
A Framework for Creating Domain-specific Process Modeling Languages

Henning Heitkötter
Department of Information Systems, University of Münster, Münster, Germany

Keywords: Business Process Modeling, Domain-specific Languages, Model Transformation, BPMN 2, EMF.

Abstract: Using domain-specific modeling languages to capture business processes can greatly enhance quality and
efficiency of process modeling, because language and models are more expressive, concise and easy to under-
stand. The development of domain-specific languages (DSLs) with accompanying tools and transformations
is, however, a complex, time-consuming, and costly task. An efficient and simple approach to creating process
modeling languages (PMLs) for specific business domains by reusing common parts is needed, where each
resulting language is still optimally adjusted to its domain. For each of these languages, the abstract and con-
crete syntax have to be defined as well as transformations to more general languages.
This paper presents DSLs4BPM, a generic framework for PMLs, which employs DSL modularization con-
cepts to allow the derivation of domain-specific PMLs. The framework provides elements common to process
modeling and a basic transformation to the generic Business Process Model and Notation 2.0. DSLs are
created by adding own types to the framework language and own rules to the transformation at predefined
extension points. The approach has been implemented based on the Eclipse Modeling Framework.

1 INTRODUCTION

Business process modeling (BPM) represents enter-
prise processes as models, often using general-purpo-
se process modeling languages (PMLs). PMLs like
Business Process Model and Notation (BPMN, (Ob-
ject Management Group, 2011)) qualify as general-
purpose in the sense of not being constrained to pro-
cesses of a particular business domain. They feature
only domain-neutral concepts like the generic term
“Activity” and are particularly suited for analysis pur-
poses and technical tasks. The latter includes, for ex-
ample, workflow management and service orchestra-
tion. Since there are several tools and execution en-
gines supporting popular languages like BPMN, pro-
cess modelers often use these general-purpose lan-
guages directly to describe their business processes.
However, because of their widespread area of ap-
plication, these languages tend to be rather com-
plex (Recker et al., 2009). They offer a low level of
abstraction in order to be applicable to all general sce-
narios and have a highly technical appearance. Con-
sequently, models in these languages tend to be ver-
bose and difficult to understand. The modeling pro-
cess itself may be time-consuming and error-prone.

Domain-specific languages (DSLs) try to address
these issues by focusing on a particular (business) do-

main. They trade generality for an optimal represen-
tation of concepts from their domain (van Deursen
et al., 2000) and try to reach an adequate level of ab-
straction (Mernik et al., 2005). Instead of complex
combinations of generic elements, domain concepts
can be expressed through exact, concise and seman-
tically rich elements. For example, in the domain of
banking, a single element could represent a domain-
typical, complex series of process steps, like formal
assessment of a case. Business process models using
a DSL are more expressive and easier to create and
understand, also and especially for domain experts.

Model-to-model transformations can still generate
models in lower-level general-purpose languages by
explicitly expressing the semantics of the DSL using
low-level technical artifacts. Thus, existing execu-
tion engines or analysis tools designed for a technical
language like BPMN can be used, even though they
cannot handle the DSL itself. A transformation from
the aforementioned banking DSL to BPMN might, for
example, replace each instance of the formal assess-
ment element by a complex network of BPMN ac-
tivities expressing the same semantics. In this sense,
domain-specific models are an important component
of model-driven development (MDD). The integra-
tion of DSL and transformation combines some ad-
vantages of general-purpose and domain-specific lan-

127Heitkötter H..
A Framework for Creating Domain-specific Process Modeling Languages.
DOI: 10.5220/0004024201270136
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 127-136
ISBN: 978-989-8565-19-8
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

guages.
Developing useful DSLs requires considerable ef-

fort and cost, not least because they consist of sev-
eral parts: They have an abstract syntax describing
the structure of their domain in terms of concepts
and their relationships. One or more concrete syn-
taxes define the textual or—more common in pro-
cess modeling—graphical notation of the DSL. A ma-
ture tooling infrastructure is needed to make model-
ing with a DSL efficient. As motivated above, DSLs
should provide transformations to lower-level model-
ing or programming languages, taking into account
the semantics of both, DSL and target language. De-
veloping these model transformations from scratch is
not a trivial task, either.

An efficient and simple approach to creating
domain-specific PMLs with all their components
would decrease the initial investment needed to set
up the DSL. This paper presents our DSL Frame-
work for Business Process Modeling (DSLs4BPM),
from which domain-specific PMLs can be derived in a
straightforward way. The framework consists of a ba-
sic language and a transformation to BPMN 2. The
framework language provides elements common to
process modeling languages and means for quickly
adapting the framework language to a business do-
main. New, domain-specific concepts are added to
the framework when designing a domain-specific lan-
guage. The transformation to BPMN 2 that comple-
ments the language maps the language elements of
the framework to corresponding concepts in BPMN 2.
The transformation provided by the framework is
adapted concurrently with the language. Thus, a DSL
and its mapping to a general-purpose language are op-
timally adjusted to the domain. At the same time,
common parts are reused.

Our main contribution consists of this framework,
which allows the easy and efficient creation of pro-
cess modeling DSLs for different domains in combi-
nation with adapted transformations to BPMN 2. Be-
sides, our approach uses extensibility as proposed in
the research literature about reusing and modulariz-
ing DSLs (Spinellis, 2001; Krahn et al., 2008; Voel-
ter, 2010). Hence, our paper also demonstrates on a
more general level how a language can be designed
with reuse and adaptability in mind by offering ex-
tension points for extending language concepts and
transformation rules in parallel. It also elaborates on
the support for these means in the well-known and
mature Eclipse Modeling Framework (EMF, (Stein-
berg et al., 2009)), proving that modular DSLs can be
built with the pragmatic mechanisms of EMF.

The remainder of this paper is structured as fol-
lows. Section 2 on related work discusses approaches

for creating domain-specific PMLs as well as general
literature on reusable DSL design. It is followed by
an introduction into process modeling, both from a
general (BPMN 2) and from a domain-specific view-
point (PICTURE). Both languages are prerequisites
for the following sections. Section 4 describes the
general design of DSLs4BPM. The language part of
the framework is presented in section 5, section 6 out-
lines the transformation. Section 7 gives some details
regarding the implementation and describes how to
create derived DSLs by adapting the framework. We
discuss and evaluate our framework in Section 8. The
paper concludes with a summary and an outlook.

2 RELATED WORK

Research and praxis have proposed and evaluated sev-
eral general-purpose PMLs. Besides BPMN, covered
in the next section, the most prominent of these are
Activity Diagrams from the Unified Modeling Lan-
guage (UML, (Object Management Group, 2010)),
studied in (Dumas and ter Hofstede, 2001), and
the more technical Business Process Execution Lan-
guage (BPEL, (OASIS Standard, 2007)). These lan-
guages do not consider any particular business do-
main. PICTURE, also described in section 3, is an
example of a domain-specific PML. The focus of our
work, however, does not lie on a single modeling lan-
guage, but on creating DSLs for process modeling in
an efficient manner and on combining these with cor-
responding transformations.

Creating domain-specific PMLs efficiently is also
the focus of jABC (Steffen et al., 2007) and its pre-
decessors (Steffen and Margaria, 1999; Margaria and
Steffen, 2004). jABC employs a building block-based
approach to the model-driven development of ser-
vices and applications, similar to DSLs4BPM. Exe-
cutable process models are composed from so called
Service Independent Building Blocks (SIB). A SIB
corresponds to a Java class with execution code, so
that models are directly executable or can be trans-
formed to application code. As our approach instead
targets BPMN 2, it provides a higher abstraction level
and supports a stepwise model-driven development,
while retaining executability through the respective
features of BPMN. jABC is a self-contained frame-
work, whereas the process modeling language frame-
work presented in this paper is implemented on top of
standard modeling technologies (EMF), enabling its
integration into larger MDD projects.

Brahe and Østerbye use UML activity diagrams
and the profiling mechanism of UML to facilitate the
definition of domain-specific PMLs (Brahe and Øster-

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

128

bye, 2006). Their tool generates UML profiles for
individual domains. Profiles allow the specialization
of generic UML constructs and are an example of an
adaptation mechanism in general-purpose modeling
languages. BPMN 2 offers a similar extensibility con-
cept. DSLs4BPM does not make use of this approach
to adaptation in order to avoid the overhead and sub-
optimal domain representation of a general-purpose
language. Instead, the framework language provides
a minimal set of common concepts and has to be ex-
tended for specific domains, which ensures flexibil-
ity and expressiveness. In contrast to our framework,
Brahe and Østerbye do not consider model transfor-
mations for their DSLs.

DSLs4BPM uses modularization concepts for
DSLs proposed in the literature. Spinellis identi-
fies recurring patterns in the development of tex-
tual DSLs, of which some describe approaches to
reuse (Spinellis, 2001). Our framework can be seen as
an application of the extension pattern, because new
elements are added to an existing language. In our
framework, however, extensions only take place at
particular points (Section 4). These extension points
provide some guidance to language developers, which
is not considered by the pattern.

Völter identifies several modularization concepts
available in the language workbench JetBrains MPS
(Voelter, 2010), one of them being extension, i.e., in-
heritance between languages and language concepts,
in combination with transformation overriding. Other
concepts available in MPS like embedding of lan-
guages are not needed in our framework. Our frame-
work does not use JetBrains MPS but EMF, which
provides less modularization concepts, and offers the
remaining concepts less prominently and less easily
accessible. However, as shown by our implementa-
tion, EMF’s capabilities regarding DSL modulariza-
tion are sufficient for creating a powerful framework
for the efficient creation of process modeling DSLs.

3 PROCESS MODELING

3.1 General-purpose: BPMN 2

The Object Management Group’s (OMG) specifica-
tion Business Process Model and Notation (Object
Management Group, 2011) describes a PML that is
widely used and supports analysis and execution of
business processes. Version 2.0 introduced a com-
plete metamodel not available in previous versions
and enhanced the support for executable models.

Figure 1: Example model of a BPMN process.

Figure 2: BPMN metamodel (simplified excerpt).

Tools like Activiti1 can directly execute processes
modeled in BPMN 2 by managing the workflow of
processes and by orchestrating services. Due to its
popularity and good tool support, BPMN is the tar-
get of our framework’s transformation. To introduce
the concepts that are important for the transformation,
this section gives a short overview of BPMN 2.

The example of figure 1 highlights important ele-
ments of BPMN. It depicts a Process, which forms a
central model element of BPMN. It is a graph of so
called Flow Nodes connected by directed Sequence
Flow edges. BPMN provides several types of flow
nodes, including Task, Gateway and Event. Hierar-
chical nesting is supported by the concept of Subpro-
cesses. Tasks represent units of work and are provided
in different specializations to accommodate different
kinds of activities, for example User Tasks or Service
Tasks. Gateways are used to split the control flow of a
process into parallel or exclusive branches as well as
to merge such branches. Events symbolize that a pro-
cess either triggers some incident (Throw Event) or
waits for its occurrence (Catch Event). Additionally,
events are differentiated with regard to the type of in-
cident, for example message or timer. In BPMN 2’s
metamodel (figure 2), flow nodes and sequence flow
are subsumed under the term Flow Element. A pro-
cess is a collection of flow elements and is performed
within an organization.

1http://www.activiti.org

A�Framework�for�Creating�Domain-specific�Process�Modeling�Languages

129

A business process is made up of several such
BPMN processes, each representing the work carried
out within one organization, called Participant in this
context. A Pool is the graphical representation of a
participant in a BPMN diagram and contains the vi-
sual depiction of the participant’s process. A set of
interacting processes forms a Collaboration. Mes-
sage Flow symbolizes the exchange of information
between two different processes.

As BPMN is domain-independent and has a rather
technical appeal, it is not an appropriate source model
for MDD. Recker et al. analyze the modeling process
with BPMN (Recker et al., 2010; Recker, 2010). They
find BPMN to be complex and in some part confusing
for modelers. Deficiencies of the language include
ambiguous and redundant elements, as well as lack of
support for business rules and process decomposition.
However, these mainly impact the modeling process.
As described before, BPMN is useful as the techni-
cal specification of a process. Our approach renders
direct modeling in BPMN, which was found to be
a non-trivial task, unnecessary, but provides BPMN
models via a transformation.

3.2 Domain-specific: PICTURE

While there are several general-purpose PMLs, indi-
vidual DSLs have not yet surfaced as prominently in
process modeling as they have in other areas. This
might be due to the effort necessary for developing
such a DSL. However, as the discussion above and
similar approaches from related work highlight, the
usage of DSLs could enhance quality of process mod-
els. PICTURE, a DSL for business processes in pub-
lic administration (Becker et al., 2007), demonstrates
the general viability of DSLs for process modeling. It
was developed to efficiently model the process land-
scape of public administrations and was subsequently
transferred to the domain of banking (Becker et al.,
2009b). It restricts the modeler’s freedom in or-
der to reduce complexity. Models in PICTURE fol-
low a clear hierarchical structure and use straightfor-
ward, comprehensible means of expressing control
flow. Typical activities in public administration or
banking, respectively, are available as building blocks
to describe the individual steps of a process in a con-
densed manner. As the DSL furthermore does not
feature redundant or ambiguous elements, a modeler
with experience in public administration or banking
can efficiently model processes with PICTURE.

In summary, PICTURE allows for creating con-
cise process models that are nevertheless expressive
and include all information relevant for their respec-
tive purpose. PICTURE has been used and evalu-

Figure 3: Overview of framework (À+`) and an extension
for a particular domain (´+ˆ).

ated successfully in several projects (Karow et al.,
2008; Matzner et al., 2009) and through experi-
ments (Becker et al., 2009a). Therefore, it of-
fers a good basis for the language of DSLs4BPM.
Our framework language has the same structural ap-
proach to process modeling as PICTURE, but encom-
passes only those core elements of PICTURE that are
domain-independent. As PICTURE has been suc-
cessfully transferred to other domains, it is a viable
basis for the framework language. PICTURE mod-
els for public administrations have been successfully
transformed to BPMN (Heitkoetter, 2011). This sug-
gests that it will also be possible to transform models
based on a framework language that has been derived
and generalized from PICTURE’s structural parts.

4 DESIGN OF FRAMEWORK

Figure 3 gives an overview of our framework for the
integrated creation of process modeling DSLs and
transformations. DSLs4BPM consists of a generic
PML (À in figure 3) and a transformation (`) map-
ping the generic concepts to BPMN 2 (˜). Language
and transformation provide the basic structure and are
explicitly designed to be extended. Domain-specific
languages can be derived from the framework by ex-
tending the generic language at predefined extension
points with domain-specific constructs (´). At the
same time, the transformation should be adapted to
the new language elements and their semantics by
overloading specified rules (ˆ). The new rules should
transform the domain-specific constructs into corre-
sponding elements from BPMN. They can also adapt
the behavior of the general transformation where nec-
essary. These partial transformations are seamlessly
integrated into the general transformation by the prin-
ciple of Inversion of Control.

The idea behind this approach is to generalize sim-
ilarities of PMLs and to provide a complete transfor-
mation framework for these common concepts. Busi-
ness processes of a particular domain feature recur-
ring patterns that are easily identifiable and enumer-
able. These typical activities, each consisting of sev-
eral steps, have a meaning for domain experts and

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

130

are thus possible elements of an expressive DSL. The
already mentioned formal assessment in banking is
an example of such a typical activity. Besides these
individual activities, differing from domain to do-
main, process models mainly feature similar elements
across domains, for example various kinds of control
flow and a hierarchical structure, that can be general-
ized and extracted into a generic language.

Hence, the framework is responsible for common
concepts of structured processes, while the individ-
ual, derived DSLs handle domain-specific concepts,
for example from banking, insurance or public admin-
istration. This allows for a less complex creation of
business process DSLs that are nevertheless expres-
sive and concise. Additionally, an adapted transfor-
mation to BPMN 2 is available with minor invest-
ment. Thereby, the process modeling framework aims
to overcome the gap between expressive DSL models
and widely usable general-purpose models, combin-
ing the advantages of DSLs and BPMN 2.

DSLs4BPM provides means for structuring a pro-
cess as well as for describing the process flow in terms
of sequences, variations and communication. More-
over, organizational aspects are considered. The main
extension point offered by the general framework is
the metamodel element Process Building Block. It
is intended to be subclassed by derived DSLs. Each
subtype should correspond to a typical, potentially
complex, but clearly delimitable activity of that do-
main. The framework’s core transformation contains
a placeholder rule for building blocks. Derivations
should provide a suitable mapping for their specific
subtypes that replaces or augments the default behav-
ior to ensure an adequate transformation. Hence, the
additions to our framework made by derived DSLs
and their transformations take place at predefined
points by means of subclassing. This is a less gen-
eral, but more accessible notion of extensibility than
the analogous pattern for DSLs in (Spinellis, 2001),
which covers arbitrary additions. The coupling of
DSL extension with adaptation of a transformation
is also special to our approach. Suchlike extension
points allow a better semantic integration of new types
via the transformation.

5 FRAMEWORK LANGUAGE

The framework language has been adapted from PIC-
TURE by generalizing concepts and focusing on
domain-neutral aspects. Since the general align-
ment and structure of PICTURE have been preserved,
DSLs4BPM inherits the benefits of that well-tested
DSL. Modeling of structured processes is easier and

Figure 4: Metamodel of framework language (excerpt) with
extension points.

more efficient due to a lower complexity of the
language. Models built with a DSL derived from
DSLs4BPM are concise, expressive, and easy to un-
derstand. The easy and understandable syntax is
achieved by focusing on processes that are at least
moderately structured and for the most part linear.
The number of options available to express a concept
and by it the modeler’s freedom is intentionally re-
stricted in order to reduce variability. In the follow-
ing, the domain-independent framework language is
described along with its metamodel (figure 4) and ex-
tension points for derived DSLs. Figure 5 displays an
example model in a derived DSL that resembles the
original PICTURE for public administration.

A (business) Process is divided into several Sub-
processes along organizational or functional criteria.
Predecessor-successor relationships between subpro-
cesses determine the order of execution. A subpro-
cess can have one or more predecessors and succes-
sors. Its execution begins when all preceding subpro-
cesses have been completed. Additional constraints
enforce the absence of cycles, so that a process is
a connected, directed acyclic graph of subprocesses.
Roughly speaking, a subprocess is a linear sequence
of Process Building Blocks. These blocks will gen-
erally be instances of domain-specific subtypes. The
domain-specific building blocks themselves can en-
capsulate complex semantics, but on the subprocess
level they are seen, in principle, as executed sequen-
tially with their inner semantics hidden. The modeler
chooses from the set of building block types available
in the respective DSL and aligns instances in the or-
der they appear in the process flow. Building blocks
have attributes, e.g., name, which must or can be set
on instances. Domain-specific building blocks will
define their own attributes as needed. Through these
attributes, instances can match their appearance in the
process at hand and represent the respective step of
the process more precisely. This simple way of ar-

A�Framework�for�Creating�Domain-specific�Process�Modeling�Languages

131

Figure 5: Example model of a process in a derived DSL
(with six subprocesses A-F performed by two organiza-
tional elements P1, P2).

ranging the constitutive elements of a process linearly
considerably simplifies modeling. A large part of
process complexity is handled by the domain-specific
building blocks, which nevertheless are intuitively ac-
cessible to the domain-experienced modeler, because
they stand for known activities of the domain.

Some subprocesses require, however, the possibil-
ity to model variations in the sequence of building
blocks, like skipped or additional blocks or a differ-
ent order of execution depending on certain condi-
tions. In the example of figure 5, the second vari-
ant of subprocess D replaces the Create Document
instance of variant 1 with an Inquiry followed by a
Receive Document building block. To accommodate
these needs, the framework language uses the concept
of subprocess variants. Actually, the way of model-
ing described above takes place entirely on the variant
level. Each variant is a complete and separate linear
sequence of building blocks. An instance of a build-
ing block including its attribute values can appear in
one or more variants and is shared among the vari-
ants of a subprocess, enabling the reuse of parts of
the subprocess. In figure 5, both variants contain the
same Formal Assessment instance (a) and the same
Print Document instance (e).

A typical workflow when modeling the course of
a subprocess is to first create the main variant repre-
senting the normal case, which is then copied to a new
variant and modified wherever the respective alterna-
tive differs from the original. The modeler is able to
model every distinct case separately without influenc-
ing other cases. If the process flow has only a moder-
ate amount of variation, this way of modeling proves
to be very efficient (Becker et al., 2007). Addition-
ally, the resulting models provide a high readability,
as differences are clearly separated. The first and last
building block must be identical across all variants of
a subprocess. This constraint makes models easier to
understand, guarantees strictly defined semantics and
simplifies the transformation.

The underlying metamodel of the framework lan-
guage (figure 4) incorporates the previous explana-

tions with an occurrence concept. Variants as well
as building block instances are stored at subprocess
level, so that blocks can be shared among variants of
their subprocess. Each variant contains a collection
of building block occurrences referencing the build-
ing blocks that are present in the variant. A linear
predecessor-successor-relationship defines the order
of occurrences separately for each variant. The or-
ganizational view of the process is incorporated by a
generic organizational element. This is another exten-
sion point for a derived DSL, as organizational struc-
tures will be domain-specific. Process, subprocess
and building block specify the organization in charge
of them by a reference to this organizational super-
type. Resources and data can be attributed similarly
to further describe building block instances.

6 TRANSFORMATION TO
BPMN 2

The transformation to BPMN 2 aims to generate ex-
ecutable models. It thus enables or facilitates the
implementation of supporting systems. The gener-
ated BPMN models explicitly represent both the com-
plex activities embodied in domain-specific build-
ing blocks and the control flow implicitly existing in
framework models. The transformation is an inherent
part of the framework and a complete mapping of the
framework language. Derived DSLs adapt the trans-
formation by supplying custom transformation rules
for their own elements.

The framework’s generic transformation to
BPMN 2 is based on a previous domain-specific
transformation from PICTURE to BPMN 2
(Heitkoetter, 2011). That transformation was
tied to the domain of public administration, while
the focus here lies on the domain-neutral concepts
and their generic mapping to BPMN 2. The rules
from the original transformation that are concerned
with domain-neutral structural concepts also apply
to the framework transformation. The following
gives a high-level overview of the transformation and
otherwise focuses on the newly introduced extension
points and their integration into the transforma-
tion. For more details and reasoning regarding the
structural rules please refer to (Heitkoetter, 2011).

A process of the framework language is mapped
to a BPMN collaboration with several participants.
Each participant represents one particular organiza-
tion of the input model. The corresponding pool de-
picts all subprocesses performed by that organization.
Subprocesses are represented by the mapping of their
building block instances. Every building block in-

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

132

stance is transformed only once, irrespective of the
number of occurrences in variants, so that each oc-
currence maps to the same representation. Hence,
this representation can have more than one prede-
cessor and successor in BPMN, respectively. The
transformation connects the representations of build-
ing blocks of a subprocess as determined by their oc-
currences in variants, using sequence flow and, if nec-
essary, exclusive gateways to model the process flow.
Through these transformation rules, a framework sub-
process is represented in BPMN as a connected graph
of representations for its building blocks. The trans-
formation connects these individual graphs according
to the connections between subprocesses, generating
sequence or message flow edges, parallel gateways,
and message events as necessary.

The generic transformation provided by the
framework transforms a building block to a single
task. Building block subtypes of derived DSLs can be
mapped to arbitrary graphs of flow elements. The core
transformation is prepared to handle these more com-
plex representations. It only expects that the BPMN
representation of a building block is a collection of
flow elements (flow nodes and sequence flow) with
one entry and one exit point. These restrictions en-
able the transformation to integrate any representa-
tion conforming to this basic skeleton into the BPMN
process. Besides the default generic task, a building
block can thus be mapped to a specific type of task
(e.g., User Task or Service Task), to an event, to a
subprocess which in turn contains a connected graph
of flow nodes, or directly to such a flow graph. The
restriction to flow graphs with unique source and sink
is due to the linear nature of variants. The execution
of a building block can nevertheless influence the pro-
cess flow because it modifies the process state.

7 IMPLEMENTATION

The implementation of DSLs4BPM is based on the
Eclipse Platform2 and uses the Eclipse Modeling
Framework (Steinberg et al., 2009), which provides
means to define modeling languages and handles
models in these languages. The metamodel of the
framework language is described with EMF’s Ecore
language. An implementation of BPMN 2’s meta-
model with EMF is available through an Eclipse
project3. The model-to-model transformation is writ-
ten in the Operational Mapping language of OMG’s
Query/View/Transformation standard (Object Man-

2http://www.eclipse.org
3http://wiki.eclipse.org/MDT/BPMN2

agement Group, 2008), of which an EMF-based im-
plementation is available in the Eclipse project QVT
Operational4 (QVTO).

All elements of the framework language from sec-
tion 5 have been implemented in Ecore, including the
generic type Process Building Block. EMF’s EClass
type, which is used to describe these metamodel el-
ements, supports object-oriented inheritance. There-
fore, implementing derived DSLs is straightforward.
The DSL designer has to provide a new Ecore model
with the domain-specific building block types as sub-
classes of the generic building block type from the
framework metamodel. These subclasses can have
their own attributes and references. Models built in
the derived DSL resort to the structural elements from
the framework language and to the individual building
blocks from the DSL.

The core transformation included in DSLs4BPM
takes a model written in the framework language as
input and outputs a BPMN model that complies with
BPMN 2’s metamodel and semantics. It implements
the transformation rules of section 6, which deal with
elements from the framework language. Each core
transformation rule creates all BPMN elements that
make up the representation of the framework element
handled by the rule, including helper elements and
connections, and calls the rules for child elements.
The additional rules for a derived DSL have to be de-
fined in a separate transformation.

Listing 1: Excerpt from core transformation.
1 he lp er P r o c e s s B u i l d i n g B l o c k : : t ransformPBB ()
2 : C o l l e c t i o n (FlowElement) f
3 var r e s u l t : L i s t (FlowElement) := L i s t fg ;
4 r e s u l t += s e l f . map toFlowGraph () ;
5 / / c r e a t e c o n n e c t i o n s t o s u c c e s s o r s
6 / / c r e a t e gateway , i f n e c e s s a r y
7 re turn r e s u l t ;
8 g
9 mapping P r o c e s s B u i l d i n g B l o c k : : toFlowGraph ()

10 : L i s t (FlowElement) f
11 r e s u l t�>add (s e l f . map t o S i n g l e T a s k ()) ;
12 g
13 query P r o c e s s B u i l d i n g B l o c k : : c o n n e c t o r I n c o m i n g ()
14 : FlowNode f
15 re turn s e l f . map t o S i n g l e T a s k ()
16 g

The core transformation contains several op-
erations related to building blocks (listing 1).
transformPBB is responsible for transforming a
building block and integrating it into the process
(lines 1–8). The actual mapping of the building
block to a flow graph as described in section 6
is expected to be performed by toFlowGraph (9–

4http://wiki.eclipse.org/M2M/QVTO

A�Framework�for�Creating�Domain-specific�Process�Modeling�Languages

133

12). The core transformation resorts to the query
connectorIncoming to determine the entry point of
the representation when connecting it (13–16). An
analog query exists for the exit point. In case of the
generic building block, both of these methods return
the single task created by toFlowGraph.

In order to represent each domain-specific ac-
tivity accurately in BPMN, tailored mappings for
domain-specific builing block types have to be pro-
vided. The new transformation that transforms a de-
rived DSL has to extend the framework transforma-
tion through QVTO’s keyword extends (listing 2,
lines 1–3). As part of the new transformation, the
mapping toFlowGraph and both connector queries
have to be overridden for each building block sub-
type that needs a specific mapping, in this example
SpecialPBB. The mapping operation creates the flow
nodes and sequence flow edges that make up the spe-
cific representation and returns them as a collection
of flow elements (4–8). It can resort to the values
of attributes defined for the subtype or to configura-
tion parameters in order to further tailor the mapping,
which thus does not have to be static. For example,
it could use a project-specific parameter as the ad-
dress of a Web service in a Service Task or modify
the BPMN representation of a building block instance
according to the instance’s attribute values. The con-
nector queries must return those flow nodes out of the
flow graph that act as entry or exit point, respectively
(9–11). When an instance of a subtype is encountered,
the overridden methods are called instead of the de-
fault ones according to the Inversion of Control prin-
ciple. This way the transformation can incorporate
the elements of the adapted representation into the re-
sult model and create connections to the appropriate
elements. In addition to this general mechanism, the
framework offers shortcuts for certain kinds of exten-
sion, for example a mapping to a single Service Task.

Listing 2: Extended transformation (excerpt).
1 t r a n s f o r m a t i o n dsl2bpmn2 (in s r c : d s l ,
2 out t r g t : bpmn2)
3 ex tends t r a n s f o r m a t i o n framework2bpmn2 ;
4 mapping Specia lPBB : : toFlowGraph ()
5 : L i s t (FlowElement) f
6 r e s u l t�>add (s e l f . map toTaskOne ()) ;
7 / / c r e a t e o t h e r e l e m e n t s o f t h e f l o w graph
8 g
9 query Specia lPBB : : c o n n e c t o r I n c o m i n g () : FlowNodef

10 re turn s e l f . map toTaskOne ()
11 g

Besides the extended mappings, nothing has to be
defined for an individual DSL, as the framework al-
ready defines most of the transformation. If neces-
sary, a modification of core transformation rules is

possible via QVTO. The extended transformation is
defined during the development of the derived DSL.
The modeler who eventually uses the DSL is not con-
cerned with these tasks. QVTO’s extension mecha-
nisms in addition to the polymorphism in EMF thus
enable an easy and straightforward way to adapt the
framework’s transformation.

8 DISCUSSION

In the following, we evaluate DSLs4BPM with re-
spect to the development effort needed when design-
ing new DSLs and transformations. Afterwards, we
study the conceptual advantages and contributions.
We also highlight potential areas for improvement.

The savings that can be expected with our results
can be approximated by looking at the source code
of our framework and typical extensions compared to
standalone implementation of DSLs. The framework
language consists of 16 classes with just over 50 dis-
tinct features. The basic transformation to BPMN 2
included in the framework has been implemented in
approximately 650 logical lines of code of QVTO.
As this code transforms the basic process structure
and control flow, nearly all of it would also be re-
quired in a standalone implementation that does not
use the framework. The overhead of the framework
transformation consists of statements due to provi-
sions for adaptation. These lines, which would not be
needed in a single, standalone transformation, amount
to less than five percent of the transformation’s source
code. Regarding derived languages, only one addi-
tional class due to peculiarities of EMF is needed in a
derived DSL besides the specific concepts introduced
by that DSL, so that the overhead is minimal. With
respect to an extended transformation, each new con-
cept that has to be transformed to BPMN requires
a corresponding adapted transformation rule. Each
of these adaptations consists of as many statements
as needed to generate the particular BPMN represen-
tation. These mostly perform simple, but laborious
work to build up the corresponding flow graph and
would be needed in either case, so that there are only
0-3 lines of overhead per concept, depending on the
complexity.

In summary, DSLs4BPM introduces only a small
amount of overhead, while relieving DSLs of the most
complex parts of the transformation, namely the rep-
resentation of structure and of control flow. This
greatly reduces the development effort for implement-
ing individual DSLs, which mainly does not extend
beyond a straightforward implementation of concepts
and mappings that have been identified during the de-

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

134

sign of the DSL. The expected savings have been con-
firmed in two case studies with DSLs for public ad-
ministration and for banking, respectively.

Our framework suggests a streamlined adaptation
process for deriving a DSL in combination with a
transformation to BPMN 2. The design of the DSL
requires the identification of domain concepts that
should be added to the framework language, mainly
as new building block types. For each of these new
elements, relevant attributes have to be identified, as
well as its mapping to BPMN. In case of building
blocks, the latter should be described in the form of
a BPMN subgraph that represents the typical activ-
ities behind this building block type. Currently, the
implementation has to be done manually with help
provided by the respective Eclipse tools. In princi-
ple, large parts of the adaptation process following
the conceptual design of a DSL can be supported by
a wizard and automated. The wizard would have to
gather the aforementioned information from the lan-
guage designer, i.e., the list of new concepts and their
representation as a BPMN graph. For the latter, the
wizard could resort to a BPMN diagram tool. Based
on the gathered information, the wizard would create
the derived DSL and the source code of an extension
of the transformation in QVTO5. Only a relatively
small amount of additional work would be needed
to adapt the automatically generated transformation
to special requirements, for example if attribute val-
ues influence the BPMN representation. Hence, our
framework opens up even further improvements for
creating DSLs, besides the already simplified process
of DSL design and implementation. Future work will
inspect this direction.

As to the trade-off between reuse potential and
domain specificity, DSLs4BPM provides common
structural elements and commissions derived DSLs to
provide individual building block types representing
typical domain-specific activities. This separation re-
duces the development effort while enabling expres-
sive models. Transforming the concise and domain-
specific process models to BPMN 2 yields advan-
tages when analyzing or implementing processes.
Due to the individual transformation rules that ex-
press domain-specific complex activities, the gener-
ated BPMN 2 models can exhibit a high level of detail
suitable for service orchestration or workflow man-
agement. Therefore, using the framework allows for
a valuable combination of expressive DSL models
and executable BPMN models. The fact that adap-
tation takes place at predefined and documented ex-
tension points simplifies the derivation of DSLs from

5The generation of QVTO code would require a BPMN-
to-QVTO code generator.

the framework.
The extension mechanisms provided by EMF and

QVTO proved to be suited for creating modular and
reusable modeling languages. Thus, using the mature
EMF environment also enables more complex sce-
narios for DSL creation and reuse than simply defin-
ing each language from scratch. While specific sce-
narios might need the more advanced modularization
techniques for DSL reuse described in the literature
and available in other language development envi-
ronments, the extensibility approach employed while
designing the framework is sufficient on its own for
reusing common parts. This is especially important
and helpful because most environments for creating
DSLs and model transformations offer some kind of
extension mechanism.

In contrast to approaches that focus on DSL reuse,
DSLs4BPM has an integrated, model-driven perspec-
tive and includes transformations to less abstract but
widely-used languages as an inherent part. A DSL
alone is often not as useful as a combined approach.
As soon as a DSL shall not only to be used for doc-
umentation, but also for other purposes like analysis
or implementation, customized tools are needed. Due
to the specific nature of a DSL, these are most often
not available and developing them would not be cost-
efficient. Through the readily available transforma-
tion to BPMN, DSLs implemented within our frame-
work can almost immediately profit from the execu-
tion support and other capabilities of BPMN.

9 CONCLUSIONS

The DSL Framework for BPM (DSLs4BPM) pre-
sented in this paper enables the efficient creation of
domain-specific PMLs by reusing common, generic
parts of a compact language. Thus, the framework
makes it easier to realize the benefits associated with
using an optimally adjusted DSL for process model-
ing. As a particular focus lies on model-driven de-
velopment, the framework is complemented with an
adaptable transformation to BPMN 2. By adapta-
tion, the transformation can express the semantics of
domain-specific elements. Implementing the frame-
work based on EMF has demonstrated the viability of
that environment for advanced and modular model-
driven approaches.

Future work will deal with improving the tool sup-
port for developing derived DSLs, e.g., by providing
a wizard, and for modeling with the framework. At
the moment, tree-based editors generated by EMF are
used during modeling. A more meaningful and ex-
tendable concrete syntax is needed. Our approach

A�Framework�for�Creating�Domain-specific�Process�Modeling�Languages

135

does not depend on any kind of concrete syntax, so
that the introduction of a notation will be straightfor-
ward, even more so as the framework language lends
itself to a graphical notation. The wizard mentioned
above could also help in this regard by creating a
graphical editor for a DSL based on a generic edi-
tor. Furthermore, it might be worthwhile to explore if
the general approach taken in this paper—creating a
framework from which to derive DSLs—can be trans-
ferred to other aspects of system modeling, for exam-
ple requirements modeling, where DSLs play an im-
portant role as well.

REFERENCES

Becker, J., Algermissen, L., Pfeiffer, D., and Räckers, M.
(2007). Local, participative process modelling - the
PICTURE-approach. In Proc. of the 1st International
Workshop on Management of Business Processes in
Government (BPMGOV).

Becker, J., Breuker, D., Pfeiffer, D., and Räckers, M.
(2009a). Constructing comparable business process
models with domain specific languages - an empirical
evaluation. In 17th European Conference on Informa-
tion Systems (ECIS), pages 1–13.

Becker, J., Weiss, B., and Winkelmann, A. (2009b). Devel-
oping a business process modeling language for the
banking sector - a design science approach. In Proc.
of the 15th Americas Conference on Information Sys-
tems (AMCIS).

Brahe, S. and Østerbye, K. (2006). Business process model-
ing: Defining domain specific modeling languages by
use of UML profiles. In Model Driven Architecture –
Foundations and Applications, pages 241–255.

Dumas, M. and ter Hofstede, A. (2001). UML activity dia-
grams as a workflow specification language. In UML
2001 — The Unified Modeling Language. Modeling
Languages, Concepts, and Tools, pages 76–90.

Heitkoetter, H. (2011). Transforming PICTURE to BPMN
2.0 as part of the model-driven development of elec-
tronic government systems. In Proc. of the 44th
Hawaii International Conference on System Sciences
(HICSS 2011).

Karow, M., Pfeiffer, D., and Räckers, M. (2008). Empirical-
based construction of reference models in public ad-
ministrations. In Multikonferenz Wirtschaftsinfor-
matik 2008. Referenzmodellierung, pages 1613–1624.

Krahn, H., Rumpe, B., and Völkel, S. (2008). MontiCore:
Modular development of textual domain specific lan-
guages. In Proc. of TOOLS EUROPE.

Margaria, T. and Steffen, B. (2004). Lightweight coarse-
grained coordination: a scalable system-level ap-
proach. International Journal on Software Tools for
Technology Transfer, 5(2-3):107–123.

Matzner, M., Voigt, M., Alexandrini, F., Araujo, T. S., and
Becker, J. (2009). Process modelling in brazilian pub-
lic administrations: The domain-specific PICTURE

approach. In 15th Americas Conference on Informa-
tion Systems (AMCIS).

Mernik, M., Heering, J., and Sloane, A. M. (2005). When
and how to develop domain-specific languages. ACM
Computing Surveys, 37(4):316–344.

OASIS Standard (2007). Web Services Business Process
Execution Language Version 2.0.

Object Management Group (2008). Meta Object Facility
(MOF) 2.0 Query/View/Transformation specification.

Object Management Group (2010). UML 2.3 superstructure
specification.

Object Management Group (2011). Business Process
Model and Notation 2.0 specification.

Recker, J. (2010). Opportunities and constraints: the current
struggle with BPMN. Business Process Management
Journal, 16(1):181–201.

Recker, J., Indulska, M., Rosemann, M., and Green, P.
(2010). The ontological deficiencies of process mod-
eling in practice. European Journal of Information
Systems, 19(5):501–525.

Recker, J. C., Rosemann, M., Indulska, M., and Green, P.
(2009). Business process modeling : a comparative
analysis. Journal of the Association for Information
Systems, 10(4):333–363.

Spinellis, D. (2001). Notable design patterns for domain-
specific languages. The Journal of Systems and Soft-
ware, 56(1):91–99.

Steffen, B. and Margaria, T. (1999). METAFrame in prac-
tice: Design of intelligent network services. In Cor-
rect System Design, LNCS 1710, pages 390–415.

Steffen, B., Margaria, T., Nagel, R., Jörges, S., and
Kubczak, C. (2007). Model-driven development with
the jABC. In Proc. of the 2nd International Haifa Ver-
ification Conference (HVC).

Steinberg, D., Budinsky, F., Paternostro, M., and Merks,
E. (2009). EMF: Eclipse Modeling Framework, 2nd
Edition. Addison-Wesley Longman.

van Deursen, A., Klint, P., and Visser, J. (2000). Domain-
specific languages: An annotated bibliography. ACM
SIGPLAN Notices, 35(6):26–36.

Voelter, M. (2010). Implementing feature variability for
models and code with projectional language work-
benches. In Proceedings of the 2nd International
Workshop on Feature-Oriented Software Develop-
ment, pages 41–48.

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

136

