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Abstract: This paper concerns free vibration analysis of in-plane vibrations in classical multi-story planar frame 

structures. An exact analytical solution is obtained using wave vibration approach. The coupling effects 

between bending and longitudinal vibrations in frames are taken into account. Classical beam theories  are 

applied in modeling the flexural and longitudinal vibrations. Reflection matrices at “sliding” and “rolling” 

boundaries, as well as reflection and transmission matrices at the “L” and “T” joints are obtained. 

Numerical examples are presented along with comparisons to results available in literature. 

1 INTRODUCTION 

Due to their complexity, vibrations in multi-story 

planar frame structures are often analyzed either 

based on approximated discrete models such as 

lumped mass/elasticity models, or using numerical 

approach such as the Finite Element Analysis (FEA) 

approach. There are very limited analytical studies 

based on distributed models found in the literature. 

Lumped mass/elasticity may be suitable for 

finding the fundamental frequency of a multi-story 

frame, but they are prone to large errors and are 

therefore not suitable for identifying higher modes 

of vibration. The FEA approach is usually applied in 

modeling multi-story frames (Vertes, 1985, and 

Meirovitch, 2001), its accuracy is dependent upon 

the number of meshes or nodes per structural 

element. In general, higher modes demand more 

nodes, consequently the FEA approach is only 

suitable for relatively low frequencies. A branch 

mode method was developed for studying in-plane 

vibrations in multi-story frames (Gladwell, 1964) 

with longitudinal vibrations neglected in the 

analysis.  

In this paper, vibrations in multi-story planar 

frame structures are obtained analytically from wave 

vibration standpoint (Graff, 1975; Cremer et. al., 

1987, and Doyle, 1989). Reflection matrices at 

“sliding” and “rolling” boundaries, as well as 

reflection and transmission matrices at the “L” and 

“T” joints are discussed. The coupling effects of 

flexural and longitudinal motions at joints are taken 

into account. This study is based on the classical 

vibration theories, as a result, it is suitable to 

relatively low frequencies.  

2 EQUATION OF MOTION AND 

WAVE PROPAGATION 

Consider the forces and moments acting on a 

uniform element of a beam lying along the x-axis. 

When applying classical beam/rod related theories, 

the equations of motion for bending and longitudinal 

vibrations are (Inman, 1994; and Ginsberg, 2001) 
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where x is the position along the beam axis, t is time, 

),( txy  and ),( txu  are the transverse and 

longitudinal deflections of the centerline of the 

beam; ),( txq  and ),( txp  are the externally applied 

transverse and longitudinal forces; E and   are the 

Young’s modulus and mass density; respectively. I 

is the area moment of inertia of cross section, A is 

the cross-sectional area.  

The shear force ),( txV , bending moment 

),( txM , and longitudinal force ),( txF  at any 

section of the beam are related to the transverse 
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deflection ),( txy , bending slope ),( tx , and 

longitudinal deflection ),( txu  by 
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),(
  according to the classical Euler-

Bernoulli beam theory. 

2.1 Free Wave Propagation 

First, consider the free bending vibration problem 

when no external force is applied to the beam. 

Assuming time harmonic motion and using 

separation of variables, the solution to Eq. (1a) can 

be written in the form 
tiikxeeytxy  0),( , where 

  is frequency and k is the wavenumber. A set of 

bending wavenumbers is found as  

EIAk 22  . (3) 

Now consider the free longitudinal vibration 

problem when no external force is applied to the 

beam. Again assuming time harmonic motion and 

using separation of variables, the solution to Eq. (1b) 

can be written in the form .),( 0
tiikxeeutxu   

The longitudinal wavenumber is found as 

 Ek  . (4) 

2.2 Propagation Matrix 

Consider two points A and B on a uniform beam a 

distance x apart. Waves propagate from one point to 

the other, with the propagation being determined by 

the appropriate wavenumber. Denoting the positive 

and negative going wave vectors at points A and B 

as 


a and 


a  and 


b and 


b , respectively, they are 

related by  

  bfa )(x ;
  afb )(x  (5) 

where )(xf  is the propagation matrix for a distance 

x.  

3 REFLECTION AND 

TRANSMISSION OF COUPLED 

BENDING AND 

LONGITUDINAL WAVES 

Waves   incident   upon   discontinuities   (such     as 

boundaries and joints) are reflected and transmitted. 

In this section, reflection matrices at “sliding” and 

“rolling” boundaries, and reflection and transmission 

matrices at “L” and “T” joints are studied.  

3.1 Wave Reflection at Boundaries 

An incident wave is reflected at a boundary, as 

shown in Figure 1. The incident wave 
a  and the 

reflected wave 
a  are related through the reflection 

matrix r by  

  raa , (6)
 

where r can be determined by considering 

equilibrium at the boundary. 

For “sliding” boundary, the equilibrium 

conditions at the boundary are 

0 , ,0),( txV .0),( txu  (7) 

The equilibrium conditions at a “rolling” boundary 

are 

,0),( txy  ,0),( txM  .0),( txF  (8) 

The reflection matrices at classical boundaries such 

as clamped and free boundaries are derived in (Mei, 

2010). 

3.2 Wave Reflection and Transmission 
at an “L” Joint 

Wave transmission and reflection at an angle joint in 

general introduce wave mode conversion. At an “L” 

joint, for example, an incident bending wave induces 

reflected and transmitted bending and axial waves in 

the members attached to the joint. This is evident 

from the coupled equilibrium and continuity 

relations below. 

Figure 2 shows the free body diagram of an “L” 

joint in planar motion. The equilibrium conditions 

are 

JymVF
..

12   

(9) JumFV
..

12   

JJ
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h

VMM
..
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  

where F is the axial force in the beam and h the 

beam thickness. Subscripts 1 and 2 refer to beam 1 

and beam 2, Ju , Jy , and J
 
are the displacements 

and rotation of the joint as indicated in the figure. 

The first two of these equations include the mass of 

the joint, while the third includes the moment of 

inertia of the joint and the moments induced by the 

off-set shear forces. 
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Figure 1: Sliding (a) and rolling (b) boundaries. 

The continuity equations at the joint are 

Juu 1 , Jyu 2 , JJ

h
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(10) 

A set of positive going waves 


a  incident upon the 

L-joint from one beam gives rise to transmitted and 

reflected waves 


b  and 


b , which are related to the 

incident waves through the transmission and 

reflection matrices t and r by 

 Tab , 
  Raa . (11) 

 

The transmission and reflection matrices 
12T  and 

11R  corresponding to an incident wave from beam 1 

and the transmission and reflection matrices 
21T  and 

22R  
corresponding to an incident wave from Beam 2 

can be obtained from solving Eqs. (9) to (11).   

3.2 Wave Reflection and Transmission 
at a “T” Joint  

Similarly, wave transmission and reflection at a “T” 

joint also introduce wave mode conversion. The 

transmission and reflection matrices are obtained 

from considering the continuity and equilibrium 

conditions at the joint. The free body diagram of a 

“T” joint in planar motion is shown in Figure 3. The 

continuity equations at the joint are 

,1 Juu  ,2 Jyu  ,3 Juu  ,221 hyy JJ   
,212 huy JJ  ,233 hyy JJ   

,1 J  ,2 J  .3 J   

(12) 

The equilibrium conditions are  

,
..

123 JymVFV  ,
..

123 JumFVF   
(13) 
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There exist three sets of reflection and trans- mission 

relations, corresponding to incident waves from each 

of the three beam elements respectively. The 

reflection and transmission relations can be found 

from  Eqs. (12)  and  (13). More details can be found 

in (Mei, 2010).  

4 WAVE VIBRATION ANALYSIS 

OF A MULTISTORY FRAME 

For a multi-story frame that is symmetrical about a 

vertical line through the centers of the spans, the 

vibration modes are either symmetrical or anti-

symmetrical. It has been shown that vibrating in 

symmetrical modes, the mid-points of the cross-

members behave as sliding ends; while vibrating in 

anti-symmetrical modes, the mid-points of the cross-

members behave as rolling ends (pinned vertically 

but allowing translational  motion in the horizontal 

direction). As a result, when the frame is vibrating in 

a symmetrical mode, each half of it will have the 

same modal form as the isolated half frame shown in 

Figure 4(a); and when it is vibrating in one of its 

anti-symmetrical modes, each half of it can be 

treated as if it is an isolated half-frame having the 

form shown in Figure 4(b) (Gladwell, 1964, and 

Bishop and Johnsona, 1960). 

4.1 Free Wave Vibration Analysis  

From wave vibration standpoint, vibrations 

propagate along a uniform waveguide (or structural 

element), and are reflected and transmitted at 

discontinuities (such as joints and boundaries). 

Assembling these propagation, reflection, and 

transmission matrices offers a concise and 

systematic approach for analyzing coupled bending 

and longitudinal vibrations in a multi-story frame 

structure. 

Figure 4(a) illustrates an n-story frame vibrating 

at its symmetrical modes. The half frame model 

consists of n horizontal and n vertical beam 

elements. And the discontinuities in the half frame 

model include one “L” joint, (n-1) “T” joints, one 

classical boundary, and n sliding boundaries.  

 The n pairs of propagation relations along the 

uniform vertical beam elements are 




  1)( ii L Afa
, 


  ii L afA )(1 ,

 (14a) 

where i = 1, 2, ..., n. 
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Figure 2: Free body diagram of an “L” joint. 

 The n pairs of propagation relations along the 

uniform horizontal beam elements are 

  LiHRi L cfc )2(
,

  RiHLi L cfc )2(
, 

(14b) 

where i = 1, 2, ..., n.    
 The reflection and transmission relations of the 

waves at “T” joints are  

  Liiii ctAtara 213111 , 

  Liiii ctatArA 231333 , 

  13221222 Atatcrc LiLi , 

(15c) 

where i = 1, 2, ..., n-1.    

 The reflection and transmission relations of the 

waves at “L” joint are  

  nLnLn aTcRc 1222 ,

.2111
  Lnnn cTaRa

 

(15d) 

 The reflection relations at the sliding boundaries 

are 

  RislidingRi crc , (15e) 

where i = 1, 2, ..., n. 
 

 The reflection at the classical boundary is 
 

.000
  ArA

 
(15f)

 

Writing Eqs. (13) in matrix form gives  

0Az  , (16) 

where A is a (24n) by (24n)  coefficient matrix and z 

is a 24n wave component vector. Setting the 

determinant of the coefficient matrix A to zero gives 

the natural frequencies of the multi-story frame. 

Figure 4(b) illustrates an n-story frame vibrating 

at  its  anti-symmetrical modes. The analysis follows 

 
Figure 3: Free body diagram of a “T” joint. 

a similar procedure, the only difference is that the n 

sliding boundaries are replaced by n rolling 

boundaries. 

4.2 Numerical Examples 

Two example multi-story frame structures are 

studied, one being a three-story frame and the other 

a two-story frame. For comparison purpose, the 

physical properties of the three-story frame are 

chosen to be the same as those in (Vertes, 1985) and 

they are as follows: Lengths of vertical and 

horizontal beams are 6.0m and 8.0m respectively, 

cross sectional area 
23.0 mA  , area moment of 

inertia 
401.0 mI  , Young’s modulus 

2210 mGNE  , 

and mass density 
325 mkN . The physical 

properties of the two-story frame are chosen to be 

the same as those in (Petyt, 1990) and they are as 

follows: Lengths of vertical and horizontal beams 

are 22.86cm and 45.72cm respectively, the cross 

section of the beam elements is 0.3175cm by 

1.27cm, Young’s modulus E is 
284.206 mGN , and 

mass density 


 is 
37830 mkg . The boundary 

conditions are clamped-clamped.  

The natural frequencies of the two example 

frames are listed in Tables 1 and 2, with 

comparisons to the related references respectively. 

The examples show good agreement with the results 

presented in the available literature. 

5 CONCLUSIONS 

In this paper, in-plane vibrations in multi-story 

planar frames are analyzed using the wave approach. 

The vibrations are modeled using classical vibration 

theories. The  coupling  effect  between  bending and 

Wave Vibration Analysis of Classical Multi-story Planar Frames

491



 

Figure 4: Half frames for symmetrical (a), and anti-symmetrical (b) mode analysis. 

Table 1: Natural frequencies of the 3-story frame. (superscript a denotes anti-symmetrical modes). 

Modes 
Natural frequencies (rad/s) 

Present (Vertes,1985) 

1 11.7a 11.7 

2 39.4a 39.4 

3 73.1a 73.2 

4 104.0 N/A 

5 121.8 121.0 

Table 2: Natural frequencies of the 2-story frame. 

Modes 
Natural frequencies (Hz) 

2

4
2














 L

EI

A




 
Present (Petyt, 1990) Present (Gladwell, 1964) 

Anti-symmetrical 15.1421 15.14 1.0554 1.0554 

 53.3183 53.32 3.7164 3.7165 

 155.3018 155.48 10.8248 10.8262 

 186.1038 186.51 12.9717 12.9819 

 270.0581 270.85 18.8235 18.8256 

 345.8450 

N/A 

24.1060 24.1133 

 590.5131 41.1597 41.2266 

 652.7439 45.4973 45.5200 

 794.7385 55.3946 55.4848 

 905.8716 63.1407 N/A 

 

Symmetrical 56.1226 

N/A 

3.9118 3.9124 

 67.2203 4.6854 4.6866 

 212.5325 14.8139 14.8186 

 291.5674 20.3227 20.3441 

 381.6300 26.6002 26.6516 

 410.3624 28.6029 28.6143 

 699.3279 48.7443 48.7989 

 834.6623 58.1773 58.3556 

 986.1119 68.7336 68.9144 

 

longitudinal vibrations is taken into account. 

Reflection matrices at “sliding” and “rolling” 

boundaries, as well as reflection and transmission 

matrices at the “L” and “T” joints are discussed. 

With the availability of the propagation, reflection, 

and transmission matrices, vibration analysis of 

multi-story planar frames becomes systematic and 

concise: it involves a simple assembly of the 

involved  matrices. The  procedures  are  illustrated 

using two numerical examples, both show good 

agreement with the results presented in the available 

literature.  
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