Metasearch Services Composition in WS-BPEL
An Application of Metamorphic Testing

M. del Carmen de Castro-Cabrera, Inmaculada Medina-Bulo and Azahara Camacho-Magrifian
Department of Computing Languages and System, University of Cadiz, Cadiz, Spain

Keywords:

Abstract:

Metamorphic Testing, Oracle, Testing Cases, Web Services Compositions, WS-BPEL.

Nowadays, the impact of Web Services is quickly increasing because of transactions through Internet. The

OASIS WS-BPEL 2.0 standard language allows to develop business processes by means of pre-existing Web
Services and to offer themselves as a new Web Service. This makes it necessary to pay special attention to
testing this type of software and presents a challenge for traditional testing techniques, due to the inclusion
of specific instructions for concurrency, fault and compensation handling, and dynamic service discovery and
invocation. Metamorphic Testing has proved useful to test and improve the quality of traditional imperative
programs. However, it has not been applied to languages for composing Web Services such a WS-BPEL. This
work presents an procedure for applying Metamorphic Testing to Web Services compositions, proposes an
architecture and analyzes a case study with promising results.

1 INTRODUCTION

Web Services Business Processes language, WS-
BPEL 2.0 (OASIS, 2007) was standardized at the re-
quest of some TIC companies (HP, IBM, Oracle, Mi-
crosoft, and so on.). This language allows us to de-
velop new Web Service (WS) designing more com-
plex business processes from pre-existing WS, and
there is a widely support software for them. However
its development has not gone along with improve on
testing techniques to this type of software (Bozkurt
et al., 2010). A deficient testing in a system could
cause errors with negative consequences both eco-
nomical (IDC, 2008) and also humans (Leveson,
1995). Consequently, good testing methods to test
compositions for correctness are required. Progress
in this sense are described in (Palomo-Duarte, 2011).
Furthermore, in (Garcia-Dominguez et al., 2011) two
inference algorithms to reduce application cost of a
extended methodology based on SOA (with UML and
MARTE) are presented.

Metamorphic testing (MT) (Chen, 1998) is a soft-
ware testing technique that allows to generate test
cases automatically to prove programs. It is based
on Metamorphic Relations (MRs), that is, existing
or hope properties defined over inputs and its corre-
sponding output set, to a program under testing. In-
deed, that technique has been proved with success in
programs written in imperative programming langua-

Castro C., Medina-Bulo I. and Camacho A..

ges (Zhou et al., 2004). As for the efficiency, Zhang
in (Zhang et al., 2009) has conducted an experiment
in which compares the ability of detecting error and
time cost between MT and standard assertion check-
ing. The results reveal that MT detects more faults
than standard assertion checking.

This work presents an procedure for applying
Metamorphic Testing to compositions with WS-
BPEL and proposes an architecture. Furthermore, a
case study with encouraging results is added.

This paper is structured as follows. In the sec-
tion 2 fundamentals are explained. Section 3 presents
a general procedure for implementing MT. Section 4
exhibits a general architecture with the description of
steps to follow. Afterward, in the section 5 a case
study, the Metasearch composition, is described with
the MRs and the results obtained. Section 6 shows
some works related to testing compositions in WS-
BPEL and MT technique applications. Finally, in the
section 7 are conclusions and future works.

2 FUNDAMENTALS

Software Testing is a core activity in any software
development project. Detecting and correcting er-
rors are critical operations to ensure program reliabil-
ity. For this reason, diverse techniques have been de-
veloped based on different approaches, even though,

427

Metasearch Services Composition in WS-BPEL - An Application of Metamorphic Testing.

DOI: 10.5220/0004026004270432

In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 427-432

ISBN: 978-989-8565-19-8

Copyright ¢ 2012 SCITEPRESS (Science and Technology Publications, Lda.)

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

none has proved to be better than others (Beizer,
1990; Myers, G.J. et al., 2004).

2.1 Metamorphic Testing (MT)

MT relies on the notion of MR. In (Andrews et al.,
2005), MRs are defined as “existing properties over
a different inputs set and its corresponding results to
multiple evaluations of a target function”. In addition,
The use of MT to alleviate oracle problem (Chen,
1998; Chen, 2010).

When the implementation is correct, program in-
puts and outputs are expected to satisfy some neces-
sary properties that are relevant for underlying algo-
rithms. These properties are traditionally known as
assertions. In this sense, a MR is a type of assertion
that is expressed according to the test case values.

However, a MR should provide a way of generat-
ing new test cases from given ones previously. In or-
der to illustrate this, let us consider a sorting program,
sort, that sorts an input list of integers producing a list
with the same integers in ascending order.

For instance, when we have as input the list I3 =
h4;7;2i, the expected result of sort(ly) is h2;4;7i.
Consequently, if a function perm that permutes ele-
ments from a given list to generate a new test case is
deployed, we claim that its result must be the same
(the condition over the output is the equal function).

Proceeding with the same example,
I, = perm(l1;h(1;2)i) = h7;4;2i (there is only a
swap between the first and the second elements), the
expected result of sort(l,) must be the same than
sort(l;). In other words, sort(l;) = sort(ly). We
could formalize this property, MRy, as follows:

MRy (9x 1, = perm(ly;x)) ¥ sort(ly) = sort(ly)

where |y is the initial input and I, will be the follow-
up test case. Summing up, MT is a testing technique
using MRs (Chan et al., 2007). It begins with an ini-
tial test suite, which is produced with any test case
selection strategy, and a set of MRs. Once the pro-
gram is executed on the test suite, errors are fixed un-
til a successful test suite (i.e., consisting of non-failing
test cases) is obtained. Then, MRs are used to gen-
erate follow-up test cases. These test cases form the
follow-up test suite and the process is iterated until the
specified test criteria are met.

3 MT IMPLEMENTATION

Test case generation can be automated as in traditional
techniques. Following with the example of the previ-
ous section, replacing the second parameter of perm

428

by a random permutation we would obtain the equiv-
alent to traditional random testing for this example.

Of course, asingle MR is generally insufficient. In
the above example, we could not detect certain faults
just with MR1, as correctness for sorting implies per-
mutation preservation (the result list must be a permu-
tation of the original) and an order constraint (it must
be ordered).

Then, MT is a testing technique that begins with
an initial test suite, which is produced with any test
case selection strategy, and a set of MRs. Once the
program is executed on the test suite, we obtain that
some test cases detect errors and others not. The first
ones force that the program is revised and the errors
corrected and, the second ones, named successful test
cases, will be selected as input to our architecture.

Thereby, the MRs generate the follow-up test
cases from that successful set. These follow-up test
cases will compound the (initial) test suite of the fol-
lowing iteration and the procedure will be repeat.

Therefore, once a initial test suite has been gen-
erated (with a generation strategy), we have to follow
the next steps to apply successfully MT. First, choose
the successful test cases. These constitute the initial
test suite. Second, select adequate MRs taking into
account the problem to solve and the algorithm struc-
ture implemented in the program. Third, generate the
follow-up test suite applying MRs to initial test suite.
Fourth, execute the program with initial and follow-
up test cases. Fifth, compare the results. And, finally,
improve the program correcting the detected errors,
select new test cases and/or new MRs enhanced to
successive iterations. You can see more information
in (Castro-Cabrera and Medina-Bulo, 2011).

4 PROPOSED ARCHITECTURE

Once diverse aspects related with MT have been an-
alyzed, in this section an architecture for testing web
service compositions in WS-BPEL is presented.

The proposed architecture uses open-code sys-
tems: ActiveBPEL (ActiveVOS, 2009) as the BPEL
execution engine and BPELUnit (Mayer and Libke,
2006) as the unity testing library.

This approach intends to improve test suite, from
MRs, generating new test cases, which allow us to de-
tect a greater number of errors in compositions. Next
every steps of the proposed architecture are described:

1. Analysis and Property Obtainment Step. This step
analyzes the composition to obtain relevant prop-
erties and to specify MRs. One of the possibilities
is to deploy the free framework Takuan (Palomo-
Duarte et al., 2010), that detects properties in a

Metasearch Services Composition in WS-BPEL - An Application of Metamorphic Testing

BPEL composition from test cases. Furthermore,
in this step, follow-up test cases are generated
through MRs. This phase receives as inputs: a
WS-BPEL composition and a test suite random-
ize generated or through an automatic application.
As result and as requirement to the next step, the
follow-up test suite (generated from MRs) and the
ActiveBPEL specific files to execute the composi-
tion are obtained. The main modules are an ana-
lyzer and a follow-up test cases generator.

2. Execution Step. In this step the composition is ex-
ecuted with initial and follow-up test cases. Every
test case encloses an initial message that triggers a
WS-BPEL process instance in the server, as well
as the responses that the external services will pro-
vide. As input specific files to ActiveBPEL engine
are received and initial and follow-up test cases
obtained from the previous step. As output the re-
sults from test cases execution are obtained. The
principal modules are a WS-BPEL engine and a
WS-BPEL unity testing library.

3. Comparison Step. This step receives the results
of test cases (initial and follow-up) execution. It
compares the results of initial and follow-up test
cases execution, with the target of detecting errors
in composition. Essentially, it is checking if MRs
hold, since these MRs are necessary properties.
In the case that another MR was not satisfied, an
error in the composition has been detected. The
comparison results allow to decide the number of
process iterations.

5 ACASE STUDY

In this section we apply the proposed architecture
to the MetaSearch composition defined in (OASIS,
2007). Its behavior is in the figure 1. This consists
of the search done by a client in Google search and
MSN search. Each browser returns its results, first all
the results of Google and then all the results of MSN.
If there are no results of Google, the client will only
see the results of MSN, and vice versa.

The first phase consists of analyzing the composi-
tion and the original test cases to design suitable MRs:
study the original test cases and design and implement
adequate MRs to these test cases. We apply one of
these MRs to one of the original test cases and we ob-
tain a new test case. It should be noted that the test
cases extend to the responses of services, that is, we
have to consider not just inputs and outputs, but also
the responses of the involved services.

Now, we show the most important elements in-
volve in the test case that we study: Qury, keywords

of the client’s query; Lang, language that the client
uses for searching; C, country where the search is
done; Cult, string formed by the concatenation be-
tween Lang and C (if one of the elements is null (),
the value of Cult will be "en-US’); Max_Res, max-
imum number of results that the client wants; N,
total number of results that the client obtains with
both browsers - this number has to be less or equal
than Max_Res (N { Max_Res); Google_Res, this rep-
resents all of the results of Google; and, finally,
MSN_Res, this represents all of the results of MSN.
There are other elements that is not relevant to the
study of this paper.

The structure of a theorical test case is this: (Qury,
Lang, C, M_Res, N, Google_Res, MSN_Res)

One of the original test cases that we have studied
is the following: Cult = de-De

(Philipp, de, DE, 3, 3, Google_Res, MSN_Res)

We do not consider the Google results and the
MSN results because the MRs only use the Lang
and C elements. This test case is a valid one be-
cause the client indicates a query to search, a max-
imum number of results and finally, the client ob-
tains a total result of the browsers that is less or
equal than this maximum.

We apply the following MR to the previous test
case where the elements that end with 1’ are the
original elements, and the elements that end with
"2’ are the new elements:

Precondition: Langl & ”” MR1.:
Lang2 & Langl”™ Lang2 ="") Cult2 & Cultl

The precondition of this MR indicates that the
original Language is no null. And as the origi-
nal test case satisfies this precondition, we obtain
the new follow-up test case: Cult = en-US

(Philipp, , DE, 3, 3, Google_Res, MSN_Res)

The new test case is valid because satisfies all
the requirements of the composition that we have
commented before.

Another original test case that we have studied is
the following: Cult = de-De

(Philipp, de, DE, 4, 4, Google_Res, MSN_Res)

The structure is similar as the previous original
test case, but in this case the client wants to obtain
one more result.

We apply this MR to the test case:

Precondition: C1 & "~
MR2: C2&C1”™ C2="") Cult2&Cultl

429

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

Client

MSN

Results > 0
T

Results = 0

é; Results

Client

Figure 1: The MetaSearch composition.

The precondition of this MR indicates that the
original Country is no null. And as the original
test case satisfies this precondition, we obtain the
new follow-up test case: Cult =en-US

(Philipp, de, , 4, 4, Google_Res, MSN_Res)

The new test case is valid because satisfies all the
requirements of the composition.

And one last original test case that we have stud-
ied is the following: Cult = en-De

(Philipp, en, DE, 3, 3, Google_Res, MSN_Res)

The structure is the same as the first original test
case, but in this case the Lang is English. There-
fore, the value of the Cult element is "en-De’.

We apply again the first MR for this test case be-
cause it satisfies the precondition and we obtain
the new follow-up test case: Cult = en-US

(Philipp, , DE, 3, 3, Google_Res, MSN_Res)

It is the same test case that we obtained in the first
example. Therefore, we can see that we not only
can obtain new test cases with these MRs, but also
we can obtain repeated test cases.

5.1 Follow-up Test Case Generation

We have implemented the previous MRs with oth-
ers that we have also obtained of the complete study.
These MRs allow us to obtain new test cases because
they apply logical and numerical relations to the orig-
inal test cases. This improves the initial test suite.

As we could see in the previous section, the appli-
cation of MRs to certain test cases can obtain repeated
test cases. To prevent this, we implemented an appli-
cation that automates the generation of follow-up test

430

cases from an original test suite, deletes the follow-up
test cases that are repeated and writes all the follow-
up test cases in a file with BPELUnit format.

But this effort is rewarded because the application
generates new valid test cases. This saves us the hard
work of generating follow-up test cases by hand. In
fact, we could iterate this process if we run it to these
follow-up test cases improving the test suite.

5.2 Result Evaluation

An overall result of this study is that we have im-
proved the error detection technique completing the
initial test suite and detecting new errors. A particular
test case is the following, one of the test cases that we
have studied in this section: Cult = de-De

(Philipp, de, DE, 3, 3, Google_Res, MSN_Res)
And the new test case generated by the MR1 is:

Cult = en-US
(Philipp, , DE, 3, 3, Google_Res, MSN_Res)

Based on the MetaSearch composition logic, the
source code fragment that evaluates the final value of
the Cult element is the following:

<bpel:condition>

(($inputvariable._payload/client:country 1= *7)

and
($inputVariable.payload/client:language !'= ””))
</bpel:condition>

As we explained at the beginning of this section,
if the Lang and C elements are different to null ()
the value of Cult will be the string formed by the con-
catenation between both elements. In other case, the
value will be ’en-US’.

If there are an error in the source code of the com-

Metasearch Services Composition in WS-BPEL - An Application of Metamorphic Testing

position, like replacing the relation ’and’ by the rela-
tion “or’, the source code fragment of this error com-
position is the following:

<bpel:condition>

(($inputVariable.payload/client:country != ””)

or

($inputvariable.payload/client:language != **))

</bpel:condition>

With the original test case we do not detect the
invalid composition because it satisfies the condition
too. But, if we use the new test case generated by the
MRZ1, we will detect the invalid composition because
it does not satisfy the condition.

In the valid composition the value of the Cult el-
ement of the new test case is ’en-US’ because one of
the elements (in this case, the Lang element) is equal
to null. However, in the invalid composition the value
of Cult is *-DE’ because the test case satisfies the con-
dition that one of the elements is different to null. The
values are different therefore, the error is detected.

This new test case allows us to detect an error that
the original test case did not detect. In addition to gen-
erating a significant number of follow-up test cases
automatically, some of these test cases allow us to de-
tect new errors and to improve the initial test suite.
Besides, new MRs can be implemented that allow us
to generate another test cases to improve the results.

6 RELATED WORKS

In this section, we describe some tools and techniques
applied to test WS compositions. We focus in those
ones implemented in WS-BPEL and most of them are
referred to test case generation (Garcia-Fanjul et al.,
2007; Zheng et al., 2007). GAmera (UCASE Re-
search Group, 2010) is based on mutation testing and
that uses genetic algorithms.

The first documented work related with MT be-
longs to Weyuker (Weyuker, 1982). In this paper
Weyuker proposed a new perspective for software
testing based on using alternative programs to the
original one that deploys the same function. This idea
was later adopted by Chen in (Chen, 1998), where the
name metamorphic testing firstly appears. Since then,
numerous papers have been published with different
visions as (Gotlieb and Botella, 2003), where a possi-
ble automation of this technique is presented.

Chen and his colleagues in (Chen et al., 2004) de-
scribe how the adequate selection of MRs is a critical
issue in this technique. Alternatively, Chan and his
collaborators have some works related with this topic,
but the more interesting for our research is (Chan
et al., 2007), in that applies MT to SOA, however it

is only applied over services, not compositions. Re-
cently, other interesting work has been published to
obtain MRs and automatize test cases generation in-
tegrated into BeTTy (Segura et al., 2012).

A research group of Columbia University has im-
plemented in (Murphy et al., 2008) a framework that
automatize partly the testing process. Later, they have
implemented Corduroy, an application to automatize
the process (Murphy et al., 2009). Lately, advances
in this research have been published in (Xie et al.,
2011).

7 CONCLUSIONS

WS-BPEL business processes are considerably in-
creasing in last years. For this reason, it is impor-
tant the development of techniques that allow to test
this type of software. Due to the language nature, it
is necessary to adapt traditional testing techniques to
test compositions implemented by those languages.

In addition, MT has been implemented in differ-
ent languages efficiently and it is being actually under
consideration by some research groups. Selection of
adequate MRs is an important issue to this technique,
S0 we ought to consider the problem context and the
structure of the program under test.

A testing framework architecture to apply MT
in WS-BPEL compositions has been proposed. The
steps and design of this have been specified supported
by open software systems. Further, a test case study
over an specific composition, Metasearch, has been
included. Its specification, design and implementa-
tion description, as well as results have also been pre-
sented. This indicates how it is possible to improve a
test suite detecting errors in the composition.

As future work, the complete development of the
architecture proposed is considered. Once the system
was implemented, it could be compared these results
with other obtained through different techniques us-
ing diverse compositions. However, unfortunately it
does not exist up to now, any standardized testing
suite to WS-BPEL (Palomo-Duarte, 2011), anyhow
the results could be depending on the cases study.

ACKNOWLEDGEMENTS

This work is supported by the MoDSOA project
(TIN2011-27242) under the National Program for
Research, Development and Innovation of the Min-
istry of Science and Innovation (Spain) and by the
PR2011-004 project of the University of Cadiz.

431

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

REFERENCES

ActiveVOS (2009). ActiveBPEL WS-BPEL engine.
http://sourceforge.net/search/?q=ActiveBPEL.

Andrews, J. H., Briand, L. C., and Labiche, Y. (2005). Is
mutation an appropriate tool for testing experiments?
In Proceedings of the 27th International Conference
on Software Engineering (ICSE 2005), pages 402—
411. ACM Press.

Beizer, B. (1990). Software Testing Techniques, 2nd Edi-
tion. International Thomson Computer Press, 2 sub
edition.

Bozkurt, M., Harman, M., and Hassoun, Y. (2010). TR-10-
01: testing web services: A survey. Technical Report
TR-10-01, King’s College, London.

Castro-Cabrera, C. and Medina-Bulo, I. (2011). An ap-
proach to metamorphic testing for ws-bpel composi-
tions. In Proceedings of the International Conference
on e-Business (ICE-B 2011).

Chan, W. K., Cheung, S. C., and Leung, K. R. (2007).
A metamorphic testing approach for online testing of
service-oriented software applications. International
Journal of Web Services Research, 4(2):61-81.

Chen, T. Y. (1998). Metamorphic testing: A new approach
for generating next test cases. HKUSTCS98-01.
Chen, T. Y. (2010). Metamorphic testing: A simple ap-
proach to alleviate the oracle problem. In Proceedings
of the 5th IEEE International Symposium on Service
Oriented System Engineering. IEEE Computer Soci-

ety.

Chen, T. VY., Huang, D. H., Tse, T. H., and Zhou, Z. Q.
(2004). Case studies on the selection of useful re-
lations in metamorphic testing. In Proceedings of
the 4th Ibero-American Symposium on Software En-
gineering and Knowledge Engineering (JII1SIC 2004),
pages 569-583.

Garcia-Dominguez, A., Medina-Bulo, 1., and Marcos-
Bércena, M. (2011). Model-driven design of perfor-
mance requirements with UML and MARTE. In Pro-
ceedings of the 6th International Conference on Soft-
ware and Data Technologies, Seville, Spain.

Garcia-Fanjul, J., Tuya, J., and de la Riva, C. (2007). Gen-
eracion sistematica de pruebas para composiciones de
servicios utilizando criterios de suficiencia basados en
transiciones. In JISBD 2007: Actas de las XII Jor-
nadas de Ingenieria del Software y Bases de Datos.

Gotlieb, A. and Botella, B. (2003). Automated metamor-
phic testing. Computer Software and Applications
Conference, Annual International, 0:34-40.

IDC (2008). Research reports. http://www.idc.com.

Leveson, N. G. (1995). Safeware: system safety and com-
puters. ACM.

Mayer, P. and Liibke, D. (2006). Towards a BPEL unit
testing framework. In TAV-WEB’06: Proceedings of
the 2006 workshop on Testing, Analysis, and Verifica-
tion of Web Services and Applications, pages 33-42.
ACM.

Murphy, C., Kaiser, G., Hu, L., and Wu, L. (2008). Proper-
ties of machine learning applications for use in meta-
morphic testing. In Proc. of the 20th international

432

conference on software engineering and knowledge
engineering (SEKE), pages 867-872.

Murphy, C., Shen, K., and Kaiser, G. (2009). Using
JML runtime assertion checking to automate meta-
morphic testing in applications without test oracles.
In Software Testing Verification and Validation, 2009.
ICST’09. International Conference on, pages 436—
445,

Myers, G.J., Sandler, C., Badgett, T., and Thomas, T. M.
(2004). The Art of Software Testing, 2nd ed. Wiley -
Interscience.

OASIS (2007). Web Services Business Process
Execution Language 2.0. http://docs.oasis-
open.org/wshpel/2.0/0S/wsbpel-v2.0-OS.html.
Organization for the Advancement of Structured
Information Standards.

Palomo-Duarte, M. (2011). Service composition verifica-
tion and validation. In Jonathan Lee, S.-P. M. and
Liu, A, editors, Service Life Cycle Tools and Tech-
nologies: Methods, Trends and Advances, pages 200—
219. IGI Global.

Palomo-Duarte, M., Garcia-Dominguez, A., Medina-Bulo,
I., Alvarez-Ayllon, A., and Santacruz, J. (2010).
Takuan: a tool for WS-BPEL composition testing us-
ing dynamic invariant generation. In et al., B. B., edi-
tor, ICWE, volume 6189 of Lecture Notes in Computer
Science, pages 532-535. Springer.

Segura, S., Galindo, J., Benavides, D., Parejo, J., and Ruiz-
Corts, A. (2012). Betty: Benchmarking and testing
on the automated analysis of feature models. In Eise-
necker, U., Apel, S., and Gnesi, S., editors, Sixth
International Workshop on Variability Modelling of
Software-intensive Systems (VaMoS’12), pages 63-71,
Leipzig, Germany. ACM.

UCASE Research Group (2010).
http://neptuno.uca.es/"gamera.

Weyuker, E. (1982). On testing Non-Testable programs.
The Computer Journal, 25(4):465-470.

Xie, X., Ho, J. W. K., Murphy, C., Kaiser, G., Xu, B., and
Chen, T. Y. (2011). Testing and validating machine
learning classifiers by metamorphic testing. J. Syst.
Softw., 84:544-558.

Zhang, Z.-Y., Chan, W. K., Tse, T. H., and Hu, P.-F. (2009).
An experimental study to compare the use of meta-
morphic testing and assertion checking. Journal of
Software, 20(10):2637-2654.

Zheng, Y., Zhou, J., and Krause, P. (2007). An automatic
test case generation framework for web services. Jour-
nal of software, 2(3):64-77.

Zhou, Z. Q., Huang, D. H., Tse, T. H., Yang, Z., Huang,
H., and Chen, T. Y. (2004). Metamorphic testing and
its applications. In Proceedings of the 8th Interna-
tional Symposium on Future Software Technology (IS-
FST 2004). Software Engineers Association.

GAmera home site.

