We use the following notation for the recur-
sively constructed extended version, which works on
arbitrary trees with content. We denote a concate-
nation of two stringsx,y with x|ly. The extended
MerkleHash M #H is calculated as: MH(x) =
H(H(cx)||MH(X)||... || MH (xn)), where H is a
cryptographic hash function like SHA-512; the
content of the nodeg, x; a child ofx, andn the num-

ber of children ofx. M % (n;)’s output, called root
hash, depends on all nodes and onrigat order of

the siblings. Hence, signing the root hash protects the
integrity of the nodes in an ordered tree and the tree’s
structural integrity. Obviously, this technique does
not allow to hash unordered trees; an altered order
will most likely cause a different digest value. One
may argue that annotating an unordered sub-tree is

tacker has access to a real original message and sigsufficient. However, this does not allow to rearrange

nature, i.e.(T,0,ADM) and the secret kesk This is
considered a very strong privacy property by (Boneh

items and hence enforces a given order, which may
not be wanted in certain use-cases, e.g., if invoices

and Freeman, 2011) and we do not achieve this, as weare signed. Hence, an unsorted list or tree should be

do not achieve unlinkability (Brzuska et al., 2010b).

However, in some use cases this strong privacy no-

signed and verified as such. A more detailed analy-
sis of theMerkle-Hash-Tree is given in (Kundu and

tation is not needed, since the existing side-channelBertino, 2009), which also gives an introduction on

information already links two signatures, i.e., non-

118

the possible inference attacks on non-private schemes.

Flexible Redactable Signature Schemes for Trees - Extended Security Model and Construction

Accumulating Hash-functions (4#). One-way state that accumulators are not able to achieve the de-
accumulators have been introduced by in (Benaloh sired functionality. We will show that they are suffi-
and Mare, 1993). The basic idea is to construct a cient by giving a concrete construction.

collision- and preimage-resistant family of functions
AH, whereVAH € AHk : Xk X Y« — Xk which

| o The Construction. We want to allow explicit re-
members fulfill an additional property:

location of sub-trees. If a non-leaf is subject to redac-

Vke K :Vxe X :Vy,yo e) tir?_n,_all SUng|eeS ocl; thﬁ noﬂe _need to be relocat_ﬁdt; If

this is possible and what their new ancestor will be
AH(AH KX Y1).Y2) = AH(AHK(XY2). Y1) must bg under the sole control of the signer. We will

named quasi-commutativity. We just need the basic first sketch our solution, and give a concrete instanti-
operations of an accumulator, e.g., no dynamic up- ation and the algorithms afterwards. Our re-location
dates or revokation techniques are required. A ba- definition does not require to delete the intermediate
sic accumulator consists of three efficient algorithms, node. This behaviour will be discussed, after the con-

i.e., 44 := {KeyGen,Hash, Check}: struction has been introduced.

KeyGen. Outputs the system parametepsm on
input of a security parametex, i.e., prm <« Sketch. Our solution requires that the signer repli-
KeyGen(1}) cates all re-locatable nodes and the underlying sub-

Hash. Outputs the accumulated digesglong with trees to all the locations where asgnitizer is allowed to
the set of witnesses = {wi.....wn}, i.e., relocate the sub-tree to. The replicas of the nodes are

(d, W) « Hash(prm, I), on input of a set of to- implicitly used just to produce the re-locatable edges
be-digested items— {Vi, .., vn} and the param- . &S our algorithms all work on nodes. Each additional
etersprm. The accumulatation af = {vi;...;vp} ~ €dgeis alsonotedinbm. In'Fig. 11(1+2), the dot-
is denoted ast#(prm, {vi;...;vn}), wherek ted area corresponds to the sub-tngeandn, under
K. Each witnessew;, in % allows to prove the the re-locatabléiz. The sub-treez andns must be
membership of the corresponding vaiue re-located as a whole. The dashed curved ezige

) o corresponds to such an additional edge contained in

CheCkl' Outputs a bid & ‘l{ot’ 1& _'”?'Ct%t'ng_'f;t%\'l‘_’ti” ADM to indicate the allowed re-location of as di-

valuev; was accumulated into the digestwi

' : rect child ofn;. All algorithms work on nodes not on
respecttprmand a witnessy. In particularb « edges, hence always imagine one builds all allowed
Check(prm,v;,d,w;)

re-locations by replicating nodes before one runs an
We require the usual soundness requirements (Baricalgorithm like MoDIFY, as depicted in Fig. 11(1).

and Pfitzmann, 1997) to hold, while the concrete in- We allow to re-locate a re-locatable sub-tree with-
stantiation of an accumulator must be strongly one- out redaction of nodes. We prohibit simple copy
way (Bari¢ and Pfitzmann, 1997). In particular, an attacks, i.e., leaving a relocated sub-tiigein two
outsider should not be able to guess members, to dedocations, because each nodegets an associated
cide how many additional values have been accumu-unique nonce;. The whole tree gets signed as in
lated, to forge a digest or to generate membershipthe standarderkle-Hash-Tree, with one notable ex-
proofs. The formal descriptions of our needs are rel- ception: Instead of using a standard hash like SHA-
egated to App. 4. Additional information about accu- 512, we use an accumulator which allows the san-
mulators can be found in (Bari¢ and Pfitzmann, 1997; itizer to remove values without changing the digest
Benaloh and Mare, 1993; Camenisch and Lysyan- value. To remove parts the sanitizer is removing the
skaya, 2002). To maintain transparency, we require redacted elements and no longer provides the corre-
that any output ofa# is distributed uniformly over sponding witnesses of the redacted elements. The
the co-domain of the hash-function. An accumula- quasi-commutative behavior of the accumulators also
tor not fulfilling these requirements has been pro- allows us to sign unordered trees; it does not matter
posed byNybergin (Nyberg, 1996); the underlying in what order the members are checked. However, if
BloomFilter can be attacked by probabilistic meth- ordered trees are present, the ordering between sib-
ods and therefore leaks the amount of members. Thislings has to be explicitly signed. To allow distribu-

is not acceptable. To prohibit recalculations of a di- tion of sub-trees without the root, we sign each node’s
gest, we require a nonce as the seed. This has alMerkle-Hash individually using a standard signature
ready been proposed in (Nyberg, 1996) and (Bari¢c scheme. As said, redaction is therefore a simple re-
and Pfitzmann, 1997). The idea to use accumulat- moval of the nodes and the corresponding witnesses.
ing hashes has already been propose&inyduand Re-location is similar: Apply the necessary changes
Bertinoin (Kundu and Bertino, 2008). However, they to T. Additionally, a sanitizer can prohibit consec-

119

SECRYPT 2012 - International Conference on Security and Cryptography

utive re-locations, this could be seen equal to con-
secutive sanitization control (Miyazaki et al., 2005).
To prohibit further re-location one removes the cor-
responding witnesses. This implies thaim is ad-
justed accordingly.

Verification: For a node check, ifx's contentx’'s
children andk’s order to other siblings is contained in
X's Merkle-Hash. This is done for each node. A seed
is used to prohibit simple recalculation attacks (Bari¢
and Pfitzmann, 1997). To sign the ordering between
siblings, we sign the “left-of” relation, as already used
and proposed in (Brzuska et al., 2010a), (Changet al.,
2009) and (Samelin et al., 2012).

The Algorithmic Description. We assume that wit-
nesses are generated, distributed and used to verify
memberships, and, of course, removed from distribu-
tion, if the corresponding values are removed. This
does not introduce any security problems, since the
sanitizer could give away the original tree anyway.
How the witnesses are generated depends on the ac-
tual accumulator used and is therefore omitted.

/I Build list of all witnesses:
Let W = {wi|nj € Q}.
returnot = ({Gi }ncq, W,ADM)

Modify (pk, T,01,ADM,MOD):

useVerify to verify the treeT
Expanded tre€ < Expand(T, ADM)
Case 1: Redact nodg:
/11. removeall ny (incl. replicas) fromQ:
SetQ’ + Q\ n
/12. removethe noden; from T:
SetT' + T\ n
returnc} = (T/,{0i }neq’, {Wi }neq', ADM)
Case 2: Share sub-tr@g, wheren; ¢ T:
returno} = (Tu, {Ci tneT,, {Wi }ncT, , ADM)
Case 3: Re-locaf@y.
SetT’ + moD(T)
returnot = (T,{0Ci }neq, {Wincq, ADM)
Case 4: Remove re-location edge
SetADM’ < ADM \ g
Expanded tre€’ + Expand(T,ADM’)
/INote: This expansion is done with the modified
ADM’.
returno} = (T,{0i }ncar, {Wi}neq'; ADM')

Verify(pk, T, o7):

KeyGen(A):
/IChoose a suitable accumulator
ChooseqdH | € AHk
Generatgrm < AHKeyGeny(A)
/IChoose an unforgeable signature schéme
Choosd1 and seipkg, sks) < MN.AKeyGen(A)
//IReturn all generated material
return(pk= (pks, prm, 2#, M), sk= (sks))

Expand(T,ADM):
For all edges € ADM
Replicate the sub-tree underneath the
node addressed gy
to the designated position
this must be done bottom-up
Note: This implies that; are copied as well.
Return this expanded tree, denotedas

Sign(sk, T,ADM):
For each node; € T:

r & {0,121

Check if eachrj € T is unique.
For each node € T:
Let the value protected byy bedy
Letd < Check(prm, cx||rx, dx, W)
Ifd=0, return 0
For all childrenc; of ¢ do:
let the value protected by, bedc
/INote: checks if children are signed
Letd «+ Check(prm,dc, dx)
If d=0, return 0
If ox = dx||ordered:
/lIs every “left-of"-relation signed?
/INote: just linearly many checks
ForallO<i<n:
d < Check(prm,ri||riy1,dx, Wy x+1)
If d=0, return 0
return 1

Arguably, allowing re-location without redaction
may also be too much freedom. However, it allows

If ri has already been drawn, draw again
Expanded tre€ < Expand(T,ADM)
For each node € Q:

Draw a random sees} & {0, 1}}
Let x; denote a children of
If the tree is un-ordered:
Ok = MH(X) + AH(prm, {sg; x| |rx;

Ox < M.ASign(sks, dx||unordered
Else: //ordered tree

Oy = M IH(X) = AH (prm, {Sy; Cx|[rx;

MH(X1);...; MH (Xn); =x})

/I Build =y, the set of

/I all “left-of” relations of x;:

= ={ri[Ir;|0<i<j<n}

oOx + I.ASign(sks, dy||ordered

120

the signer to allow a flattening of hierarchies, i.e., to
remove the hierarchical ordering of treatments in a
patients record. A third party can prohibit consecu-
tive re-locations by removing the associated witnesses
from distribution. An example of an resulting tree is
depicted in Fig.11(3a). Note, the algorithm Modify
actually works by removing the duplicated nodes, and
hence removes the allowed edge.

Runtime Complexity. For generation ofoy, the
sibling’s order requires@ hashing steps. All
other steps require to touch the nodes only once. Con-
sequently, the runtime approximation of our signing
algorithm is linear in the number of nodes, while be-

Flexible Redactable Signature Schemes for Trees - Extended Security Model and Construction

Additional (3a) (3b) (3c)
edge signed .
and part of Y Allowed 0 (3d) (Sf)
ADM ‘: re-location (3e)
" Ol
(1) @ I/ @ E E
! re-locatable @ @ @
i sub-tree :

Figure 11: (1) Expanded tree with duplicates for all possiietlocations of sub-trees, (2) Tree with allowed LevelrRotion
of n3, (3) Examples of valid trees with 3 or 4 nodes after: (3a) cede-locatability, (3b) redaat,, (3c) redactoot, (3d)
relocate-onlyng, (3e) re-locatenz and redachg, (3f) redactn, and level-promot@s.

Table 2: Median Runtime; in ms. Security of the Construction. Our scheme is un-
Generation ob Verification ofo forgeable, private and transparent. Assuming(
Nodes| | /T 100 1,000 | 10| 100 | 1,000 is collision-resistant and one-way, and the signature

S 76| 6715 57601] 26 | 951" 2579 schemdl is strongly unforgeable, our scher_ne is un-
Unordered | 103|599 | 5527 21| 188 | 1.820 fqrggable. A;sumln@}[to alwgys output uniformly _
SHA-512 4 13 201 41 13 20 distributed digests and the digests are therefore in-
distinguishable from random numbers, our scheme
is transparent and also private. Note, it is enough
to show that Transparency and Unforgeability hold
because Transparency=-"Privacy (Brzuska et al.,
2010a). The formal proofs are relegated to App. 4 for
readability.

ing quadratic in the number of siblings. Redacting
is just removing values. Verification 8(|V), since

a verifier has to check, if each digest is contained
in its parent’s digest and if the content has been di-
gested. Checking the order of siblings can be done in
linear time due to the transitive behaviour. We have
implemented our scheme to demonstrate the practi-
cal usability. As the accumulator, we have choosen 4 CONCLUSIONS
the original construction (Benaloh and Mare, 1993).
Tests were performed orl@&novo Thinkpad T6with

an Intel T8300 Dual Core @. 40 GHz and4 GiB

of RAM. The OS wasUbuntu Version 10.04 LTS
(64 Bit) with Java-Framework. 6. 0_26- b03 (Open-
JDK). Source code will be made available upon re-
guest. We took the median of 10 runs. We measured
trees with unordered siblings and one with ordered
siblings. Time for generation of keys for the hash is
included. We excluded the time for creating the re-
quired key pairs; it becomes negligible in terms of
the performance for large. On digest calculation

we store all intermediate results in RAM to avoid any Furth truction is the first which al
disk access impact. urthermore, our construction is the first which al-

As shown, our construction is useable, but be- !(owsasg;nertto e.Xp“(f['tly S|gnhorderbedﬂ?nd lénor((jjere(?j
comes slow for large branching factors. The ad- reesd gw b? sign trees w etre ?” oraere ar;)
vanced features come at a price; our scheme is con-Unoraered siblings, areé present IS still an open prob-

siderably slower than a standard hash like SHA-512. lem. We allow re-locations without redaction so that
Signatures are more often verified than generated, so | a signer can allow a sanitizer to redact the hierarchy
the overhead for verification has a greater impact. rom a sub-tree which contains hierarchically struc-
All other provable secure and transparent schemes,tured’ but otherwise e_qua_l, nodes. In these cases, our
i.e., (Brzuska et al., 2010a) and (Chang et al., 2009), sch_eme allows reda_ctmg Just the structure. .SUCh avi-
have the same complexity and therefore just differ by olation of structural integrity requires explicit confir-

a constant factor, but do not provide a performance mation by the sigher. . .
analysis on real data. Allowing the flexibility required us to give an ex-

tended security model. Finally, we have proven our
scheme using the extended security model. The per-

The lack of flexibility for redacting any node of a tree
and the lack of signer control motivated the construc-
tion of a new RSS. The scheme can sign ordered and
unordered trees. It allows the sanitizer to redact non-
leaf nodes and keeps the redaction transparent by al-
lowing level-promotions, but level promotions are un-
der the signer’s sole control. Keeping the signer in
control gives him the decision for which intermedi-
ate nodes he wants to weaken the structural integrity
protection and allow a re-location, but allows trans-
parency.

121

SECRYPT 2012 - International Conference on Security and Cryptography

formance analysis demonstrates that the scheme is

considerably slower than SHA-512. It therefore re-

mains an open problem how to construct transparent

schemes with an overhead 6fn) and how to mix
ordered and unordered trees.

REFERENCES

Ahn, J. H., Boneh, D., Camenisch, J., Hohenberger, S., She-

lat, A., and Waters, B. (2011). Computing on au-
thenticated data. Cryptology ePrint Archive, Report
2011/096. http://eprint.iacr.org/.

Ahn, J. H., Boneh, D., Camenisch, J., Hohenberger, S., She-

lat, A., and Waters, B. (2012). Computing on authen-
ticated data. In Cramer, R., editGiCC, volume 7194

of Lecture Notes in Computer Scienqeages 1-20.
Springer.

Ateniese, G., Chou, D. H., de Medeiros, B., and Tsudik, G.
(2005). Sanitizable Signatures. ESBORICSpages
159-177.

Baric, N. and Pfitzmann, B. (1997). Collision-free accumu-
lators and fail-stop signature schemes without trees.
In EUROCRYPTpages 480-494.

Benaloh, J. and Mare, M. D. (1993). One-way accumula-
tors: A decentralized alternative to digital signatures.
pages 274-285. Springer-Verlag.

Boneh, D. and Freeman, D. M. (2011). Homomorphic
signatures for polynomial functions. Kdvances in
Cryptology — EUROCRYPT 2011¥0lume 6632 of
Lecture Notes in Computer Scienpages 149-168.

Boneh, D., Gentry, C., Lynn, B., and Shacham, H. (2003).
Aggregate and Verifiably Encrypted Signatures from
Bilinear Maps. INEUROCRYPJTpages 416-432.

Brzuska, C., Busch, H., Dagdelen, O., Fischlin, M., Franz,
M., Katzenbeisser, S., Manulis, M., Onete, C., Pe-
ter, A., Poettering, B., and Schroder, D. (2010a).
Redactable Signatures for Tree-Structured Data: Def-
initions and Constructions. IProceedings of the
8th International Conference on Applied Cryptogra-
phy and Network SecuritACNS’10, pages 87-104.
Springer.

Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A,
Page, M., Schelbert, J., Schroder, D., and Volk, F.
(2009). Security of Sanitizable Signatures Revisited.
In Proc. of PKC 2009pages 317-336. Springer.

Brzuska, C., Fischlin, M., Lehmann, A., and Schroder, D.
(2010b). Unlinkability of Sanitizable Signatures. In
Public Key Cryptographypages 444-461.

Camacho, P. and Hevia, A. (2012). Short transitive sig-
natures for directed trees. In Dunkelman, O., editor,
Topics in Cryptology — CT-RSA 201%2olume 7178
of Lecture Notes in Computer Sciengages 35-50.
Springer Berlin / Heidelberg.

Camenisch, J. and Lysyanskaya, A. (2002). Dynamic ac-
cumulators and application to efficient revocation of
anonymous credentials. ®RYPTQpages 61-76.

Chang, E.-C., Lim, C. L., and Xu, J. (2009). Short
Redactable Signatures Using Random TreesPrtr

122

ceedings of the The Cryptographers’ Track at the RSA
Conference 2009 on Topics in Cryptolog9T-RSA
'09, pages 133-147, Berlin, Heidelberg. Springer-
Verlag.

Gottlob, G., Koch, C., and Pichler, R. (2003). The complex-
ity of XPath query evaluation. IRroceedings of the
22nd Symposium on Principles of Database Systems
PODS, pages 179-190, New York, USA. ACM.

Johnson, R., Molnar, D., Song, D., and D.Wagner (2002).
Homomorphic signature schemes. Rroceedings of
the RSA Security Conference - Cryptographers Track
pages 244-262. Springer.

Kundu, A. and Bertino, E. (2008). Structural Signatures for
Tree Data Structures. IRroc. of PVLDB 2008New
Zealand. ACM.

Kundu, A. and Bertino, E. (2009). CERIAS Tech Report
2009-1 Leakage-Free Integrity Assurance for Tree
Data Structures.

Liu, B., Lu, J., and Yip, J. (2009). XML data integrity based
on concatenated hash functidmternational Journal
of Computer Science and Information Securitf).

Merkle, R. C. (1989). A certified digital signature.
CRYPTQpages 218-238.

Micali,- S. and Rivest, R. L. (2002). Transitive signature
schemes. In Preneel, B., edit@T-RSAvolume 2271
of Lecture Notes in Computer Sciengeages 236—
243. Springer.

Miyazaki, K., lwamura, M., Matsumoto, T., Sasaki, R.,
Yoshiura, H., Tezuka, S., and Imai, H. (2005). Dig-
itally Signed Document Sanitizing Scheme with Dis-
closure Condition ControlIEICE Transactions88-
A(1):239-246.

Miyazaki, K., Susaki, S., lwamura, M., Matsumoto,
T., Sasaki, R., and Yoshiura, H. (2003). Digi-
tal documents sanitizing problem. Technical Report
ISEC2003-20, IEICE.

Nyberg, K. (1996). Fast accumulated hashing. FBE
pages 83-87.

Pohls, H. C., Samelin, K., and Posegga, J. (2011). Sani-
tizable Signatures in XML Signature - Performance,
Mixing Properties, and Revisiting the Property of
Transparency. IApplied Cryptography and Network
Security, 9th International Conferenceolume 6715
of LNCS pages 166—-182. Springer-Verlag.

Rivest, R. L., Shamir, A., and Adleman, L. (1983). A
method for obtaining digital signatures and public-key
cryptosystemsCommun. ACM26(1):96-99.

Samelin, K., Pohls, H. C., Bilzhause, A., Posegga, J., and
de Meer, H. (2012). Redactable signatures for inde-
pendent removal of structure and content.ISRPEG
volume 7232 of NCS pages 17-33. Springer-Verlag.

Steinfeld, R. and Bull, L. (2002). Content extraction signa
tures. Ininformation Security and Cryptology - ICISC
2001: 4th International Conferenc&pringer Berlin /
Heidelberg.

Tan, K. W. and Deng, R. H. (2009). Applying Sanitiz-
able Signature to Web-Service-Enabled Business Pro-
cesses: Going Beyond Integrity Protection.|@WS
pages 67-74.

In

Flexible Redactable Signature Schemes for Trees - Extended Security Model and Construction

Wu, Z.-Y,, Hsueh, C.-W., Tsai, C.-Y., Lai, F., Lee, H.- Auntsigs oracle and genuinely returned.fiyn+.
C., and Chung, Y. (2010). Redactable Signatures for (3) Eventually, 4,n¢ will output a pair (T*,o0%).
Signed CDA Documentslournal of Medical Systems Auntsig returns(T*,Gf‘r), as a valid forgery. The
pages 1-14. concrete signature forged can easily be extracted by
defining a tree-traversal algorithm looking for the sig-
nature not queried for the particular value. This is
APPENDIX due to the fact, that we allow to distribute sub-trees.
Hence, any node may be forged, not just the root
node.
Type 2a Forgery: In the case of 2a, we can use
the Type 2a Forgery produced bt to construct
A0l Which breaks the collision-resistance of the un-

A Security Proofs of the Construction

Our changes to the security model do not affect the

implications and separations as presented in (Brzuskaderl ina hash-function. To do so enerates
etal.,, 2010a). Hence, unforgeability is independent, ke{/ p%ir ofa signaturé scheme Eo(?rcr?hgﬁ@” and
while transparencys privacy and privacys trans- choosesa .

parency (Brzuska et al., 2010a). The proofs are es- 2) It passek and prmto
sentially the same as already given in (Brzuska et al. (2)1tp iy b un.
2010a). Following from that it is sufficient to show
that transparency and unforgeability hold to show that (4) Eventually, 4o will output (T*,0%). Given
our scheme are secure. We will show this for each o transcript of the simulationdes searches for

property on its own. a pair MH (n) = MH(nz) with different content
resp. sub-trees. If such a pair is found antd¢
The Construction is Unforgeable. If 44 is span (Ti,ADMj), Acol OUtputs exactly this pair, else
collision-resistant and one-way, and the signature it aborts. The outputted pair is a collision of the hash-
schemd is strongly unforgeable, our scheme is un- function.
forgeable. Type 2b Forgery: If Ayt returns a Type 2b
Forgery, we can buildl,ne which calculates member-
ship proofs of the underlying accumulator. To do so,
(1) Aone generates a key pair of a signature scheme to
emulate059" and chooseslAH .
(2) It passepkand AH to Ayns.
(3) For every request to the signing oractne gen-
erates the signatureusingskand returns it to4n .
t (4) Eventually, Ayns will output (T*,0%). Given
the transcript of the simulationd,ne searches for
a pair M H(ny) = MH(nz) with different content
resp. sub-trees. If such a pair is found ahde
span (T*,ADM*), Apne outputs (Ti, T*,o1,0%), iff
the preimage maps to queried document. In other
words, the queried tree must be in the transitive clo-
sure of the preimage. Otherwise, we just have a
normal collision, which belongs to case 2a. The
membership proofs of the used accumulator can triv-
ially be extracted. We showed how to use all three
orgery types to break existential unforgeability of the
underlying signature schenig, the one-way or the
collision-resistance property gfH. O

' (3) For every request to the signing oraci®, gen-
erates the signatureusingskand returns it to4ns.

Proof. Let Ayns be an algorithm winning our un-
forgeability game. We can then us&ns to forge

the underlying signature scheme, to find collisions in
the hash-domain, or to calculate membership proofs.
Hence, our scheme’s security relies upon the security
of the signature scheme ard#. Given the game in
Fig. 6 we can derive that a forgery must fall in at leas
one of the three cases, for at least one node in the tree

Type 1 Forgery: The value protected byor has
never been queried b§,ns to 059" Type 2 Forgery:
The valued protected byt has been queried bJyn+
to 059" but T* ¢ span (T,ADM); so the tred * with
valid signatureot is not in the transitive closure af.

This case has to be divided as well:

Type 2a Forgery:T ¢ span (T*,ADM) Type 2b
Forgery: T € span (T*,ADM) To win Ayn¢, the at-
tacker must be able to construct one of the three abov
forgeries. This forgery can be used to break at least
one of the underlying primitives.

Type 1 Forgery: In the first case, we can use the
Type 1 Forgery ofdyn+ to createdynssigwhich forges
a signature. We construglunfsig using Aunt as fol- Our Construction is Transparent and Private. If
lows: A4 always outputs uniformly distributed digests and
(1) Auntsigchooses a hash-functioi?{ and passes the digests are therefore indistinguishable from ran-
prmto A,ns. This is also true fopk of the signature dom numbers, our scheme is transparent and there-
scheme to forge. fore also private (Brzuska et al., 2010a): This follows
(2) All queries toO0S'9" from Ayn¢ are forwarded to directly from the definitions, i.e., the uniform distri-

123

SECRYPT 2012 - International Conference on Security and Cryptography

bution of the digests and the random numbers. In
particular, all output of4# is computationally in-
distinguishable from random. This implies that the
output of OMedifyOrSignis glso computationally indis-
tinguishable from uniform, hence hiding the secret
bit b with overwhelming probability. In other words,
an adversary breaking transparency is able to distin-
guish between random and computed digests, which
has been assumed to be infeasible. Attacking the
nonces is not possible, since removing a random from
a uniform distribution results in a uniform distribution
again. An additional note: This is the reason why we
require a random seed for the accumulator; otherwise,
an adversary could just recalculate the digest&l

B Formal Definition of the Requirements
of AH

Collision-resistance and One-wayness.The fam-

ily A%k contains only collision-resistant func-
tions (Baric and Pfitzmann, 1997). Furthermore, it
must be hard to find a digest with the same value with-
out having the preimages, i.e., we need strong one-
wayness (Bari¢ and Pfitzmann, 1997). We can capture
both requirements:

Prik & Kix & Xy & 96 (X,y) « axy) :
AH(xy) = AH (X, Y) Ny #Y] <e(N)

Where the probability is taken over all coin tosses.

In other words, an adversary should not be able to
reverse the hashing step and to find a valid preimage
or to find any other collision.

Indistinguishability of Output. We require that an
adversary cannot decide how many additional mem-
bers have been digested, i.e., the following distri-
butionsS; and S, must be computationally indistin-
guishable:

Slz{xi|xi<£xk}

S = (A%) [% & %ox & Xk &K}
The probability is taken over all coin tosses. In other
words, an outsider not having the preimages cannot
decide how many members a given digest has.

C Brzuskaet al.'s Security Model

In (Brzuska et al., 2010aBrzuskaet al. formal-
ized the needs of signatures for tree-structured docu-
ments. A RSS for tree-structured documents requires
four efficient algorithms; in particulal® SSt :
(sKg, sSign, sVf,sCut):

124

sKg(1* outputs the key-paifsk pk), where is
the security parameter;

sSign(sk T) outputs a structural signatuog ;

sVf(pk, T,o7) outputs a biv € {0, 1}, which indi-
cates the correctness of the signatateprotect-
ing the treel and

the redaction algorithrsCut(pk, T, ot, L;), which
removes the ledf; from the treeT and outputs a
sub-treeT’ ~ T\ {L;} < T and the corresponding
new signatures; for which svf(pk T',0%) out-
puts 1.

Applying the leaf-cutting algorithmsCut subse-
guently allows removing complete sub-trees (Brzuska
et al., 2010a). It does not allow to redact non-leaves
or to express re-locations of sub-trees.

RSS Security Requirements. We informally re-
peat the existing security. properties for tree-
structured documents as given and formalized by
Brzuskaet al. in (Brzuska et al., 2010a). These re-
quirements should also hold for the structure of the
treeT, not just its data. The structural integrity pro-
tection requires that all relations between nodes and
their position within the tree’s hierarchy are protected
by the signaturer.

1. Unforgeability: No one should be able to com-
pute a valid signature on a tréé for pk with-
out having access to the corresponding secret key
sk This is analogous to the standard unforgeabil-
ity requirement for signature schemes, as already
noted in (Brzuska et al., 2010a).

2. Privacy: Given a sub-tree with a signatuseand
two possible source tre€gp and Tj1, no one
should be able to decide from which source tree
the , stems from. This definition is similar to the
standard indistinguishability notation for encryp-

tion schemes (Brzuska et al., 2010a).

3. Transparency:A third party should not be able
to decide which operations may have been per-
formed on a signed tree. Hence, whether a sig-
natureot of a tree has been created from scratch
or throughsCut shall remain indistinguishable for
a party receiving a signed trde (Brzuska et al.,
2010a).

The given notations take the tree structure of docu-
ments into account and allow public redactions, as
sCut only requires the public kepk. The formal

games are depicted in Fig. 12, Fig. 13 and Fig. 14/15.

Flexible Redactable Signature Schemes for Trees - Extended Security Model and Construction

Experiment Unforgeability’s>>

(pk, SK) « KeyGen(1*)

(T*,G*) <_/f_;lDSign(sk,-)(pk)
leti=1,2,...,qindex the queries

return 1 iff
DVerify(pk, T*,0") = 1 and
forall1<i<q,T* 4T,

M)

Figure 12: Game for Unforgeability.

Experiment Transparency>S())
(pk,sk) « KeyGen(1})
b& (0,1}
d« ﬂDSign(sK-),DSign/DCut(-,-,skb)(pk)
where oracle®sSign/DCut for input T, L:
if L is not a leaf ofT, return_L

if b=0: (T,0)<« DSign(skT),
(T’,0’) + DCut(pk T,o,L)
ifb=1 T «+T\L

(T’,0’) < DSign(sk T7),
finally return(T’, o).
return 1 iffb=d

Figure 13: Game for Transparency.

D Reuvisiting the KB-Scheme

Here we shortly review the KB-Scheme as introduced
in (Kundu and Bertino, 2009). We omit the step that

randomizes the traversal numbers preserving their or-

dering. The KB-Scheme claims this is done to pre-

serve transparency. It has been shown in (Brzuska

et al., 2010a) that this is not sufficient to maintain

transparency. We already state the scheme in our

notation, since the original notation in (Kundu and
Bertino, 2009) and in (Brzuska et al., 2010a) is not
able to express the possibility of removing intermedi-
ate nodes. Every node € T will be addressed by his

pre-order traversal number, i.e., the root is denoted as

n;. Note, the amount of nodes W, i.e., |V|, will be

denoted as.

KeyGen. Generate a key paifsk pk) of an aggre-
gating signature schen®sS.S allowing public ag-
gregation, e.g., the BGLS-Scheme (Boneh et al.,
2003). By abuse of notation, we assume thlat

Experiment Privacy3>>(A)
(pk,sk) < KeyGen(1")

b& {0,1)
d«— /r_;lDSign(sk-),SignCut(...,st)(pk)
return 1 iffb=d

Figure 14: Game for Privacy.

SignCut(Tj 0,Lj0,Tj1,Lj1,5kb)
if To\Ljo2Tj1\LjreturnL
(Tjp,Oj.p) ¢ sSign(sk Tjp)
return(Tj/’b,c’j’b) < sCut(pk Tj b, 0] b, Ljb)

Figure 15: SignCut Oracle.

contains all system parameters.

Sign. The signing-step outputs a signature for each
node inside the tree:

1. Compute the pre- and post-order traversal num-
bers, of the tred.

Transform these lists into an randomized but
order-preserving space. For each nogelet

pi denote the associated pair of randomized
traversal numbers

2.

3. SetGr + H(w||pallci]|---||Pnllcn), Wherew
is anonce and{ a cryptographic hash-function
like SHA-512

. Vi € T compute$; «+ #(Gr||pil|ci)

. Sign allgj, i.e.,0; < SIGNz5s(sk &)

. Aggregate all signatures inter

. Outputo = (T, o7, {(0i,Pi) }o<i<n, GT, pPK)
Modify. TheKunduScheme allows redaction of arbi-

trary nodes but no re-locations. Hene&D just
contains the description to redact the noge

1. Verify the signature usingerify

2. Removen; from T, i.e., T’ + MoD(T). This
can be expressed &$+« T\ nj, wheren; is the
node to be redacted as specifiedMoyD. Both
also includes all edges from resp. o Note,
n; may not be a leaf

3. Aggregate all signaturd®j }j.; into o7

4. Output the altered tuple, i.e.,:

OJ = (T/? O{r? {(0|) pi)}0<i§n’7 GT7 pk)
Verify. Verification just uses:

1. For each noden; € T compute & <«
H(Grllpillci)

2. Check the validity usingd$S. In particular,

eachg; calculated must be signed and contained

in oT

Traverse the tree using pre-order and check if

each of the associated traversal numbers is in

the correct order, i.e., the associated pre- and

post-order must remain plausible. Lietlenote

the parent ofy; it must yield thatps > py and

rs <rg, wherepy denotes the associated pre-

order-number and, the post-order-number as-

sociated to the node

. Output 1, if all checks pass, 0 otherwise resp.
1 onerror

(2 @2 I N

~

3.

125

