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Abstract: This research develops an integrated replenishment model considering supplier selection, procurement lot-
sizing, quantity discounts and safety stocks under dynamic demand conditions. The objectives of the model 
are to minimize total costs, which include ordering cost, purchase cost, transportation cost, shortage cost and 
holding cost, and to maximize service level of the system over the planning horizon. First, a multi-objective 
programming (MOP) model is proposed in the paper. Next, the model is transformed into a mixed integer 
programming (MIP) model based on the ε -constraint method. Then, the genetic algorithm (GA) model is 
constructed to solve a large-scale optimization problem by finding a near-optimal solution. An example of a 
bike manufacturer is used to illustrate the practicality of the proposal model. The results demonstrate that 
the proposed model is an effective and accurate tool for the integrated replenishment and logistics 
management. 

1 INTRODUCTION 

Good inventory management is essential for a firm 
to be cost competitive and to acquire reasonable 
profit in the market. How to achieve an outstanding 
inventory management has already been a popular 
topic in both the academic field and in real practice. 
There are two major categories of inventory models: 
deterministic and stochastic. In deterministic models, 
all input data are assumed to be deterministic, and a 
mathematical programming model is usually 
sufficient to obtain the optimal solution. For example, 
Su and Wong (2008) studied a stochastic dynamic 
lost-sizing problem under the bullwhip effect. A 
framework of two-stage ant colony optimization 
(TACO) was proposed, and a mutation operation 
was added in the second stage to determine the 
replenishment policy. Stochastic models, on the 
other hand, are often limited to highly restricted 
assumptions, and most current literature is a 
variation of the deterministic lot sizing problem 
(Şenyiǧit and Erol, 2010). 

The contribution of this research can be 

summarized as follows. First, a general formulation 
of the lot-sizing problem by mixed integer 
programming (MIP) is proposed. The model 
considers various costs such as ordering cost, 
purchase cost, transportation cost, shortage cost and 
holding cost. It aims to minimize the total cost in the 
system with safety stock while maximizing the 
service level for each planning period. Second, a 
genetic algorithm (GA) model is constructed to solve 
the problem when it becomes too complicated. We 
find that the GA model can find solutions that are 
very close to the optimal ones. 

The remaining of this paper is organized as 
follows. Section 2 reviews some related 
methodologies and works. In section 3, the problem 
under consideration and the assumptions are 
described. The formulation of the lot-sizing problem 
by MIP and the construction of the GA model are 
presented. Case study is carried out in section 4. In 
the last section, some conclusion remarks are made. 
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2 RELATED METHODOLOGY 
AND RESEARCH 

Dynamic lot-sizing can be referred back to Wagner 
and Whitin (1958), and diverse lot-sizing heuristics 
have been adopted in many operations management 
works. For example, Teunter, Bayindir and Van Den 
Heuvel (2006) studied the dynamic lot sizing 
problem for systems with product returns and 
remanufacturing, and proposed modifications of the 
Silver Meal (SM), least unit cost and part period 
balancing heuristics.  

Decision makers may want to optimize two or 
more objectives simultaneously under various 
constraints, and a MOP can then be applied. A 
complete optimal solution seldom exists, and a 
Pareto-optimal solution is used then (Wee et al., 
2009). There are a few methods to derive a 
compromise solution (Rosenthal, 1985). For example, 
the weighting method assigns priorities to the 
objectives and sets aspiration levels for the 
objectives. The ε -constraint method is a modified 
weight method. One of the objective functions is 
optimized while the other objective functions are 
incorporated in the constraint part of the model.  

GA, a heuristic search process for optimization, 
was first developed by Holland (1975). Based on 
Darwin’s survival of the fittest principle, GA mimics 
the process of natural selection (Maiti et al., 2006). It 
has been widely applied to solve production and 
operations management problems (Aytug et al., 
2003). The fundamental concept of GA is to code the 
decision variables of the problem as a finite length 
array, which is called chromosome, and to calculate 
the fitness, the objective function, of each string 
(Yang, Chan and Kumar, 2012).  

3 PROBLEM DESCRIPTION AND 
ASSUMPTIONS 

The following assumptions and notations are defined 
with the modification of those used in the models of 
Kang (2008) and Kang and Lee (2010). The 
assumptions are summarized as follows: 
• The demand of each period is independent and 
follows a normal distribution with a constant 
coefficient of variation (θ ).  
• At most one order can be placed from each 
supplier in each period. 
• The replenishment lead time is of known 
duration, and the entire order quantity is delivered at 

once in the beginning of a period. 
• All-units discount schedule is considered. The 
price of each unit is dependent on the order quantity.  
• The inventory holding cost for each unit is 
known and constant, independent of the price of 
each unit. 
• Planning horizon is finite and known. There are T 
periods in the planning horizon, and the duration of 
each period is the same.  
• The expected ending inventory level in period t 
(i.e., the expected beginning inventory level in 
period t+1) is the safety stock level in period t. 
• The initial inventory level (X1) is zero. 

 

All the required notations in this paper are defined 
below. 
Notations 
Indices: 
i Supplier (i = 1,2,…, I ). 
k Price break (k = 1,2,…, K ). 
t Planning period (t = 1,2,…, T ). 
v Integer number for calculating the quantity 
purchased (v= 1,2,…, V ). 
w Integer number for calculating the time 
transported (w= 1,2,…, W ). 
Parameters: 
E(dt) Expected demand in period t. 
ˆtσ  Standard deviation of demand in period t. 

tσ  Pool standard deviation of demand in period t. 
h Inventory holding cost, per unit per period. 
ri Transportation cost per time from supplier i. 
s Shortage cost, per unit per period. 
zα  Standard normal value of service level α.   

( )L zα  Standardized number of units short with 
service level α.  
M A large number. 
oi Ordering cost per replenishment from supplier 
i. 
pik Unit purchase cost from supplier i with price 
break k. 
qik The upper bound quantity of supplier i with 
price break k. 
Decision variables: 

( )itP Q  Purchase cost for one unit based on the 
discount schedule of supplier i with order quantity 

itQ  in period t. 

itQ  Purchase quantity from supplier i in period t. 
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it iQ b⎡ ⎤⎢ ⎥  The smallest integer greater than or equal 
to it iQ b . 
Nit Number of transportations from supplier i in 
period t. 
Fit A binary variable, set equal to 1 if a purchase 
is made from supplier i in period t, and 0 if no 
purchase is made from supplier i in period t. 
Xt Expected beginning inventory level in period 
t. 
Yt Expected beginning available inventory level 
in period t, and 

1

I
t t it iti

Y X F Q
=

= + ×∑ . 
zt Standard normal value of ending inventory 
level in period t.   

( )tL z  Standardized number of units short of ending 
inventory level in period t 

itvβ  A binary variable for calculating the purchase 
quantity from supplier i in period t. 

itwG  A binary variable for calculating the time of 
transportations from supplier i in period t. 

itkU  A binary variable, set equal to 1 if a certain 
quantity is purchased, and 0 if no purchase is made, 
with price break k supplier i in period t. 
The above information is used to develop a MIP 
model and a GA model to solve the lot-sizing 
problem with multiple suppliers and quantity 
discounts so that an appropriate inventory level for 
each period can be determined. The total cost for 
each period can be calculated by adding up the 
relevant costs, including ordering cost, holding cost, 
and purchase cost with quantity discounts. The total 
cost in a planning horizon includes all the total costs 
in each period. 

3.1 Relevant Costs 

The ordering cost for the system is calculated by 
equation (1), where ot is the ordering cost per time 
from supplier i and Fit represents whether a quantity 
is purchased from supplier i in period t. 
 

1 1

T I

i it
t i

Ordering cost O o F
= =

= = ×∑ ∑  (1)
 

Equation (2) calculates the purchase cost, where 
P(Qit) is the unit purchase cost based on the discount 
schedule with the order quantity Qit, and Fit 
represents whether a quantity is purchased from 
supplier i in period t. 

 

( ( ) )
T I

it it it
t 1 i 1

Purchase cost P P Q Q F
= =

= = × ×∑∑  (2)
 

Equation (3) calculates the transportation cost of the 

system, where ri is the transportation cost per time 
from supplier i, it iQ b⎡ ⎤⎢ ⎥  is the smallest integer 
greater than or equal to it iQ b  from supplier i in 
period t, Nit is number of transportations from 
supplier i in period t and bi is the maximum 
transportation batch size from supplier i. 

 

1 1 1 1

T I T I

i it i i it
t i t i

Transportation cost R r Q b r N
= = = =

= = × = ×⎡ ⎤⎢ ⎥∑∑ ∑∑
 

(3)

The shortage cost of the system is calculated by 
equation (4), where s is the shortage cost per unit per 
period, ( )tL z  is the standardized number of unit 
shortage function, and tσ  is the pool standard 
deviation in period t. 

 

1
( )

T

t t
t

Shortage cost S s L z σ
=

= = × ×∑  (4)
 

The holding cost in period t is equal to the holding 
cost per unit times the ending inventory in period t. 
Then, the holding cost for a planning horizon is the 
summation of the holding cost for each period, as in 
equation (5). 

 

1
1

( ( )
T

t t t
t

Holding cost H h X L zσ+
=

= = × + ×∑  (5)

3.2 Multi-objective Programming 
(MOP) 

The stochastic lot-sizing problem is formulated into 
a MOP model for minimizing total cost and 
maximizing service level. Based on the ε -constraint 
method, we can set the total cost as an objective and 
use the service level as a constraint. The proposed 
model is formulated as follows: 
 

Min ( )TC x  (6)
 

s.t. x E∈  (7)
 

( )Z x zα≥  (8)

where zα  is the standard normal value of service 
level α. 

3.3 Mixed Integer Programming (MIP) 
Model 

The multi-objective programming (MOP) problem 
can be transformed into a MIP model to solve the 
multi-period inventory problem and to determine an 
appropriate replenishment policy for each period. 
The proposed model can be formulated as follows: 
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Minimize 

1 1 1 1
( ) ( )

T I I I

i it it it it i it t t
t i i i

TC o F P Q Q F r N s L z σ
= = = =

⎡
= × + × × + × + × ×⎢

⎣
∑∑ ∑ ∑  

( )1 ( )t t th X L z σ++ × + × ⎤⎦  (9)

s.t. 1 ( )t t tX Y E d+ = −  , for all t (10)

1

I

t t it it
i

Y X Q F
=

= + ×∑  , for all t (11)

it itQ M F≤ ×  , for all t (12)

1
1
2 it

V v
it itvv

Q β−
=

= ∑  , for all i, t (13)

it it iN Q b= ⎡ ⎤⎢ ⎥  , for all i, t (14)

1
1
2W w

it itww
N G−

=
= ∑  , for all i, t (15)

( )( )t t t tz Y E d σ= −  , for all t (16)

tz zα≥  , for all t (17)

( )ˆt tE dσ θ= ×  , for all t (18)

2
'' 1

ˆt
t tt

σ σ
=

= ∑  , for all t (19)

1
( ) K

it ik itkk
P Q p U

=
= ×∑  , for all i, t (20)

1 ( 1) (1 )ik itk it ik itkq M U Q q M U− + × − ≤ < + × −  , for all i, t, k (21)

1
1K

itkk
U

=
=∑  , for all i, t (22)

{ }0,1itF ∈  , for all i, t (23)

{ }0,1itwG ∈  , for all i, t,w (24)

{ }0,1itvβ ∈  , for all i, t, v (25)

{ }0,1itkU ∈  , for all i, t, k (26)
 

and all variables are nonnegative. 

3.4 Genetic Algorithm (GA) Model 

GA is used next to solve the lot-sizing problem with 
quantity discounts and safety stock so that near-
optimal solutions can be produced in a short period 
of computation time. The procedures of the GA are 
proposed as follows: 
Step 1. Coding scheme 
Assume that at most one order can be placed in each 
period and that a replenishment quantity can serve 
for an integer number of periods. 

Step 2. Initial population of chromosomes 
The initial population is generated randomly, and 
there are two types of chromosomes, which are also 
determined randomly. 
Step 3. Fitness function 
The fitness function for each chromosome is Min 
TC, where TC is the total cost. Min TC is the 
minimum cost among all the chromosomes across 
the population. 
Step 4. Crossover operation 
The standard two-cut-point crossover operator is 
applied to the selected pair of parent-individuals by 
recombining their genetic codes and producing two 
offspring. 
Step 5. Mutation operator 
A mutation operator is to counteract premature 
convergence and to maintain enough diversity in the 
population. It is performed by changing a randomly 
selected gene in the genetic code (0-1, 1-0). In each 
generation, all individuals have a set of given genes 
fixed, called frozen genes. 
Step 6. Selection of subsequent population 
After the mutation and crossover operations in each 
generation, a subsequent population is selected for 
the next generation. 
Step 7. Termination 
The processes of crossover, selection and 
replacement are repeated until the objective function 
of the problem is optimized or the stop criterion is 
met. 

4 CASE STUDY OF A BIKE 
MANUFACTURER 

4.1 Stochastic Lot-sizing Problem 

A stochastic lot-sizing problem with quantity 
discounts and safety stock is solved here. Based on 
an interview with the management of a bike 
manufacturer in Taiwan, the following assumptions 
are made. The ordering cost of supplier A (o1) and 
supplier B (o2) per replenishment is set to be $220 
and $190, respectively. In addition, we set unit 
holding cost per period (h), which includes the 
handling cost, storage cost and capital cost, to be 
$0.1. The demand in each period is assumed to be 
normal distributed with a mean ( )tE d and a 
coefficient of variation (θ ) of 1/3. Table 1 shows 
the expected demand ( )tE d and its standard 
deviation ˆtσ in each period t. 
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The ordering cost per time from supplier A and B 
is $220 and $190, respectively. The transportation 
cost per time is $21 and $20.5 from supplier A and B, 
respectively. The unit shortage cost is $30, required 
service level is 95%, and the number of periods is 7. 
A quantity can be purchased from supplier A and/or 
B using the discount schedules in Table 2 and Table 
3, respectively. 

Table 1: Demand of each period in a planning horizon. 

t 1 2 3 4 5 6 7 

( )tE d  660 700 560 120 650 510 525 
Standard 
deviation 

( ˆtσ ) 
220 233 187 40 217 170 175 

Table 2: Discount schedule for supplier A. 

Price break (k) Purchase quantity (q1k) 
Price per unit  

( p1k) 
1 0 – 999 $4.00 
2 1000 – 1999 $3.92 
3 2000 – 2999 $3.84 
4 3000 or more $3.76 

Table 3: Discount schedule for supplier B. 

Price break (k) Purchase quantity 
(q2k) 

Price per unit  
( p2k) 

1 0 – 1500 $4.02 
2 1501 – 3000 $3.89 
3 3001 or more $3.75 

4.2 Experimental Results 

The lot-sizing problem is solved by both the MIP 
model and the GA model. The MIP model is 
implemented using the software LINGO (2006), and 
the GA is implemented using the software 
MATLAB (2007).  

The solution of the MIP model is shown in Table 
4. Under the MIP model, two purchases are made: 
3034 units from supplier B in period 1, 1507 units 
from supplier B in period 5. The total cost is $18983.  

The GA model is implemented by using the 
software MATLAB. Two-cut-point crossover for 
crossover operations is applied, and an inversion 
mutation operator is used to avoid a solution being 
trapped in a local optimum and to approach the 
global optimum. The size of the initial population is 
set as 35. The crossover rate is set as 0.75, meaning 
that around 75% pairs of individuals take part in the 
production of offspring. The mutation rate is set as 
0.01, meaning that each gene of a newly created 
solution is mutated with the probability 0.01. The 
solutions of the case obtained by the MIP model and 

by the GA algorithm are the same, and the total cost 
is $18983. 

 

 
Figure 1: The convergence of GA. 

5 CONCLUSIONS 

This paper constructs a lot-sizing model with 
quantity discounts and safety stock to minimize total 
cost over the planning horizon. A general 
formulation of the lot-sizing problem is proposed by 
mixed integer programming (MIP) first to devise 
appropriate replenishment policies. An efficient 
genetic algorithm (GA) is introduced next for 
solving large-scale lot-sizing problem in a very short 
time. Replenishment level and system cost can be 
determined after calculating ordering cost, purchase 
cost, transportation cost, shortage cost and holding 
cost. The results show that the GA model is effective 
in searching for solutions, and it can be very useful 
for managers in real practice. 

In the future, a more complete case study of 
supply chain management can be considered. A 
model that considers issues, such as variable lead 
time, probability demand, different priority of 
orders, backorder and lost sales, can be developed. 
To incorporate these issues, the assumptions will 
need to be relaxed by modifying objectives and 
constraints. 
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