
Smart Walker Control through the Inference of the User’s Command 
Intentions 

M. Martins1, A. Frizera2, C. Santos1 and R. Ceres3 
1Universidade do Minho, Gualtar, Braga, Portugal 

2Departamento de Engenharia Elétrica, Universidade Federal do Espírito Santo, Vitória, ES, Brazil 
3Grupo de Bioingeniería, Consejo Superior de Investigaciones Científicas, 

Crta Campo Real km 0,200, Arganda del Rey, Madrid, Spain 

Keywords: Smart Walker, Assistive Mobility, Fuzzy Control. 

Abstract: In this work is presented the NeoASAS walker including its conceptual design, implementation and 
validation with a new interface approach integrated. This interface is based on a joystick and it is intended 
to extract the user’s movement intentions. Eleven healthy users performed preliminary sets of experiments 
with the walker, which showed the sensibility of the joystick to extract command intentions from the user. 
These signals presented a higher frequency component that was attenuated by a Benedict-Bordner filter. 
Then, an approach to the control architecture was developed, in order to obtain stable and safe user 
assistance. This control architecture is based on a fuzzy logic control that allows the control of the walkers’ 
motors. Thus, an assistive device to provide safety and natural manoeuvrability was conceived and offers a 
certain degree of intelligence in assistance and decision-making. The motivation is that this will contribute 
to improve rehabilitation purposes by promoting ambulatory daily exercises and thus extend users’ 
independent living. 

1 INTRODUCTION 

Smart walkers are intended to provide increased 
support and assistance during gait. They are adaptive 
to their specific application or to the target 
population and are designed to continually evaluate 
and correct its actions based on its perception of the 
users’ needs.  

In general, Smart walkers have an integrated 
assistive navigation system and sensors to obstacles 
detection and there is a concern to allow a stable gait 
through different handlebar designs (Frizera-Neto, 
2010); (Martins, 2011). 

In Smart walkers, the user-walker interface is 
intended to interpret the user’s movement intentions 
and transform this knowledge into motor commands 
(direction and velocity). This research area has 
recently witnessed a huge interest in searching for 
interfaces that can be intuitive and address the fact 
that users are not required being aware of the 
intelligent agent behind the driving wheel. 

There are many types of interfaces that have 
been used in smart walkers. Force sensors are the 
most common, as they can be integrated into 

handlebars, or in forearm supports (Martins, 2011). 
In (Frizera-Neto, 2010) despite good results, users 
may present asymmetries during their gait that lead 
to different patterns of forces to the same intentions. 

These concerns were addressed in (Lee, 2010) by 
applying infrared sensors to detect the position of 
lower limbs. However, sensors can mix the legs and 
therefore make wrong decisions about the users’ 
intentions. 

Despite all the advances in the current state-of-
the-art user-walker interaction field, there are still 
many unsolved questions and key areas in 
determining user-friendly and efficient interfaces. 
Further, it is very important to remember that these 
interfaces should not increase the cognitive burden 
or cause confusion to the lower limb disable users, 
and should be economic. 

Additionally, recent studies on the walker 
interfaces (Martins, 2011) have not focused on the 
characterization of the signals gathered by the 
interface sensors, and it is currently lacking an 
exhaustive analysis of the main parameters involved 
in the interface signal. It is required to identify these 
parameters and their connection to the subsequent 
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algorithms used for detection, recognition and 
estimation of user’s commands. 

In this work, it is presented a new interface 
approach designed to be intuitive and meet usability 
aspects. The interface integrates a joystick into the 
walker upper base support. Preliminary studies were 
conducted with healthy volunteers and no 
motorization in the device. An analysis of the 
joystick data was performed and user’s navigation 
commands were identified. These commands are 
going to be used in the guidance of the walker and 
recurring to a fuzzy logic strategy, which is 
fundamental for an efficient control of the device 
during assistive gait. Then, a validation with the 
motors on was performed. 

This paper is organized as follows. Section II 
describes the NeoASAS interface constituted by a 
joystick. Section II also presents and discusses the 
interaction components acquired with the joystick. 
Section III discusses the processing strategy to 
extract the signal components related to the user’s 
navigation commands. Section IV presents and 
discusses the developed control strategy based on a 
fuzzy logic system and the achieved results are 
present in Section V. Finally, conclusions are 
discussed in Section VI. 

2 NeoASAS INTERFACE 

The NeoASAS Smart Walker is presented in figure 
1. This new robotic walker was built through the 
mechanical modification of a conventional four-
wheeled walker. An additional structure was 
implemented to integrate the motors and sensors of 
the robotic walker, as well as forearm supports. 

To program all the implemented strategies on the 
walker, it was used the Matlab and PC/104 platform. 

2.1 Specifications of the Novel 
Interface – Joystick 

In this work, the interface consists on placing, at the 
centre of the upper base support, a joystick 
associated to a spring that is moved according to 
user’s manipulation (Figure 1). When the user 
begins his gait, he has to slightly move (less than 1 
degree) the handlebar through the handles, moving 
the joystick, informing the walker which direction 
and velocity he wants to take. Hence, the user’s little 
efforts are successfully converted into small 
movements through this new interface. 

To extract and study the signals from the 
joystick, it was performed an user study with 11 

healthy volunteers, with no history of any 
dysfunction on either upper or lower limbs. These 
volunteers had to perform simple tasks like moving 
forward and then turn left or right. It is noteworthy 
that these tests were performed without any 
motorized system.  
 

 
Figure 1: NeoASAS walker and a schematic of the upper 
base with the joystick. 

The joystick outputs three different signals 
(X,Y,Z), measured in Volts that specify the imposed 
movement described on the XYZ-axis attached to 
the joystick. In this work it is just used Y and Z 
signals.  

2.2 Interaction Components 

Three types of experiments were performed by the 
11 healthy users: walking forward, turn right and 
turn left (Figure 2). During these two types of 
signals were acquired and evaluated – forward (Y) 
and rotation (Z). The Y-signal, gives an indication of 
the user intention to move forward and according to 
the applied force on the X-axis, the signal will have 
more or less amplitude, depending on the user’s 
command intention to go forward with more or less 
velocity. The Z-signal, gives an indication of the 
user intention to perform a curve and the signal will 
present high or low amplitude depending if the 
performed curve is more or less accentuated. The 
intention to turn right or left is detected by the sign 
of the signal, i.e. turn left causes negative signal and 
turn right causes positive signal. 

Figure 3 show typical Y and Z joystick data. 
Initially, the user is stopped (S1) and both signals 

are zero. When the user begins to walk forward (S2), 
he pushes forward the handles of the walker and the 
Y-signal becomes negative, because the joystick is 
moved around the X-axis. The Z-signal continues to 
be zero, since the joystick is not rotated. Sometimes, 
Z-signal can present some small variations while the 
user is moving forward. This is associated to users 
that may present more strength in one arm than in 
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the other.When the user turns right (S3), the joystick 
is made to move around the Z-axis to the right side 
also, presenting a negative Z-signal. At the same 
time, in the Y-axis the joystick tends to go to rest, 
presenting a zero Y-signal. The next step is to move 
forward (S4), and the Z-signal returns to zero while 
the Y-signal becomes negative. At the end of the 
trajectory, the user stops (S5), and the Y-signal 
returns to zero. Z-signal remains in zero.  

In the case that the user wants to turn right, the 
only difference is that the Z-signal becomes positive 
instead negative.  

 
                          a)                         b)                      c) 

Figure 2: a) Walking forward, b) turning right and c) 
turning left. 

 
Figure 3: Typical raw Y and Z joystick data in the 
NeoASAS walker when the user is performing the 
following trajectory: S1- The user is stopped; S2- User 
starts walking forward; S3- User turns right; S4- User 
walks forward; S5 – User stops. 

Now, one can conclude that the joystick system 
read correctly the user’s command intentions. 
However, by observing the characteristics of the 
signals Z and Y, it can be identified two main 
components of the signals. One component (i) 
represents the highest frequency noise caused by the 
vibrations of the structure. This component must be 
eliminated in real-time. For that, it will be used a 
filter which choice will be presented in detail on the 
next section. The other component (ii) contains the 
information of the walking movement intentions of 
the user to guide the walker. This signal will enable 

the development of robust and secure control 
strategies. 

3 FILTERING STRATEGY 

The filtering strategy aims to eliminate in real-time 
the component (i). 

The data that was collected yields that the user’s 
commands intentions occur in a frequency range 
between 0 and 2 Hz in both Y and Z-signals, and the 
higher-frequency components are related to noise. In 
figure 4, one can see the spectrum for typical Y and 
Z-signals. The Z-signal has more accentuated 
higher-frequencies than the Y-signal.  

The higher frequency components present in the 
signals can be eliminated with forth and back 
recursive digital filters, such as Butterworth filters, 
without causing phase distortion. However, this 
approach is not real-time implementable. As this 
technique is not suitable for real-time applications, 
this filter will be set as a basis to evaluate the 
performance of the chosen filter strategy. 

Besides this, the user should not perceive the 
delay between his commands and the movement of 
the walker. The human perception threshold in 
applications like this is known to be around the 200 
ms. 

In the literature, two types of filters were 
identified: g-h filter (Benedict-Bordner and 
Critically Damped) and the Kalman filter, and they 
are usually called as tracking filter (E.Brookner, 
1998). 

 
Figure 4: Example of a Frequency Spectrum for (left) raw 
Y-signal and (right) raw Z-signal.  

3.1 User’s Movement Intentions 
Tracking Filters 

g-h filter In this filter measurements are used to 
correct the predictions that are made for the signal, 
minimizing the estimation error. Formulation is 
presented in (Brookner, 1998). This filter presents 
two parameters (g,h) that need to be offline tuned. 
To this, the Benedict-Bordner Filter (BBF), equation 
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(1), and the Critically Damped Filter (CDF), 
equation (2) will be applied to select the filter 
parameters. 

h =
g2

2 − g
 (1)

This equation relates g and h, such that the BBF has 
one degree of freedom. In g-h filters increasing the 
value of g diminishes the transient error. Thus, a 
larger g makes the BBF to track higher frequencies. 

The (CDF) minimizes the least squares fitting 
line of previous measurements, giving old data 
lesser significance when forming the total error sum. 
This is achieved with a weight factor θ. Parameters 
in the g–h filter are related by: 
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Kalman Filter here depicted is the conventional 
Kalman filter and is only suitable for linear systems 
(E.Brookner., 1998). 

Therefore, state vector x(t) is composed by the 
variable to be estimated, and its derivative. In the 
current problem, is considered the system dynamic 
equations: 
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In these equations it is presented a stochastic model 
that considers a first derivative influenced by a 
random noise uk , i.e. first derivative is not constant.  

The equation that links the actual state xk  and 
the measured yk is called the observation equation: 

kkk vxy +=  (4)

Where vk is the process noise. 
The Kalman filter parameters will be the 

measurement noise covariance R and the process 
noise covariance Q. 

In the implementation of the filter, the 
measurement noise covariance R is measured prior 
to operation of the filter. Measuring the 
measurement error covariance R is practical because 
generally it is simple to take some off-line sample 
measurements in order to determine the average 
variance of the measurement noise: [ ].2

xR σ= Its 
value is 8.82x10-5 rad2.s-2 for the Y-signal noise and 
1.3x10-5 rad2.s-2 for the Z-signal noise. 

The selection of the process noise covariance Q 
is formulated based on the first derivative noise, 
which affects the estimation of the user’s command 

intentions. The value of Q is related to the process 
error of the system. Thus, a good choice of Q helps 
the filter to estimate more precisely the true state.  

It is calculated using of-line measures of the 
signal. For each measure the covariance of the signal 
is calculated. Finally, the process noise covariance is 
the average of all the calculated covariance.  

3.2 Evaluation of User’s Movement 
Intentions Trackers Filters 

The selection of the BBF parameter g, CDF 
parameter θ and Kalman filter parameter Q, is 
presented in this section. 

For this selection the Kinematic Estimation Error 
(KTE) was used. KTE evaluates the smoothness, 
response time, and execution time of a tracking 
algorithm (E.Rocón, 2010) and is expressed by: 

22 σε +=KTE  (5)

 and σ2 are the mean and variance of the 
absolute estimation error between a desired signal 
and the measured signal. The desired signal is 
obtained by filtering offline the signals’ 
measurements with a Butterworth filter.  

To select the filters parameters (g, θ and Q), 11 
individuals drove the walker without any 
motorization executing three different trajectories 
with five repetitions each. During these experiments 
the signals of the joystick were acquired.  

These signals were then introduced off-line in 
the 3 filters algorithm using a broad range of g, θ 
and Q parameters. The result was processed by the 
KTE. The best solutions for each filter, i.e. the ones 
with the lowest KTE, were chosen for each user, 
experiment and repetition. With these results, it was 
calculated the mean of the best 165 solutions for 
each parameter, as well as the mean of the delay 
between the input and the output for each case. 

Table 1 and 2 present the mean values of the best 
solutions of g, θ and Q parameters, delay between 
the original joystick signal (Y and Z) and the filtered 
one and KTE for each joystick signal (Y and Z). 

Table 1: Filter Parameters based on the KTE and delay for 
the Y-signal. Table provides for mean±standard deviation. 

 Value KTE (x10-3 rad/s) Delay (ms) 

g 44.20±4.97(x10-3) 6.46±0.91 0.5±0.25 

θ 0.974±3.85x10-3 6.81±0.75 1.7±0.96 

Q 3.21±0.55(.10-7) 9.66±0.86 17.2±1.86 
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Table 2: Filter Parameters based on the KTE and delay for 
the Z-signal. Table provides for mean±standard deviation. 

 
Value 

KTE (x10-3 

rad/s) 

Delay 

(ms) 

g 16.87±2.51(x10-3) 2.93±1.99 23.8±1.70 

θ 0.990±1.1x10-3 2.99±0.11 25.2±1.59 

Q 3.26x10-9±8.78(.10-9) 3.12±0.26 36.2±4.00 

As it can be seen in Table 1 and 2, g of the Z-
signal compared with the g parameter of the Y-
signal shows a lower value. Similarly, the average θ 
and Q parameters of the Z-signal compared with the 
average θ and Q parameters of the Y-signal shows a 
higher value. These results were as expected, since 
Z-signal required being further filtered.  

All filters are of high quality for a human-
machine interaction because the introduced delay is 
much more inferior to human perception (200 ms), 
not causing prejudice to the human-machine 
interaction.  

KTE is very low for all filters, being the lowest 
one, the BBF’s KTE value, as well as its dispersion. 
Additionally, the BBF detains the lowest signals’ 
delay. 

Since BBF presents the lowest KTE for both 
signals, one can conclude that it is the best option to 
choose for this application. 

This can also be seen in an example of joystick 
signal in figure 5, where is presented the differences 
between BBF and CDF; and figure 6 presents the 
differences between BBF and Kalman, as well as the 
reference. The BBF shows a higher attenuation on 
the oscillations than the CDF and Kalman filters. 

Thus, a Benedict-Bordner g-h filter was applied 
to the joystick data. The g parameter was chosen to 
be 44.29x10-3 for the Y-signal and 16.87x10-3 for the 
Z-signal. Thus filter has a low computational cost 
algorithm, making it a good option to this 
application, since it can run in a low cost hardware 
with enough robustness for a commercial device.  

4 CONTROL STRATEGY 

In this section, it is addressed a control strategy 
based on fuzzy logic to classify the signals sent by 
the joystick and transform them into motor outputs 
(direction and velocity), in such way that the walker 
drives the motors according to the user’s commands. 
The two fuzzy logic inputs will be the Y and Z-
signal. 

 
Figure 5: (left) The superposition of the raw Z with the 
results of BBF, CDF and Butterworth; (Right) The 
superposition of the raw Y with the results of BBF, CDF 
and Butterworth. 

 
Figure 6: (Left) superposition of the raw Z with the results 
of BBF, Kalman and Butterworth; (Right) superposition of 
the raw Y with the results of BBF, Kalman and 
Butterworth. 

It was defined a set of membership functions 
(MF) for each joystick signal and they were 
constituted by Gaussian and bell functions. The variables, 
which form the set of MF for the Z-signal and that will 
interpret this signal, are divided onto: much left (ME), 
little left (LE), zero (Zi), little right (LR) and much right 
(VR). Similarly, the variables, which form the set of MF 
for the Y-signal and that will interpret this signal, are 
divided into: negative (Neg), zero (Ze), little positive (PP) 
and very positive (MP). For the motors right (MR) and left 
(ML), the output MF set is divided onto: zero (Z), slow (S) 
and fast (F).The decision-making rules are presented in 
Table 3. 

A series of experiments with motorization were 
conducted to assess the functioning of the fuzzy 
system and allow the tuning of the parameters of the 
implemented system.  

Table 3: Decision-making rules. Black (white) columns 
are related to the left (right) motor. 
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5 VALIDATION OF THE 
PURPOSED ARCHITECTURE 
WITH HEALTHY USERS. 

In figure 7, an example of results is shown. The 
signals were acquired while a user was performing 
the following trajectory: Start to walk, walk forward, 
turn left, walk forward and stop. Figure 7 a) shows 
that with the addition of the motors in the movement 
of the walker, the Y and Z-signals present a more 
accentuated noise, comparing with the one saw in 
figure 3. However, the results from the filter BBF 
are very satisfactory in attenuating the noise 
components.  

In figure 7 b) it is shown the result obtained 
before the BBF filter, as well as an adjustment on 
the gains of the signals. The Y and Z-signal were 
inverted, amplified and are in the range of [-1,1].  

In figure 7 c) the outputs of the fuzzy control 
system were smoothed and converted to the range of 
[2.5,5] in order to be sent to the low-level control 
hardware to command the DC motors.  

 
a) 

 
b) 

 
c) 

Figure 7: Results from the system architecture of the 
NeoASAS walker. a) raw acquired joystick signals and the 
result from the filtering with the BBF filter; b) signals 
before and after the amplification and restrictions; c) 
output of the fuzzy system (left) and their integration to 
then be sent to the control board hardware (right). 

Despite the variations of the Y and Z-signal, the 
motors present a constant and safe movement. 
Therefore, the system is perfectly adjusted to read 
the user’s command intentions. 

Thus, it was successfully generated a control 
strategy which has low computational cost, allowing 
a smooth and enjoyable driving, fast response of the 
walker and no sense of delay. 

6 CONCLUSIONS 

In this work it was presented a method of user-
walker interaction to extract the users’ command 
intentions. A series of experiments using with 
healthy users were performed which showed the 
sensibility of the joystick to extract navigation 
commands from the user. The proposed control 
strategy showed very good results, allowing a 
smooth and enjoyable driving, fast response of the 
walker and no sense of delay.  
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