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Abstract: Maintaining link connectivity between a mobile robot and its control station in a non-line-of-sight 
environment is challenging.  One solution is to use intermediate relay radios that the robot can carry and 
deploy when and where needed to maintain the link.  However, the precise placement locations for the 
relays are not known ahead of time.  Therefore, the deployment decision must be formulated online and the 
relays deployed before the link with the control station breaks. A link-quality estimator is developed based 
on video throughput and received signal strength indicator data.  The estimator takes into account human 
perception of video quality that is obtained via subjective testing by an operator.  The data is used to train 
the link-quality estimator, which issues an alert that can be used as a trigger for an automatic relay 
deployment mechanism or to advise the operator to manually deploy relays before the link between the 
robot and control station fails. 

1 INTRODUCTION 

Tactical mobile robots have been increasingly used 
by the military over the past several years.  This is 
especially true for Explosive Ordnance Disposal 
(EOD) teams that use robots to investigate and 
neutralize Improvised Explosive Devices.  These 
robots are remotely controlled from the operator 
control unit (OCU) using digital radios.  The high 
operating frequency of these radios requires a line-
of-sight (LOS) to the OCU, which is difficult to 
maintain in urban environments.  The link between 
the robot and OCU can fail, usually rather quickly, 
when operating beyond LOS due to multipath 
interference and signal fading. 

Controlling a robot via a tethered connection, 
typically fiber-optic, eliminates the LOS problem 
but introduces new ones.  Tethered connections can 
snag and break, limiting mobility.  Advanced radio 
systems that utilize sophisticated modulation 
techniques and take advantage of MIMO antenna 
technology thrive in multi-path environments and 
can overcome the LOS limitations to a degree.  
However, obstacles that severely block and attenuate 
the signal can still be problematic. 

The use of relays, on the other hand, adds an 
unprecedented degree of freedom to where robots 
can operate.  Relays can entirely overcome severe 
obstacle blockages so long as a LOS can be 

maintained with adjacent radios in a chain of relays.  
Determining the placement location of such relays is 
critical.  The focus of this paper is the formulation of 
a link-quality (LQ) estimator, the output of which is 
used either by the robot (automatically) or the 
operator (command sent from the OCU) to release a 
relay before the link breaks.  Section 2 provides a 
brief background of various relay systems designed 
for tactical robots. Section 3 discusses the LQ 
estimator design.  Simulation results are outlined in 
section 4, and section 5 concludes the paper. 

2 BACKGROUND 

The solution to address the LOS requirement 
between a tactical robot and its OCU began in 2002 
under the Autonomous Mobile Communications 
Relay (AMCR) project (Nguyen et al., 2003).  The 
goal of the AMCR system was to provide extended 
range and non-line-of-sight (NLOS) operational 
capability for tactical robots.  This was 
accomplished through the use of dedicated mobile 
relay robots (or mobile nodes) that followed the lead 
robot in a convoy formation and automatically 
stopped when needed to maintain the link.  The 
radios on-board the lead robot, mobile nodes, and 
OCU formed a mesh network that allowed the 
operator to teleoperate the lead robot based on video  
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relayed to the OCU. 
The mobile nodes must be set up in a specific 

order in such a convoy since each mobile node is 
programmed to follow the robot in front of it.  In 
addition, each mobile node is programmed to 
monitor the received signal strength indicator (RSSI) 
data of the node immediately behind it.  For 
example, the last mobile node in the convoy 
monitors the RSSI of the OCU.  The RSSI data, 
which is used as a measure of the link quality, is 
compared to a predetermined threshold, below 
which the mobile node stops to maintain the link. 

The AMCR solution proved to be very successful 
and the commercial-off-the-shelf (COTS) 802.11b 
radios and processor boards were extremely cost 
effective.  However, the AMCR system was a 
research project and never designed for field use, 
since the mobile nodes were expensive and 
logistically impractical. 

A more realistic solution was developed under 
the Automatically Deployed Communication Relays 
(ADCR) project (Pezeshkian et al., 2007).  The 
ADCR system shown in Figure 1 consists of a 
Deployer and several Relay “Bricks”.  The Deployer 
carries the Relay Bricks and mounts onto a small 
ground robot. 

 
Figure 1: ADCR Deployer mounted on an iRobot PackBot 
with one deployed and five stowed Relay Bricks. 

The Deployer and the Relay Bricks each have the 
same radio hardware and RSSI-based link-quality 
estimator that is used by the AMCR system.  
However, the only mobile node is the Deployer, 
therefore, the link monitoring and the decision to 
eject a Relay Brick is formulated by the Deployer 
radio. Once a Relay Brick is ejected it self-rights and 
extends the antenna. As the operator controls the 
robot along its path more Relay Bricks are ejected as 
needed to maintain the link. 

The  success  of  ADCR  led  to  several licensing 

agreements with commercial developers.  
Subsequent projects led to additional developments 
that improved upon the system.  For example, the 
redesigned Deployer of the Automatic Payload 
Deployment System (APDS) (Pezeshkian et al., 
2010) allows a robot to carry and deploy not only 
Relay Bricks but a wide range of other types of 
payloads, such as leave-behind sensors and 
containers.  The container payloads can be used to 
carry food, ammunition, medical kits, and anything 
else that fits within.  The Relay Bricks were also 
redesigned to contain faster radios and an improved 
antenna lift mechanism as shown in Figure 2. 

 
Figure 2: APDS Deployer mounted on an iRobot PackBot.  
Various payload types are shown around the robot. 

The interest that was generated by numerous 
publications and successful demonstrations of the 
APDS and ADCR systems led the Naval EOD 
Technology Division (NAVEODTECHDIV) to fund 
the development of a robust radio repeater solution 
for use by currently-fielded robotic vehicles.  It was 
necessary to deliver this solution quickly; therefore, 
a simplified, albeit robust system based on APDS 
technology was developed under the Manually 
Deployed Communication Relays (MDCR) project.  
The MDCR system omits the RSSI monitoring and 
automatic-deployment capability of APDS, and 
instead relies entirely on remote commands sent 
from the OCU to deploy the Relays as the operator 
sees fit.  Although simple in design, the MDCR 
system has been successfully field tested with plans 
to mass produce additional units. 

Although RSSI-based link monitoring has been 
successful in the ADCR and APDS systems, it is not 
an ideal solution, as will be explained in section 3.  
Therefore, the goal of the LQ estimator outlined in 
this paper is to provide a superior estimation method 
that will assist the MDCR operator in placing relays, 
and to also provide a trigger to automatically eject 
relays for future ADCR systems. 
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3 QUANTIFYING LINK 

In the MDCR system the Relays are deployed based 
on operator command.  Two factors play a role in 
the Relay deployment decision-making process of 
the operator: 1) prior knowledge of LOS loss – the 
operator knows that controlling the robot around a 
large obstruction will cause a loss of LOS so a Relay 
is deployed before proceeding, and 2) video 
degradation – as the distance between the robot and 
OCU increases, even under LOS conditions, the 
operator deploys a Relay when video quality 
degrades. 

Although these factors can be effective for 
deploying Relays, in order to maintain the link 
between the robot and the OCU, the operator for the 
most part is guessing as to where to place the Relays 
based on experience and intuition about the RF 
environment.  If the relaying system could provide 
an indicator based on some sort of LQ estimator that 
can warn of a failing link, however, the operator 
would be in a much better position to optimize Relay 
placement.  This is important since the number of 
Relays carried by a robot is limited and maximizing 
the distance between the Relays translates into 
maximizing the stand-off distance of the robot.  
Furthermore, the LQ estimator can be used by a 
relaying system (e.g., ADCR) to provide automatic 
Relay deployment capability, effectively alleviating 
the operator from the deployment task. 

It is also important to keep in mind that the link 
under consideration is between the robot and the 
next-hop neighbor of the routing path leading back 
to the OCU.  This is, in fact, the only dynamic link 
given that the only mobile node is the robot and all 
other nodes (OCU and previously deployed Relays) 
are static. 

3.1 Link Quality 

In this section a background on recent work on link 
quality is given, followed by sections that describe 
the proposed LQ metrics used by the LQ estimator. 

3.1.1 LQ Background 

A plethora of research on LQ estimation can be 
found in the literature.  Many schemes combine 
multiple variables available from the physical and 
link layers to form a more comprehensive and robust 
LQ metric. Rondinone, Ansari, Riihijärvi, and 
Mähönen (2008) propose multiplying the Packet 
Reception Rate (PRR) of a link by the corresponding 
mean RSSI value to obtain a new LQ indicator that 

can be used by a network to select an optimal 
routing path.  Srinivasan, Kazandjieva, Jain, and 
Levis (2008) combine PRR and channel burstiness 
to estimate TCP throughput.  Liu and Cerpa (2011) 
combine RSSI, PRR, signal-to-noise ratio (SNR) 
and the Link Quality Indicator (LQI) provided by 
the CC2420 radio chip to provide a probability of 
successfully delivering the next packet. 

Yet combining variables is not the only 
approach. Farkas, Hossmann, Ruf, and Plattner 
(2006) propose using pattern matching to predict the 
future behaviour of a link.  Each node keeps a time 
series record of the SNR with each of its links and 
uses pattern matching to find the best match in an 
attempt to estimate the future behaviour of the SNR.  
Qin, He, and Voigt (2011) develop a new LQ 
estimator, called the Spectrum Factor (SF), which is 
derived from frequency-domain data. 

3.1.2 LQ Data 

An LQ estimator can be used by a routing protocol 
in a mesh network to select optimal routing paths 
(Liu et al., 2010 and Liu and Cerpa, 2011).  The goal 
of the LQ estimator for the MDCR system is 
somewhat different: Develop an LQ estimator that is 
suitable in predicting link failure such that a Relay 
can be deployed before the link breaks. 

The LQ estimators discussed in the previous 
section are unsuitable for use given the stated goal.  
Rondinone et al. (2008) suggest multiplying the 
PRR of a link by the corresponding mean RSSI 
value to help in selecting routing paths.  Since there 
is only one link under consideration (between robot 
and next-hop neighbor along the routing path 
leading to the OCU), this multiplication provides no 
new information.  Srinivasan et al. (2008) attempt to 
estimate TCP throughput, which is unnecessary 
since the video data of the robot uses UDP packets 
and the throughput is readily available.  Liu et al. 
(2011) make use of SNR and LQI data that is 
unavailable in the 802.11 radios used in the MDCR 
system.  Farkas et al. (2006) use pattern matching to 
predict future behaviour of a link.  This requires 
some level of repetitive pattern to be present in the 
collected data, which is highly unlikely given the 
random movements of a teleoperated robot.  Finally, 
Qin et al. (2011) estimate LQ in the frequency 
domain, which requires raw RF data that is not 
easily obtainable from the MDCR radios. 

The data selected for the development of the 
proposed LQ estimator is UDP throughput (packets-
per-second) and RSSI, which are readily available 
and ease integration of the estimator into the existing 
mesh network software of the MDCR system. The 
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throughput data is also a direct indicator of video 
quality – one of the key factors in the deployment 
decision-making process of the operator.  Video 
quality, however, is subjective.  A slightly choppy 
video may be acceptable to one operator and 
unacceptable to another.  To quantify video quality, 
an experiment was devised where an operator 
controlled the robot along a predetermined path and 
when the video quality, as judged by the operator, 
began to degrade, the operator marked that point in 
time.  The marking method is simply a key press on 
a test laptop that collects throughput and RSSI data 
along with operator key presses, all synchronized in 
time.  There were two different key presses involved 
in this experiment: The #2 key was pressed when 
video quality began to degrade and the #3 key was 
pressed when the link was completely lost.  These 
two moments in time are tF (failing) and tL (lost), 
respectively.  The link-failure period (tLF) is simply 
tL – tF.  A sample of collected data and key presses is 
shown in Figure 3.  A simple moving average (MA) 
process is applied to all data to smooth out 
variations. 

 
Figure 3: Example of video throughput (blue) and RSSI 
data (green) received at the OCU from a PackBot using 
the MDCR system.  Solid line is the average (μ) of past 
five samples of underlying (dotted) data.  Left and right 
black lines represent tF and tL, respectively. 

Many such trial runs were performed under two 
different environments, one more prone to multipath 
than the other. In all test trials, clear trends are 
observed in the throughput data during tLF, 
summarized as follows: 1) The throughput begins to 
roll off sometimes gradually and sometimes 
relatively sharp, and 2) the throughput variance 
increases.  The RSSI data, as expected, drops 
gradually overtime as the robot moves away from 
the OCU.  Before tF, however, the throughput data 
does not show any clear trend.  The test trials show 
that tLF varies between 10 to 20 seconds, which 

provides ample time to issue an alert.  These trends 
are exploited in the design of the LQ estimator. 

3.1.3 RSSI as Early Warning 

RSSI data has been proposed as a good link-quality 
metric by Srinivasan and Levis (2006) but the 
limitations of this statement must be understood.  It 
has been shown by Vlavianos, Law, Broustis, 
Krishnamurthy, and Faloutsos (2008) that RSSI data 
is measured at the lowest rate and cannot 
characterize the LQ at high transmission rates.  
Furthermore, RSSI is only measured from the packet 
preamble; therefore, if an interfering signal happens 
to prevent proper reception of the preamble, the 
RSSI will simply not be recorded.  If the interfering 
signal happens to corrupt the packet after the 
preamble has been received, then the RSSI will be 
recorded as if there is no interferer.  Hence, RSSI 
data is unchanged even in the presence of an 
interferer.  The work of Judd, Wang, and Steenkiste 
(2008) further supports this assessment. 

Broadband noise, however, is a concern.  If the 
overall noise floor is raised due to external 
broadband sources of noise, the overall SNR of 
received packets will decrease.  This means that 
RSSI data can only be measured down to the raised 
noise floor since packets received below the noise 
level will be corrupted.  Looking at Figure 3 it may 
seem reasonable to threshold the RSSI at about 10, 
below which the throughput data enters the region of 
degraded video quality, tLF.  This approach may 
work in the absence of broadband noise, but that 
constraint cannot be guaranteed when operating in a 
variety of environments. 

The goal of the proposed LQ estimator is to 
predict link failures so that a Relay can be deployed 
before the link breaks.  Preferably, some early 
warning should be given to the operator by the 
relaying system, followed by an imminent failure 
alert so that the operator can deploy a Relay before 
the link breaks.  Interfering signals are not a major 
concern given the operating environment, where the 
overwhelming reason for link failure is due to signal 
fading and loss of LOS.  Broadband noise, however, 
can exist.  Given the limitations of RSSI, it is then 
reasonable to use it only as a conservative early 
warning system. Figure 4 shows the mean RSSI 
value exactly at time tF, for all test trials.  There are 
clear variations but the overall range is low.  A 
conservative early warning of link failure can be 
issued, for example, if the mean RSSI drops below a 
threshold of 20. Selecting a high threshold leaves 
quite a bit of margin should the noise floor increase 
due to broadband noise. 
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Figure 4: Mean RSSI value at time tF for all test trials. 

3.1.4 Link Quality Metrics 

An accurate estimation of imminent link failure is 
required to alert the operator of complete loss of 
connectivity or trigger the deployment of a Relay 
from an automated deployment system.  Since RSSI 
data does not accurately reflect the ability of a link 
to successfully deliver packets as discussed in 
section 3.1.2, throughput data is used instead. 

The first trend of the throughput data is increased 
variance σ during tLF.  At the same time, the mean μ 
drops due to the second trend, the roll off.  Since the 
mean is high and variance low prior to tF and vice 
versa during tLF, it is reasonable then to use the ratio 
of the two as a metric.  This is inspired from the 
Ricean K-factor (Greenstein, Michelson, and Erceg, 
1999), which is used as a measure of signal fading.  
The ratio here is given as κ = μ/σ and is the first LQ 
metric, LQMκ. 

The second trend is the roll off.  This is measured 
by first taking N samples of throughput data then 
calculating its intercept (x1) and slope (x2) using 
linear regression.  The assumption is that the N-
sample-long data is a straight line.  Using a sliding 
window, x1 and x2 are updated for each new sample.  
The vector x = [x1 x2] is the second LQ metric, 
LQMx. 

The trade-off between the false-alarm rate and 
the miss rate is dependent on N.  Low false-alarm 
and low miss rates are desired.  By setting N too 
high, the data will be too smooth and the LQ 
estimator slow to respond.  This has the effect of 
reducing the false-alarm rate due to reduced noise, 
but increases the miss rate due to reduced response 
time.  In effect, the link is lost before the LQ 
estimator has a chance to issue an alert.  On the 
other hand, setting N too low causes the data to be 
too noisy, increasing the false-alarm rate, but 
reducing the miss rate due to increased response 

time.  Since the cost of failing to issue an alert (a 
miss) is much greater than alerting too soon (a false 
alarm), the selection is biased towards reducing the 
miss-rate by choosing N = 5. 

3.1.5 Classifier 

The keystrokes of the operator during the test trials 
essentially label the collected data that are used to 
train the LQ estimator.  Half of the collected data is 
used as training data and the other half as test data.  
A labelling problem can be solved by classifiers.  
Supervised training is used by two classifiers, one 
for LQMκ and the other for LQMx.  Each classifier 
finds the optimal decision boundary between two 
different sets of labelled data: those marked before tF 
(signal OK) and those marked during tLF (signal 
failing).  The hypothesis function for LQMκ is given 
by zκ(θκ) = θ0 + θ1κ and for LQMx the hypothesis 
function is zx(θx) = θ0 + θ1x1 + θ2x2.  Both are 
modelled as linear functions, which is a reasonable 
assumption when looking at the data clusters in 
Figures 5 and 6.  The optimal parameter vector θ is 
found by the classifier, which defines the decision 
boundary that has values z(θ) ≥ 0 on one side and 
z(θ) < 0 on the other. 

The plot of the labelled κ values for all test trials 
is shown in Figure 5.  The plot of labelled x1 and x2 
values for all test trials is shown in Figure 6.  The 
green circles represent values that take place before 
tF and the red asterisks are data that take place 
during tLF. Using logistic regression, an optimal 
decision boundary is generated, shown as the blue 
line. All green circles above the line are hits (link 
OK) and those below the line are false alarms (link 
failing when in fact it is not).  All red asterisks 
below the line are hits (link failing) and those above 
the line are misses (link failing but no alert issued).   
It is clear from both figures that there is overlap 
between the labelled data.  Given the high cost of 
misses, the decision boundary is biased so as to 
reduce the number of misses. 

Figure 6 supports the roll-off trend of the 
throughput data.  Looking at Figure 3, the flat part of 
the throughput data roughly corresponds to 40 
packets-per-second and since it is flat its slope is 
about zero. This correlates to the green cluster seen 
in Figure 6. As the throughput begins to fail during 
tLF, the packet rate drops, which corresponding to the 
reduced x1 (intercept) values.  At the same time the 
slope increases in the negative direction. This 
corresponds to the red cluster in Figure 6. The 
positive x2 values are due to the variance of the 
throughput data during tLF that can cause the slope to 
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Figure 5: Plot of labelled κ and decision boundary.  Its log 
is taken to improve computation of the boundary. 

 
Figure 6: Plot of x1 vs. x2.  Both variables have been 
scaled to reduce their range for improved computation of 
the decision boundary. 

go positive momentarily. Notice, however, very few 
occurrences of positive slope and high intercept 
values take place. The occurrences of high intercept 
and high negative slope can be explained by sharp 
roll-offs, where the throughput value is still 
somewhat high but the slope is steep. 

3.1.6 Link-Quality Estimator 

The goal of the LQ estimator is to provide an early 
warning of link failure (based on RSSI data) and a 
more accurate imminent link-failure alert (based on 
LQ metrics calculated from throughput data).  These 
metrics are somewhat noisy due to the selection of N 
chosen to increase responsiveness (reduced miss 
rate), and hence, sensitivity (increased false-alarm 
rate).  Each metric alone is not sufficient to provide 
an accurate estimation, therefore they are combined.  
The manner in which they are combined is 
essentially an AND operation between the 
hypothesis functions. This implies that both 
hypothesis functions zκ(θκ) and zx(θx) must agree 

that the link is failing, which occurs when both 
zκ(θκ) and zx(θx) are less than zero.  Furthermore, the 
LQ estimator does not issue an alert unless both 
zκ(θκ) and zx(θx) are less than zero for three 
consecutive samples in a row. This eliminates 
momentary glitches where both hypothesis functions 
are below zero. Finally, the LQ estimator does not 
start calculating the imminent link-failure alert until 
a warning is issued when the mean RSSI data falls 
below a conservative threshold.  A simplified flow 
chart for the LQ estimator is shown in Figure 7. 
 

 
Figure 7: Simplified flow chart for the LQ estimator. 

The flow chart does not show the additional steps 
taken to deactivate the warning and alert indicators.  
For example, instead of using a single threshold, 
hysteresis can be added to the mean RSSI data 
where falling below the lower threshold (e.g., robot 
moving away from OCU) causes a warning to be 
issued, which is removed when the mean RSSI 
moves above the upper threshold (e.g., robot moving 
back towards OCU).  In a somewhat similar manner 
the link-failure alert indicator can be removed.  For 
example, an issued alert can be removed if both 
hypothesis functions agree that the signal is good, 
say for five consecutive samples. 

Figure 8 shows a sample of a test trial.  The plot 
shows that a warning is issued when the mean RSSI 
falls below 21 (hysteresis enabled).  Once the 
warning has been issued, the LQ estimator begins 
calculating the LQ metrics and testing the hypothesis 
functions zκ(θκ) and zx(θx).  A value of less than zero 
indicates a hit, which is shown on the plot as a red 
box for LQMκ and a red diamond for LQMx.  A link-
failure is indicated as a red ‘+’ sign when both 
functions are less than zero at the same time 
(LQMAND). An occurrence of this takes place at time 
190 but no alert is issued. The LQ estimator issues 
an alert when it observes three consecutive link-
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failure hits at time tA = 202.  This occurs just after tF 
= 200, with plenty of time still left before the link is 
completely lost at time tL = 213. 

 
Figure 8: LQ estimator warning and alert.  A warning is 
issued based on RSSI and an alert based on throughput. 

4 SIMULATION RESULTS 

The LQ estimator will occasionally issue an alert 
prior to tF due to the overlap in the training data as 
shown in Figures 5 and 6. This is a desirable effect 
because the alert is issued just before video 
degradation begins. An alert issued after tF is also 
acceptable so long as the alert does not take place 
too close to tL, which may not provide enough time 
to deploy a Relay before the link breaks.  Therefore, 
the accuracy of the LQ estimator is defined as the 
percentage of alerts issued within a specified 
window of time tw centered on tF for all test data.  
The window tw is defined as tF ± Δt.  The value Δt is 
equal to βtLF where 0 < β ≤ 1. This ensures that Δt is 
no greater than tLF.  The selection of β is somewhat 
arbitrary.  The smaller it is, the closer the alert issue-
time tA must be to tF before the alert is counted as an 
accurate hit.  Table 1 shows the accuracy result for 
different values of β. 

Table 1: LQ estimator accuracy. 

β Hit % False Alarm % Miss % 
1/2 73 9 18 
2/3 82 9 9 
3/4 91 0 9 
1 100 0 0 

 
Table 1 shows that with β = 1 all alerts are issued 

within tF ± tLF, and 73% of alerts are issued within tF 
± tLF/2 with β = 1/2. 

5 CONCLUSIONS 

A link-quality (LQ) estimator is developed to 
provide an accurate means of estimating an 
imminent link failure, which is required to assist the 
operator of a tactical mobile robot in deploying a 
Relay before the link breaks.  Since the robot carries 
a limited number of Relays, increasing the distance 
between deployment locations will increase the 
operational range of the robot.  The same LQ 
estimator can also be used on an automatic Relay 
deployment mechanism (such as the ADCR system) 
as a trigger to eject a Relay. 

The LQ estimator is based on LQ metrics 
calculated from labelled throughput data.  The 
throughput data is labelled during test trials by the 
robot operator, who marks the data when the video 
quality begins to degrade and finally lost altogether.  
This process is repeated for several trial runs in two 
different operating environments. The labelled data 
is used to train the LQ estimator, which is then 
applied to test data that is not used in the training 
session. The LQ estimator issues two alerts: 1) a 
warning alert to the operator based on RSSI data, 
which serves as a conservative estimate of a link 
beginning to fail, and 2) a much more accurate link-
failure alert based on throughput data when an 
imminent link failure is detected.  The results from 
the test data show that the LQ estimator achieves 
high accuracy in issuing an alert before the link is 
completely lost. 
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