
Operating System Core as Template for Embedded System Software
Development

Leonardo Jelenkovic and Domagoj Jakobovic
University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, Zagreb, Croatia

Keywords: Operating System Core, Embedded System, Software Development.

Abstract: Software development for embedded systems is a fast growing industry. Development for a mid-range com-
plexity embedded system is usually based on custom built templates and tools, or on commercially developed
solutions with an operating system as a base. This paper presents possibilities for building customized tem-
plates that are operating system primitives. Since many embedded systems require only a few subsystems,
and only basic operations from them, such subsystems could be built fast and then used as a base for new
systems. Based on our experience while creating an educational operating system for embedded systems, we
propose operating system primitives that can be created and then used as templates for creating new embedded
systems.

1 INTRODUCTION

Demands for embedded computer systems are rapidly
increasing as we realize the benefits they can pro-
vide. Many embedded systems are very simple,
which a simple processor or controller with control
(program) loop as software component can satisfy.
Program loop might be a sufficient control mecha-
nism even for mid-range complexity systems that pro-
vide more than a few simple operations. Other sys-
tems might require additional mechanisms besides
program loop, such as event based control and timed
delays and programmed future actions (alarms). Con-
trolling more activities might requiremultitasking
ability (also calledmultithreading) of the underlying
system, or even more demanding features like task
separations and protection.

Software development for embedded systems may
rely on an existing operating system as a base on
which programs are created. This, most used option
has its advantages and disadvantages, from depend-
ability and support to increased hardware require-
ment. Many systems come with abundance of mem-
ory since their primary tasks require it. The over-
head that an operating system imposes on such sys-
tems is mostly acceptable, and choosing a complete
operating system as a base is probably the best option.
On the other hand, there are many systems with very
limited resources, and most operating systems would
not fit in. There are some operating systems, highly

optimized for embedded computers that require very
small footprint. For example,µC/OS-II (Labrosee,
2002) can be optimized to require from 5 Kbytes to
24 Kbytes of memory. However, such systems are not
free and a license must be paid. Still, using commer-
cial off-the-shelf (COTS) systems often presents the
best choice, despite its ”high” licensing prices. They
are highly reliable, come with development tools and
technical support. Operating systems that are freely
available (e.g. Linux andµClinux) have hidden costs
- their reliability might be questionable, technical sup-
port non-existent, development tools not advanced as
commercial ones. An operating system or just the
required components might be built from scratch (as
suggested in this paper). However, this takes valuable
development time, and reliability of created systems
might not be comparable with COTS ones, since they
are not tested throughly as commercial ones are.

In this paper, based on our operating system
created for educational purposes - Operating Sys-
tem Increments for Education and Research (OSIER)
(Jelenkovic, 2011), we target the last alternative -
building an operating system core components from
scratch and using it instead of a full operating sys-
tem in embedded system development. Assuming tar-
geted systems are embedded systems with mid-range
complexity and limited hardware resources, we per-
ceive that the proposed methodology will hasten de-
velopment process and improve reliability of created
systems.

589Jelenkovic L. and Jakobovic D..
Operating System Core as Template for Embedded System Software Development.
DOI: 10.5220/0004024905890594
In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2012), pages 589-594
ISBN: 978-989-8565-21-1
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

Creating operating system components as a base
of a new system is not a novel idea. Operating sys-
tem is actually product of such ideas almost from the
era of first computers. Operating system principles
defined in ’60 and ’70 are mostly preserved till today
with only performance related optimizations. How-
ever, we think that today the situation has significantly
changed. First, today’s technologies enable us to em-
bed computer systems in almost any device and larger
system. Embedded computers growth rate will re-
quire more and more engineers capable of producing
them. Second, abundant amount of available COTS or
free tools and operating system for Real Time embed-
ded systems might convince ”new generations” that
is only way to create new systems (using COTS or
free operating systems). In this paper we try to de-
scribe some basic operating system components and
demonstrate their simplicity or complexity that is sig-
nificantly different (simpler) than corresponding com-
ponents in ”real” operating systems. Creating such
components and building a system on them is still
a viable option, maybe even more today than in the
past.

This paper is structured as follows. Section 2
briefly presents similar research on this topic. Tem-
plates are introduced in section 3 whith their internals
and defined interfaces. Possibilities for hardware sup-
port implemented in processor, that will simplify tem-
plates and improve speed and predictability of sys-
tems, are discussed in section 4. Conclusion is pre-
sented in section 5.

2 RELATED WORK

The problem of designing an embedded system is a
wide research area, ranging from hardware oriented
analysis and implementation, component (both soft-
ware and hardware) based design, operating system
selection or implementation, development tools and
methodologies (Wolf, 2001). In this section we point
several systems and methodologies that are designed
for embedded computer system development, which
have similar ideas as the ones presented in this paper.

In PURE project (Beuche et al., 1999), the au-
thors present a construction set for developing operat-
ing system elements using object-oriented principles,
where basic operating system operations are provided
by objects (classes in source files).

TinyOS, its successor T2 (Levis et al., 2005), and
SOS (Han et al., 2005), present operating systems
specifically designed for sensor networks. Though
those systems don’t include support for multitasking
and are not designed for general embedded system

use, they all present implementation of selected op-
erating system elements, their integration and usage.

Managing reconfigurable system-on-chip (SoC)
in runtime requires managing tasks implemented in
software and tasks implemented in hardware. (Nol-
let et al., 2003) presents an approach in designing an
operating system for such environment. Their operat-
ing system OS3RS is based on an existing real time
system - RTAI, which they extend for reconfigurable
computing.

In (Coulson et al., 2004) OpenCOM v2, a gen-
eral purpose component based system building tech-
nology is presented. Authors define a generic run-
time component model for not only application level
software, but also for operating systems, embedded
devices, network processors and alike.

Giotto, a design methodology (with tools) for de-
vising control in embedded and real time systems is
presented in (Henzinger et al., 2001). Giotto pro-
vides an abstract programmer’s model based on time-
triggered paradigm.

3 CORE ELEMENTS FOR
TEMPLATES

Interrupts, including device management, define
input-output subsystem. Delay and alarm operations
define time management subsystem. Basic versions
of those subsystems are simple to build, as is shown
in this paper. Multitasking support is more demand-
ing, and moderately increases systems complexity,
but also provides simplicity on a higher layer, when
implementing embedded system control. Other com-
mon operating system components and features, as
protection, networking and file systems, are far more
complex. Having many components and features will
simplify software development, but at the cost of
hardware requirements (processor’s capabilities and
memory size).

In core elements for embedded system design we
include subsystems for input-output (IO) manage-
ment, time and task management. Various systems
require various combinations of templates: for some
an IO template will suffice, others will also require
a time management template, while some will even
require a multitasking management template.

Figure 1 displays architecture of systems that are
built upon proposed templates.

3.1 Input-output Subsystem

Communicating with the environment is the prime
designation of an embedded system. In implemen-

ICINCO�2012�-�9th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

590

Figure 1: Architectures of systems created with proposed templates.

tations, communication can be fully integrated in pro-
grams or it can be separated into a subsystem that
provides simpler and unified interface. In computer
systems the environment is reached by input-output
devices, which are used through device drivers.

A template for IO management must define and
implement interrupt handling and must define how to
integrate devices into the system, forming an IO sub-
system.

Operations provided by an IO subsystem template
should include:

• IO subsystem initialization,

• registration of interrupt handling routine with a
particular interrupt, and

• using IO devices through wrappers.

Within IO initialization, interrupt handling data
structures (data that connects interrupts with interrupt
handling routines) must be initialized. Furthermore,
IO subsystem should also initialize device manage-
ment data and initialize startup devices (and register
them with appropriate interrupts).

Registration of a device driver interrupt handler
function with related interrupt number (or other inter-
rupt identification method) requires appropriate data
structure and code. Depending on processor and sup-
plement interrupt control devices, the data structure
must be able to define handler functions for each pos-
sible interrupt source. If more devices use the same
interrupt line (interrupt number), then more handler
functions must be registered for the same interrupt.
For example, we can define a list for each interrupt,
where each list element contains one handler func-
tion.

Some processor architectures provide mecha-
nisms for connecting interrupt handlers directly to the
interrupt source, meaning that when an interrupt oc-
curs processor will immediately jump to the defined

handler. However, if control is to be integrated con-
sistently, a wrapper should be called first instead. We
propose the following interrupt handling system be-
havior that should be enforced by the template:

1. interrupt occurrence;

2. interrupt handling wrapper is called first (after
context switch provided by processor);

3. in the wrapper, iterate through registered handlers
for this interrupt and call each handler.

Basic data structure and code that follows the
above principles can be found in OSIER, from incre-
ment Chapter 05 Devices (arch/interrupts.c)
onward.

To use proposed templates, every device driver
must include operations for device initialization,
sending data to the device, receiving data from the de-
vice, and interrupt identification and interrupt handler
function, if the device generates interrupts.

An IO template should therefore at least provide
explicit interface for:

• IO system initialization process and interrupt han-
dling:

– IO init ();
– register interrupt handler ();
– interrupt handler ();

• using devices (receiving and sending data and
commands):

– device send ();
– device receive ();

The simplest systems don’t have to use uniform
data structures, interfaces and wrappers, as presented
above, as they may be custom created per problem in-
stead. However, other, not as simple systems, may
benefit from such a template, both in development

Operating�System�Core�as�Template�for�Embedded�System�Software�Development

591

time and later maintenance and upgrades, if more than
one system is built on the same template. Time and
task management subsystems, detailed in further sub-
sections, require IO subsystem base operations as de-
fined in this section, whether implemented through a
template or otherwise.

3.2 Time Management Subsystem

For implementing the control system with timely co-
ordinated activities, we require time management op-
erations. Time operations, asalarmanddelay, may be
coded directly somewhere within a task. For example,
simpledelaycan be achieved by a program loop with
a previously calculated number of iterations. How-
ever, for simpler and more precise time management,
special timely synchronized counters must be used.
Since such counters are provided on almost every sys-
tem, time operations are built around those counters.

The counter, used by this subsystem, must have
the ability to generate an interrupt signal when the
counter value reaches zero. Within the interrupt han-
dler function, appropriate actions are performed: a
task is awakened or alarm is executed (alarm function
provided by the task).

Expectations ofdelayandalarmoperations might
be easier to understand on a simple example:

task_body() {
...
set_periodic_alarm (period_x, cnt_x);
set_periodic_alarm (period_y, cnt_y);
...
control_loop { //control activity Z

some_control_action;
delay_for some_interval; //may vary!

}
...

}
//control activity X
cnt_x () { ... }
//control activity Y
cnt_y () { ... }

In the above example, the task controls three ac-
tivities, marked with X, Y and Z. For X and Y, con-
trol functions (cnt x andcnt y) must be periodically
invoked with given periods and therefore two peri-
odic alarms are set. Activity Z is controlled with the
program loop that also requires delaying the task for
someinterval (that may even vary from iteration to
iteration).

The data structure must include time keeping ele-
ments (system clock) which are regularly updated on
counter interrupts. Every time the counter is reset, the
value that is loaded into the counter must also be pre-
served for keeping accurate time. Building upon ac-
curate time and interrupt mechanism of the counter,

alarms can be implemented with additional sorted list
that contains active alarms. Delays can be regarded
as special alarms, upon whose activation a task is un-
blocked, presuming that the delay operation started
with the task blocking.

Most basic time management operations,
get time, delay for and set periodic alarm,
along with reaction on counter expiration are detailed
in the following pseudo-code.

get_time () {
cur_time = last_saved_system_time +

(cnt_load_value - cnt_curr_value);
return cur_time

}
delay_for (interval) {

create_alarm (interval, UNBLOCK_TASK);
reprogram_counter ();
block_task;

}
set_periodic_alarm (period, action) {

create_alarm (period, action, PERIODIC);
reprogram_counter ();

}
counter_expired_interrupt_handler () {

update_system_time;
iterate over active alarms {

if alarm is expired then {
activate alarm or
unblock task;

}
}
reprogram_counter ();

}

In OSIER, the time subsystem has less than 300
lines of C code (which include much more function-
ality and operations than described above).

The time management template, along with the IO
template may be considered as a simple operating sys-
tem core that may be sufficient for many embedded
systems, and make their implementation easier and
faster.

3.3 Task Management Subsystem

An embedded computer system that must control
many activities with different demands might require
more than IO and time templates. Generally, con-
trol can be achieved much simpler if a separatetask
is used per each demanding activity - activity that
can’t be controlled with alarms. However, multitask-
ing must be supported by the system for that to be
possible.

Multitasking support, even in its basic form, con-
sists of dozens of operations for: creating new tasks
and removing finished ones, scheduling tasks, block-
ing tasks, and task synchronization and communica-
tion.

ICINCO�2012�-�9th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

592

Multitasking implementation might require sig-
nificant changes in IO and time subsystems (tem-
plates).

Task control relies on data that containstask de-
scriptors, task queuestructures for eachtask state,
and usually multiple structures forblocked tasks- one
per resource that blocks a task. Task scheduling might
require assigningpriorities to tasks so that a more im-
portant task preempts a lower priority one.

Managing tasks requires additional data structures
and memory space that include: task descriptor with
a task id and task priority, task queues for the active
task and ready tasks, task queues included with each
resource that might block a task, and task specific data
including separate stack per task.

If kernel (operations provided by template) and
programs use same processor mode (privileged if sup-
ported, which we recommend for simpler systems),
than the IO template (interrupt handling part) might
not need any adjustment for multitasking. The device
management part, however, must providesafeenvi-
ronment for using devices. On uniprocessor systems
this is achieved by disabling interrupts while execut-
ing a core (template) function. While this was pre-
ferred even in single task systems, in multitasking it
is absolutely required.

In the core of the multitasking template are task
managing operations. Creating a new task requires
creating the task descriptor, reserving stack space and
initialization of both. One way is to first create an ini-
tial task context and move the task descriptor to ready
queue. When that task is scheduled, its context is re-
stored and the task is executed. When the task fin-
ishes, it must be removed from the system, at least
from active and ready tasks queues.

For simplifying task management, we propose
that basic operations for manipulating task queues,
such astask add andtask remove are created first.
Composite operations should be created next. Task
synchronization mechanisms, such as mutual exclu-
sion, semaphores and monitors, are all easy to create
when task queue management exists. Inter-task com-
munication through messages can be implemented
similarly.

A minimal task management interface should in-
clude the following primitives:

• create task (start function, param),

• task exit (status),

• schedule tasks (),

• block task (task, queue),

• release task (task, queue),

• monitor lock (m), monitor unlock (m),
monitor wait (m,q), monitor signal (m,q),

monitor broadcast (m,q).

Integrating memory protection significantly com-
plicates task management template, and we believe
that this component is rarely needed in simpler sys-
tems. For this reason we don’t elaborate on protection
mechanisms and their implementation, although they
are presented in last increments of OSIER.

4 HARDWARE SUPPORT

The processor and the other devices offer significant
support for creating operating systems or some of its
components. For example, processor’s interrupt han-
dling provides information about interrupt source by
associating different handlers for different interrupts
on a hardware level. When processor accepts an in-
terrupt, it automatically saves a minimal task context.
Similar hardware support includes counter for time
management. Some processors have support for task
management (e.g. switching between tasks).

Might hardware support be expanded, so that op-
erating system components (e.g. templates in this pa-
per) could be created easily? If a standard (high per-
formance) processor is used, the short answer is ”no”.
Designing such a processor is a very complex process,
where optimal performance is, so far, reached with
only reduced instruction set computerdesign (RISC),
while any operations that will be useful for template
are complex, requiring at least several ”normal” (fast)
instructions. On the other hand, processors for many
embedded systems are custom made. Some of those
processors already have complex instructions for pro-
gram support, created in so calledhardware-software
co-designprocess (Ernst, 1998; Gajski et al., 2009). If
so, they might be designed with a few more complex
instructions, specifically designed for core operating
system features. Let’s look at some possibilities.

On the IO subsystem, the simplest extension could
include automatically saving full task context when
an interrupt occurs, and similarly, when returning
from the interrupt, full context can be restored with
a single instruction. Interrupt sources might be as-
signed different priorities, allowing higher priority
ones to interrupt the processing of lower priority in-
terrupts. If every different device could have its own
interrupt, interrupt handling could almost completely
be handled by hardware - the IO template will then
consist only of wrappers for IO communication (send
and receive operations).

For the time management, the hardware could
provide precise time measurements through separate
clock for elapsed time tracking (system time) and sep-
arate timer counter. Both counters could simultane-

Operating�System�Core�as�Template�for�Embedded�System�Software�Development

593

ously be very precise and could provide long inter-
vals. For example, a ”simple” counter with 64 bit
wide word and 1 GHz frequency, can measure time
intervals ranging from 1 ns to 585 years! Such a
clock and counter could reduce the overhead for keep-
ing system time and for tracking activation times for
alarms, directly simplifying the time template. Sim-
pler systems, with bounded number of alarms, could
benefit from multiple counters - each for an alarm.
Those custom made systems would not need the time
template, as it would be provided in hardware.

Multitasking management operations are fairly
complex and can’t be implemented (easily) in hard-
ware. Most that can be done in hardware is task
change, i.e. switching from one running task to an-
other. For that, the instructionswitch task(from,
to) may be designed. With an appropriate data struc-
ture evenschedule tasks() might be implemented
in hardware, if priority and FIFO are used as schedul-
ing criteria.

Dynamic memory allocation might be signifi-
cantly simpler and deterministic if hardware support
is implemented. Bit map search, if implemented in
hardware, will find an appropriate memory chunk size
with a single instruction, making dynamic memory
management faster, deterministic and efficient.

5 CONCLUSIONS

Operating system is a very complex system. How-
ever, it is a foundation on which almost every com-
puter system is built. Therefore, operating system is a
very important subject for future software engineers.
For teaching operating systems in embedded and real-
time environment, we created an instructional operat-
ing system OSIER. In its development we used the
standard divide-and-conquer principle, dividing oper-
ating system core into subsystems. In this process
we found that some subsystems, i.e. input-output,
time and task management subsystems, can be cre-
ated quickly and easily. That is the reason why we
propose them as a template for embedded system de-
velopment.

Creation of such templates, especially IO and time
management templates, should be straight forward
and completed in a short time period. If intended
systems have slightly different underlying hardware,
it would be a good idea to separate hardware depen-
dent part from the independent one (using a hardware
abstraction layer beneath). Task management tem-
plate is significantly complex, harder to implement
than IO and time management templates, but if cre-
ated, it offers unparalleled simplicity on application

design level (for complex control systems).
Embedded systems are frequently custom made.

Even the processor (controller) might be customized.
For such systems, we present a brief overview of pos-
sible hardware implementations that will significantly
simplify the templates.

REFERENCES

Beuche, D., Guerrouat, A., Papajewski, H., Schroder-
Preikschat, W., Spinczyk, O., and Spinczyk, U.
(1999). On the development of object-oriented op-
erating systems for deeply embedded systems - the
pure project. InIn: Proc. 2nd ECOOP Workshop on
Object-Orientation and Operating Systems, pages 27–
31.

Coulson, G., Blair, G., Grace, P., Joolia, A., Lee, K., and
Ueyama, J. (2004). A component model for building
systems software. InIn Proc. IASTED Software Engi-
neering and Applications (SEA’04.

Ernst, R. (1998). Codesign of embedded systems: status
and trends.Design Test of Computers, IEEE, 15(2):45
–54.

Gajski, D. D., Gerstlauer, A., Adbi, S., and Schirner, G.
(2009).Embedded System Design: Modeling, Synthe-
sis, Verification. Springer.

Han, C.-C., Kumar, R., Shea, R., Kohler, E., and Srivastava,
M. (2005). A dynamic operating system for sensor
nodes. InProceedings of the 3rd international confer-
ence on Mobile systems, applications, and services,
MobiSys ’05, pages 163–176, New York, NY, USA.
ACM.

Henzinger, T. A., Horowitz, B., and Kirsch, C. M. (2001).
Embedded control systems development with giotto.
SIGPLAN Not., 36:64–72.

Jelenkovic, L. (2011). Operating System Increments
for Education and Research (OSIER), available at
https://github.com/l30nard0/os4ec.

Labrosee, J. J. (2002).MicroC/OS-II: The Real-Time Kernel
(2nd Edition). CMPBooks, 2nd edition.

Levis, P., Gay, D., Hadzinski, V., hinrich Hauer, J., Green-
stein, B., Turon, M., Hui, J., Klues, K., Sharp, C.,
Szewczyk, R., Polastre, J., Buonadonna, P., Nachman,
L., Tolle, G., Culler, D., and Wolisz, A. (2005). T2: A
second generation os for embedded sensor networks.
Technical report.

Nollet, V., Coene, P., Verkest, D., Vernalde, S., and Lauw-
ereins, R. (2003). Designing an operating system for
a heterogeneous reconfigurable soc. InParallel and
Distributed Processing Symposium, 2003. Proceed-
ings. International, page 7 pp.

Wolf, W. (2001). Computers as Components: principels of
Embedded Computing System Design. Morgan Kauf-
mann Publishers.

ICINCO�2012�-�9th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

594

