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Abstract: The paradigm of service composition emerged in the context of service oriented architectures, where it mainly
referred to creating value-added services by combinitions of individual services. Nowadays, service composi-
tion is getting more and more dynamic and becomes part of pervasive systems. One of the major challenges
in this context is to fulfill the security requirements of all involved parties without requiring human interaction
to negotiate protection level agreements. In this paper, we propose an approach for composing access control
decisions and obligations required by equitable policy domains on the fly. We show that our approach allows
a policy-compliant collaboration without requiring the peers to reveal their individual rules and confirm its
practicability by a prototype.

1 INTRODUCTION

Policies are essential when it comes to controlling
the non-functional behavior of a system. Especially
in heterogeneous and dynamic infrastructures, where
collaborating endpoints as well as their preferences
and security requirements are not known in advance,
it must be possible to specify the desired behavior
in terms of security and quality-of-service at an ab-
stract level. A number of policy frameworks for spec-
ifying access control rules and obligations in such
systems has been proposed and the usage of seman-
tic web technology for separating domain knowledge
from the actual policies has emerged as a promising
approach (e.g., (Kagal et al., 2006; Toninelli et al.,
2007; Nejdl et al., 2005)).

Most of these frameworks focus on settings where
all entities are under control of a single adminis-
trative policy domain and fall short of appropriately
combine security requirements of composed services,
governed by different administrative domains. In gen-
eral, two ways of combining policy domains are pos-
sible: offlineandonline. Offline approaches assume
that the policies of all involved domains are known
beforehand, follow a common specification and can
be merged into a single, common policy that com-
plies with each party’s requirements. However, these
assumptions do not hold in dynamic systems, where
services are composed in an ad hoc fashion and par-
ties are not willing to publicly reveal their policies.

In such cases, one needs to follow an online ap-
proach which combines policy decisions, rather than
the policies themselves, in a way that does not violate
the requirements of any domain. Especially for the
latter approach, it is promising to includemetapoli-
cies, i.e. “policies over policies”, in order to declare
strategies for resolving inter-domain policy conflicts
at run time.

In this paper, we describe a composition process
for policy decisions from multiple domains. The pro-
posed process resolves conflicts between access de-
cisions and obligations, issued by different domains,
and merges them into a single applicable decision
which is in line with the policy of each involved
domain. The composition process has been imple-
mented as a prototype and integrated into the Apollon
policy framework – a modular semantic-based pol-
icy framework for pervasive systems. It is based on
a combination of Description Logic (DL) and Defea-
sible Logic (dl) to take into account the semantic poli-
cies of Apollon on the one hand, and the requirements
of non-monotonic reasoning for conflict resolution on
the other hand.

The rest of this paper is structured as follows. In
Section 1.1, we give a motivating scenario and review
work related to ours. In Section 2, we introduce the
policy model and explain how decisions are be anno-
tated. We explain the composition algorithm for re-
solving inter-domain policy conflicts in Section 3 and
provide results of a prototype implementation in Sec-
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tion 4. Finally, Section 5 concludes the paper.

1.1 Motivating Scenario

The general problem we address can occur in all kinds
of distributed systems where different administrative
domains are dynamically composed. For the sake of
illustration, we have chosen the following e-Health
scenario.

Consider a hospital running a virtual medical plat-
form (VMP) which integrates health data about pa-
tients from various services, such as from the hospi-
tal’s own electronic health record (EHR) database, or
from external sources. The VMP allows legitimate
users (e.g., hospital personnel or the patient herself)
to access information that is relevant to them. We fur-
ther assume that a doctor, Alice, uses the VMP sys-
tem to collect information about the medical history
of a patient Bob. As the VMP is merely a service
aggregator, it relies on its backend services to pro-
vide the requested data. These services reside in inde-
pendent administrative domains, so we cannot assume
that they are willing to reveal their security policies to
each other. As each domain features its own policy,
a request from Alice to the VMP will trigger differ-
ent and possibly conflicting policy decisions by the
backend services. For example, while the hospital’s
EHR database can be accessed by Alice (because as
a doctor of the hospital, she is a legitimate user) with
the obligation that the access has to be logged and
results have to beAES-encrypted, Bob might have set
up an access control policy that allows only his family
members to access his personal health info service, re-
quires a notification email to be sent to Bob whenever
somebody accesses his data, and further requires data
to bestrongly encrypted —Note the different abstrac-
tion level as opposed to the more specific requirement
AES.

In that situation, the access decisions and required
obligations of the hospital and Bob are in conflict and
the VMP cannot return the requested data without vi-
olating at least one of the policies. Because the con-
flict does not occur between individual rules of a sin-
gle policy, but between policies of equal and indepen-
dent domains, it is also not possible to define a sin-
gle “rule combining algorithm” to simply prefer one
of the decisions. Furthermore, domains are not hier-
archically structured, so it is not feasible to assume
that the hospital’s decisions should overwrite Bob’s
personal security policy, or vice versa. Figure 1 illus-
trates this conflict situation. In this paper, we will pro-
vide an approach to allow domains to annotate their
policy decision with meta-information about how it
may be combined with that of another domain so that

Figure 1: Conflict occurs in the composed VMP service be-
tween the decisions of EHR and Personal domain.

the VMP is able to derive an integrated decision that
respects the policies of both domains.

1.2 Related Work

In (Cuppens et al., 1998), Cuppens et. al. de-
scribe conflict resolution in merged policies by ap-
plying “meta-strategies” which create a total prefer-
ence order over the set of conflicting rules. While
our approach is related to theirs, it differs from (Cup-
pens et al., 1998) in that we regard policies as pri-
vate to each domain and rather focus at merging deci-
sions than policies. In (Bonatti et al., 2002), an alge-
braic framework for composing access control poli-
cies from multiple domains is described. Our work
focuses at merging obligations as a result from in-
dividual composition strategies, while the algebra in
(Bonatti et al., 2002) is suited to express a compo-
sition strategy for authorization rules. Further work
tackling the problem of composing policies of differ-
ent domains has been done in (Wei and Yu, 2010),
where the authors describe an approach of using De-
scription Logic for policy representation, and apply
reasoning over composed policies in order to detect
possible conflicts. This approach is orthogonal to
ours, as in (Wei and Yu, 2010), the authors assume
that domains are willing to reveal their policies to
each other. Also related to our work is (Lee et al.,
2006), where WS-SecurityPolicy rules are combined
using defeasible logic. As (Lee et al., 2006) fo-
cuses on the composition of WS-SecurityPolicy as-
sertions, the approach does not allow each domain to
use their own policy language, but rather presumes a
common policy representation, which has to be re-
vealed to the collaborating domains. In following,
we rely on the description logics notations as used in
(Baader et al., 2007) and defeasible logic as described
in (Nute, 2003).

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

234



2 DECISION AND OBLIGATION
MODEL

In contrast topolicy compositionapproaches, we
focus atdecision composition. The advantage here is
that each domain can foster its own policy model and
representation which fit their needs and second that
policies can remain private to a domain and do not
have to be revealed for the sake of composition.

An access request comprises subjects, resource
r and the required actiona, whereas in the Apol-
lon prototype, each of them is represented as a
description logic class expression. If a value-added
service combines multiple domains, this is done
by sending requests with acomposeaction to
each of them. With respect to the example from
section 1.1 above, the request could be denoted as
reqcomp=<VMP,EHR⊔Personal,compose>.

Policy decisionsare of the formdecp = 〈e,O〉,
where the effect e ∈ {permit,deny} denotes
if the access is to be granted or denied, and
O = {o|o⊑ Executable} denotes a set of obliga-
tions. By obligations, we understand actions which
must be enforced before access to the requested
resource is granted, so they refer to prerequisites
required by protection level agreements, for exam-
ple. We express an obligation as a DL subclass
of the Executableconcept, which is modeled as
Executable⊑ ∀hasName.string⊓ ∀hasLoc.string⊓
∀hasType.string ⊓ ∀monitoredBy.Monitor ⊓
∀hasParameter.Param, where hasLoc defines
the location of execution, so that the PEP will either
execute the obligation locally or instruct any other
peer to execute it.

Policy decisions can be annotated with compo-
sition constraints. Our assumption is that users are
willing to relax the constraints of a policy for the sake
of collaboration with other services. The acceptable
level of relaxation will however depend on conditions
such as the specific services involved in the compo-
sition. Therefore, we propose to use metapolicies in
order to allow users to express their domain compo-
sition strategy at a more detailed level. Just as for
policies, the Apollon framework is agnostic about the
actual representation of metapolicies, but assumes the
result of their evaluation (themetapolicy decision) to
be in the formatdecm = 〈{ /0, permit,deny} ,C ,F ,A〉
where C ⊆ (Executable)I denotes compulsory
obligations, F ⊆ (Executable)I denotesforbidden
obligations andA ⊆ (Executable)I × (2(Executable)I

)
denotes a set ofalternativeobligations. Function(·)I

relates to theinterpretation functionin Description
Logic which maps individuals to classes. Compul-
sory obligations are actions which must be enforced

by the PEP in every case and must not be overwritten
by the decision of another policy domain. In contrast
to that, setF of forbidden obligations comprises
actions which must not under any circumstances be
executed. AlternativesA to an obligationo have to
be executed if the execution ofo has been prevented
by another policy domain. So, using metapolicies
it is possible to express statements like “access to
the service is only allowed for family members and
must be AES-encrypted, but when composed with a
certified hospital service, doctors may also access the
service and any encryption algorithm is acceptable”.

3 COMPOSITION OF ACCESS
CONTROL DECISIONS

Policies in Apollon are modeled to a great extend in
Description Logics. While this comes with a num-
ber of advantages, such as the ability to reason over
policies, Description Logics are monotonic and thus
it is not possible to defeat or inferred facts. However,
this is required when combining decisions from multi-
ple domains, so we use defeasible logic (Governatori,
2004) to extend it by non-monotonic features.

3.1 Transforming Decisions into
Defeasible Logic

As a first step of the composition process, policy
and metapolicy decisions from each PDP are trans-
formed into defeasible logic (dl). A policy decision
decp = 〈e,O〉 is transformed into a dl theoryD where
the effect and all obligations are denoted as defeasible
rules (i.e., rules which may be overwritten later on).
The effect is represented as a single variableep with
ep = allow if e= permitandep =¬allow if e= deny
and all obligations inO are represented as individual
variablesoi :

[ep] : ⇒ ep

⇒ o1

...
...

⇒ on

Then, the metapolicy decision is transformed into
dl as follows:

1. If the metapolicy returns aweak effect( /0), add the
defeasible rule[em] :⇒ eweak

m and a superiority re-
lationeweak

m > ep to D.
Thereby, effecteweak

m overwritesep, but is still
marked as defeasible and thus allows other do-
mains to overwrite it.
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2. If the metapolicy requires the effect to bestrictly
enforced (permit or deny), add the strict rule
[em] :→ estrict

m to D.
This way, effectestrict

m will be definitely provable
and cannot be overwritten by another policy do-
main.

3. For all compulsory obligationsc ∈ C , add strict
rules→ c to D.
This makesc definite provable and thus a compul-
sory requirement that cannot be overwritten.

4. For all obligationsa∈ A acting as alternatives to
an obligationoi , add strict rules¬oi → a to D.
This allowsa to be an alternative in case thatoi
could not be derived, because it was defeated by
a collaborating domain. Alternatives, in contrast
to oi , are written as strict rules and will thus be
definitely provable so they cannot be overwritten
by another domain.

5. For all forbidden obligationsf ∈ F , add a strict
rule→¬ f to D.
This way, f is definite not provable and it is
avoided that a collaborating domain can set it as
a strictly required obligation.

The resulting defeasible logic theoryD of a single
policy domain can then be written as:

[ep] : ⇒ e

[em] : → estrict
m

⇒ eweak
m

⇒ o1

...
...

⇒ on

→ c

¬oi → a

→ ¬ f

eweak
m > ep

Further, as each obligation refers in fact to a class ex-
pression in Description Logic, we need to add some
rules in order to ensure that obligations which are
already subsumed by other obligations do not occur
twice in the final decision. For instance, in the exam-
ple from section 1.1, one party requiresAESwhile the
other one requiresstrong Encryption, and we assume
that the former is modeled as a subclass of the latter.
In that case, we do not want to apply both obligations
but rather the minimal subset satisfying all require-
ments. Therefore, for each obligationox subsumed
by another obligationoy (i.e., ox ⊑ oy) we add rules
to D to ensure that (1) the existence ofox removes
the need for anotheroy (i.e., ox → ¬oy ) and (2) for-
bidding oy also forbidsox (i.e., ¬oy → ¬ox). Note
that this transformation from Description (DL) into
Defeasible Logic (dl) differs from the one in (Gover-
natori, 2004), where the author aims at using dl infer-
ence to reason over DL.

3.2 Evaluation of a Composed Decision

The defeasible logic theory from the previous section
can be thought of as a policy decision where certain
parts are compulsory while others may be overwrit-
ten, if necessary. If a PEP is part of multiple two
domainsA andB and thus receives two theoriesDA
andDB, it will derive the final applicable decision as
follows:

1. Rename labels inDA andDB to ensure uniqueness

2. Merge the theories fromA andB into one: D′ =
DA∪DB

3. Reason overD′ and retrieve the setQ of con-
clusions. For the sake of readability we will use
P ⊆ Q to denote provable facts, i.e. factsf which
are definite (+∆ f ) or defeasibly (+δ f ) provable
in D′, andN ⊆ Q to denote non-provable facts
−∆ f or−δ f , respectively.

4. Test if access rights ofA andB are compatible:
If allow /∈ P and ¬allow /∈ P , both domains
strictly require conflicting access rights and are
thus not compatible with each other.
If ∃oi ∈ D′ s.t. oi ∈ N and ¬oi ∈ N , the re-
quired obligations of both domains conflict with
each other, e.g., becauseA states a compulsory
obligation which is forbidden byB.

If the test in (4) fails, the decisions of domainA andB
cannot be combined with each other, because both do-
mains strictly require conflicting access rights. In that
case, it is not possible to apply both domain’s policies
likewise and the composed service cannot process the
request without violating the security policy of one
of the back-end services. As a consequence, access
can be denied, or the user can be notified about the
event and asked for taking a manual decision. Which
of these actions is suitable depends on the actual ap-
plication and has to be agreed between PDPs before
composing their domains. Otherwise, if the decisions
are compatible, all obligations denoted by literals in
P will be executed and the respective access right en-
forced.

3.3 Properties of a Composed Decision

We will now show that the composition of policy de-
cisions does not violate the constraints set by each
individual decision: the composed decision must not
require forbidden obligations, it must contain all com-
pulsory obligations and it must contain at least alter-
native for a defeated obligation.

Given a defeasible logic theoryD = (F,R,>) and
→¬ f ∈ Rs and assuming thatD 6⊢+∆ f , we can con-
clude thatD ⊢ −∆ f .
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As we cannot concludeD ⊢+∆ f , according to the
aforementioned assumption, there can be no factf , as
otherwise (1.1) would let us conclude+∆ f . So, as
f /∈ F , rule (2.1) is fulfilled. Further, in order to fulfill
(2.2), we need to show that for all rulesr enablingf
the antecedent is not definite provable. This is obvi-
ously the case, as otherwise (1.2) would lead to the
conclusion,+∆ f which we excluded in our assump-
tion. So, under the assumption thatD 6⊢ +∆ f we can
conclude−∆ f , according to (2.1) and (2,2).

Given a defeasible logic theoryD = (F,R,>) and
→ c ∈ Rs and assuming thatD 6⊢ −∆c, we can con-
clude thatD ⊢+∆c.

As→ c∈ Rs and the empty antecedent can always
be concluded, (1.2) can be fulfilled and+∆c follows.

Given a defeasible logic theoryD = (F,R,>) and
¬o → ai ∈ Rs and assuming thatD 6⊢ −∆¬a, and
+∆¬o we can conclude thatD ⊢+∆a.

With ¬o → ai ∈ R and+∆¬o, (1.2) is fulfilled.
Further, as we assumed thatD 6⊢ −∆¬a, there are no
conflicting definite conclusions and we can conclude
D ⊢+∆a.

Obviously, showing that the desired properties
hold in a merged dl theory is straightforward and by
checking the merged dl theory for ambiguous conclu-
sions for any literal inF , C or A , we are able to detect
unresolvable conflicts between the policy decisions of
different domains.

4 PROTOTYPE EVALUATION

In order to test the applicability of the proposed policy
decision composition, we implemented a prototype in
form of a module for the Apollon policy framework
(Schütte, 2011) and set up a test scenario which cor-
responds to the use case from section 1.1, in order to
validate the functionality of the prototype and investi-
gate its runtime behavior.

Then we measured the average run time of the pro-
totype implementation in the Apollon policy frame-
work, including the evaluation of the access requests,
transformation into the dl theory, as well as the actual
composition process. As a platform we used a Pen-
tium i7 2.7 GHz with 4 GB of RAM, hosting PEP and
PDP locally, so that we can leave network latencies
aside. Two factors are of interest when evaluating the
run time of our approach: the number of metapolicies
and the number of obligations in an annotation. The
former is relevant for the PDP when annotating the
policy decision, because the more metapolicies the
PDP must evaluate, the slower the annotation process
will be. In contrast to that, the number of obligations
influences the time for merging two annotated deci-

1

10

100

1000

10000

0 100 200 300 400 500

e
v
a
lu

a
ti
o

n
 t
im

e
 (

m
s
)

No. of meta rules

Figure 2: Performance of decision and annotation (+) and
combination (x) with increasing number of meta rules.
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Figure 3: Performance of decision and annotation (+) and
combination (x) with increasing number of obligations.

sions, as with the number of obligations, the size of
the defeasible logic theory which is derived from the
annotations increases.

We investigated the run time with 30 to 500
metapolicies. Whether these numbers are realistic de-
pends of course on the use case, but as metapolicies
are intended to be more generic than the actual access
control rules, we deem the lower end of the range as
more likely. When looking at Figure 2, it becomes ob-
vious that the time for deciding an access request and
annotating a policy decision increases about exponen-
tially (note the logarithmic scale), while the time for
merging the annotated decisions remains more or less
constant.

Figure 3 shows the results of a second test, in
which we kept the number of metapolicies constant,
but continuously increased the number of obligations
within the annotated policy decisions. In this test, run
time increases about linearly for both, the decision
taking and the merging phase (note again the loga-
rithmic scale).
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These tests confirm the theoretical claim that rea-
soning over defeasible logic requires linear time,
while satisfiability checking in Description Logic is
a significantly harder problem and can require up to
NEXPTIME, and that this is in fact noticeable for the
input dimensions we are dealing with. In the context
of our service composition approach, this means that
the merging of multiple annotated decisions can be
done quite efficiently and scales well with the num-
ber of services (i.e., policy decisions), but deciding
access requests by reasoning over Description Logic
has limits in size of the rule set and might not ful-
fill the performance requirements of each scenario.
Nevertheless, there are many optimization possibili-
ties, ranging from pre-computation and caching, on
to reducing the complexity of the problem.

5 CONCLUSIONS

We have tackled the problem of composing policy
decisions of collaborating, but independently man-
aged policy domains. We proposed an approach for
annotating policy decisions with information from
metapolicies and using it in a policy composition pro-
cess to automatically derive a decision that suits the
policies of all involved domains. In contrast to other
approaches, we do not assume policies of each do-
main to be publicly available, but rather allow each
domain to use its own policy model and language, as
long as the actual decision annotation can be mapped
to the format we use. The composition process is
based on defeasible description logic and has been
implemented in form of a module for the Apollon pol-
icy framework. By means of the prototype implemen-
tation, we were able to show that proposed solution is
applicable and show satisfying performance.

As part of our future work we further investigate
ways of handling and possibly predicting unresolv-
able conflicts between policy domains. Moreover, ex-
tending the proposed solution in a way that it sup-
ports chains of composed policy domains is currently
in progress.
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