
Project Estimation with NDT

J. Armario, J. J. Gutiérrez, M. Alba, J. A. García-García, J. Vitorio and M. J. Escalona
IWT2 Research Group, University of Seville, Seville, Spain

Keywords: Software Project Estimation, Web Engineering.

Abstract: Software Project Estimation is one of the most critical and complex task for a Project manager. Several

techniques, tools and mechanisms were proposed in the literature. However, these solutions are sometimes

difficult and expensive to be applied and too frequently, the final estimation is made according to the

manager experience. In this paper we present a preliminary approach based on the Use Case Points

technique, which is adapted for the Model-Driven environment of NDT. This technique is automatically

applied, thanks to the metamodels definition, and it is presented in a tool named NDT-Counter.

Additionally, the paper presents an initial empirical evaluation of the results.

1 INTRODUCTION

To manage Software projects implies developing an

initial phase and a plan as well as tasks or activities.

At this stage of the project life cycle, experts must

meet and weight up the effort, work, and necessary

hardware and software resources as well as set the

cost and time required to execute the requested

work. In the planning project phase, the different

tasks that make up the project, the deadline to be

carried out and the people to develop it must be

detailed. After analysing the different variables

through the estimation process, the cost and time to

complete the project will be determined. Estimation

is important at this point because by analysing and

studying the result obtained, we can assess if the

project development is profitable or, by the contrary,

the terms set by the cost-benefit ratio are negative.

Considering that this study and its subsequent result

are highly demanded and specially relevant, its

crucial character to state whether a project should be

faced up, together with the high applicability of

Navigational Development Techniques (NDT)

(Escalona and Koch, 2008) methodology, it is

necessary to extend this methodology and include it

within the suite of configurable tools that execute

the estimation project automatically.

NDT is a Web methodology mainly focussed on

the Requirement Engineering phase leaded by

objectives related to capture, definition and

verification of requirements and their incorporation

into the software development life cycle, giving it

the importance it deserves. NDT is developed within

the Model-Driven paradigm environment. For that

purpose, this paper shows the Use Cases Points

technique (Karner, 1993) which operates to obtain

the cost and time study. In addition, we will

demonstrate how, thanks to the NDT formal nature,

we can extend the application of this method to

obtain and analyse the results in an automated way.

This paper is structured as follows: Section 2

analyses the most widely used estimation

techniques. Section 3 presents NDT methodology

and Section 4 shows the suggested estimation

technique for NDT introduced in the previous

section, as well as the extension for this

methodology and the later tool development for this

phase of the software project. In Section 5, we

execute simulations as well as compare and analyse

the results, the fixed cost of the tool and the real cost

of the project by means of the tool developed with

the aim of estimating the project data which have

already been completed. To conclude, Section 6

offers final conclusions and ongoing works.

2 RELATED WORK

Many Cost Estimation models have been proposed

in the last 40 years. They can be classified in two

main groups: algorithm-based models and non

algorithm-based models.

Although this paper focuses on algorithm-based

models Cost Estimation methods, some non based-

120 Armario J., Gutierrez J., Alba M., García García J., Vitorio J. and Escalona M..
Project Estimation with NDT.
DOI: 10.5220/0004022101200126
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 120-126
ISBN: 978-989-8565-19-8
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

mailto:javierj
mailto:mjescalona%7D@us.es

algorithm models must be mentioned, for example:

 Estimation by analogy (Shepperd, Schofield, and

Kitchenham, 1996). This method requires one or

more completed projects similar to the new

project, and derives estimation through reasoning

by analogy through the actual costs of previous

projects.

 Expert judgement method (Jorgensen, 2005).

This method involves working in liaison with a

software cost estimation expert or group of

experts to use their experience and understanding

of the proposed project to reach an estimate cost.

This method can be used together with the

Delphi technique (Lilja, Laakso and Palomki,

2011) which allows improving and systematising

the consulted experts’ opinion.

 Bottom-up. In this method, each software system

component is separately assessed and results are

added in order to produce an estimate of the

overall system. The requirement for this

approach is that an initial design must be in place

to indicate how the system is decomposed into

different elements.

 Top-down: This method is the opposite of the

bottom-up method. An overall cost estimate for

the system is derived from global properties,

using either algorithmic or non algorithmic

methods. The total cost can then be split up into

different components. This approach is more

suitable for cost estimation at the early stage.

In addition, there are many algorithmic models to

estimate the project cost. These methods are

mathematical-based models that produce cost

estimate as a function with a number of variables,

which are considered to be the major cost factors. To

improve the accuracy of algorithmic models, it is

necessary to adjust or calibrate the model to local

circumstances. Despite calibration, accuracy can be

quite mixed. Some of the most referenced

algorithmic models are:

 COCOMO (Constructive Cost Model). These

models were proposed by Boehm (Boehm, 1981)

in 1981 and later reviewed in the 90's, when the

development techniques drastically changed. In

2000, the second version of COCOMOs was

published and was called COCOMO II (Boehm,

Abts, Winsor Brown, Chulani, Clark, Horowitz,

Madachy, Reifer and Steece, 2000). COCOMO

uses a basic regression formula with parameters

derived from both, historical data of the project

and its current characteristics. This model

consists in a hierarchy of three increasingly

detailed and accurate models.

The first model, Basic COCOMO computes

software development effort as a function based on

code-size given in thousands of lines of code,

(KLOC). This model is suitable to get an early quick

rough order of estimates of software costs, but its is

accuracy-limited due to its lack of factors to account

for differences in project attributes (Cost Drivers, for

instance, provide differences in hardware

constraints, personnel quality and experience or

usage of modern tools and techniques, among

others). The second model, Intermediate COCOMO

computes software development effort as a function

based both on the code-size and a set of Cost Drivers

that include subjective assessment of products,

hardwares, personnel and project attributes. The

third model, Detailed COCOMO incorporates all

characteristics of the intermediate version plus an

assessment of the influence of Cost Drivers on each

individual phase of the project (Analysis, Design,

etc.) in the software engineering process.

 The Putnam model (Putnam, 1978). This model

represents an empirical software effort

estimation model. Putnam focuses his model on

Rayleigh’s manpower distribution and his

finding on analysing many completed projects.

Putnam's approach is incorporated into a

commercially available cost estimation system

called SLIM.

 Bailey-Basili metamodel (Bailey and Basili,

1981). Authors aimed to derive a methodology,

thus, they assumed that the coefficients in any

effort equation would be highly dependent on the

environment and personnel at a particular

installation, and that coefficients derived from a

local database would lead to a much more

accurate model. Their metamodels deal with a

rigorous statistical analysis of 18 relevant

projects developed at the NASA Goddard Space

Flight Center so as to determine the equations

that measure the effort and Cost Drivers. This

basic methodology is neither important for the

specific effort equation nor the particular Cost

Drivers. It is important because it provides a

methodology used by individual organizations to

construct their own models that are tuned to their

particular environment.
 Function Points (Albrecht and Gaffney, 1983).

This is a functionality-based measure of the
program. The Functional User Requirements of
the software are identified and the total number
of function points depending on each one is
categorized into one of these five types: outputs,
inquiries, inputs, internal files and external
interfaces. Once the function is identified and

Project Estimation with NDT

121

categorized into a type, it is then assessed for
complexity and assigned a function point
number.

 Bayesian Networks (Mendes 2008). It is a
structure probability in this case used for the
estimation of effort, so the nodes represents the
relevant factors that have associated a table of
probability, and the arches that connect these
nodes, the relationship between the various
variables quantified way probabilistic. The
resulting effort is obtained through a
combination of the probabilistic results of nodes
parents of this.

 Use Cases Points technique (Karner, 1993). Use

Case modelling is an accepted and widespread

technique to capture the business processes and

requirements of a software application. Since

they provide the functional scope of the

application, analysing their contents provide

valuable insight on the effort and size needed to

design and implement the application. Use Case

Points (UCP) is an estimation method that

provides the ability to estimate size and effort of

an application from its use cases. Section 4 will

describe how this tecnique is adapted to the NDT

methodology.

Finally, we would like to mention that nowadays,

the most traditional models to estimate projects cost

are being reviewed with new mathematical models.

One example is COCOMO, a model based on

artificial neural networks (Attarzadeh and Siew

Hock Ow, 2010).

3 AN OVERVIEW OF NDT

Navigational Development Technique (NDT)

(Escalona et-al, 2008) is a Model-Driven Web

methodology that was initially defined to deal with

Web development requirements. NDT starts with a

goal-oriented phase of requirements and establishes

a set of transformations to generate analysis models.

NDT has evolved in the last years and offers a

complete support for the whole life cycle.

Nowadays, it covers viability study, requirements

treatment, analysis, design, construction or

implementation as well as maintenance and test

phases, such as software development phases.

Additionally, it supports a set of processes to bear

out project management and quality assurance and

sustain different life cycles, for instance, sequential,

iterative and agile processes.

As an advantage, NDT can be applied in the

enterprise environment. Today, many companies in

Spain work with NDT and the associated tools for

software development. This is possible due to the

fact that NDT is completely supported by a set of

free tools, grouped in NDT-Suite (NDT-Suite 2012).

This suite enables the definition and use of every

process and task supported by NDT and offers

relevant resources for quality assurance,

management and metrics with the aim of developing

software projects. NDT is based on the Model-

Driven paradigm. It selects a set of metamodels for

each development phase (requirements, analysis,

design, implementation, construction, test and

maintenance) in order to support each artefact

defined in the methodology. All concepts in every

phase of NDT are metamodeled and formally related

to other concepts by means of associations and/or

OCL constraints (OMG-OCL 2012). Besides, NDT

proposes a set of QVT Transformations

(Query/View/Transformation) (OMG-QVT 2012)

among each metamodel in every phase, that may

enable to get one phase results from the previous

one. Nevertheless, transferring this idea to the

enterprise environment is not possible. Companies

do not actually use metamodels, transformations and

other elements, thus technology seems too abstract

for them. After assessing different possibilities,

some UML-profiles were developed for each NDT

metamodel. These UML-profiles were defined in a

UML-based tool named Enterprise Architect

(Enterprise Architect, 2011). Then, the first tool for

NDT-Suite, NDT-Profile, was developed. The

remaining NDT-Suite tools are based on this profile

and offer a range of different uses when applying

NDT, which can be downloaded in www.iwt2.org.

As it can be concluded, in the last years, NDT

has become a complete approach offering high

support for software project development by

exploiting the power of the Model-Driven paradigm.

However, software estimation meant a gap in the

approach. For this reason, a solution consisting in

providing a new tool named NDT-Counter has been

developed. It is presented in detail in the next

section.

4 A SOLUTION FOR NDT

Despite NDT supports the project management, its

tools, described in the previous section, do not offer

special support for the project estimation. As NDT is

based on an Object-Oriented environment and Use

Cases is the selected technique to describe

Functional requirements, Use Cases Points is

selected as a first alternative for project estimation

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

122

support. This section presents an overview of this

technique a well as its application in NDT.

4.1 Use Cases Points

Use Cases Points is a technique that allows us to

estimate the effort hour/person that must be carried

out to develop a software tool with specified

features. The instructions are as follows:

STEP 1: Analyse the requirement to calculate the

Unadjusted Use Case Points (UUCP). It covers three

steps:

a. Structure every interaction between actor and

Use Cases according to their complexity and

assign them a weight.

b. Calculate the complexity of every Use Case

according to the number of steps or transactions.

c. Calculate Unadjusted Use Case Points according

to the previous data.

STEP 2: Study the Technical Complexity Factors

(TCF) and the Environment Factors (EF) and find

the factors needed to balance Unadjusted Use Case

Points (UUCP). This step is divided in three phases:

Table 1: Technical Complexity Factors.

Factor Description

T1 Distributed System

T2 Response adjectives

T3 End-user efficiency

T4 Complex processing

T5 Reusable code

T6 Easy to install

T7 Easy to use

T8 Portable

T9 Easy to change

T10 Concurrent

T11 Security features

T12 Access for third parties

T13 Special training required

a. Calculate the Technical Complexity Factors

(TCF). Every defined factor is given a value related

to its influence on the Project. Technical Complexity

Factors traditionally used in this technique are

showed in Table 1. Once all the technical factors

have been assigned, it is necessary to calculate the

Complexity Coefficient.

b. Calculate Environment Factors (EF).

Environment Factors commonly used in this

technique are showed in Table 2.
Despite having into account the technical factor for
the adjustment of UUCP, the Environment Factors
must be analysed. For that purpose, every factor
defined is given a value according to its degree of
influence on the Project.

Table 2: Environment Factors.

Factor Description

E1 Familiar with the development process

E2 Application experience

E3 Object Oriented Experience

E4 Lead analyst capability

E5 Motivation

E6 Stable Requirements

E7 Part-time workers

E8 Difficult programming language

Once all the factors are given the influence value, it

is necessary to calculate the Complexity Coefficient.

c. Calculate the Use Case Points (UCP) using the

previous data.
We should consider that by calculating this
expression we obtain a size of the estimation, but not
of effort.

STEP 3. Adjust (UCP), and later an Effort

Estimation must be obtained (hour/person).

It should be pointed out that the value of effort

calculated does not cover all life cycle phases, but

only refers to hour/people invested in developing the

specified functionality of Use Cases at the

codification phase. Generally, this phase represents

40% of the total effort of a Project.

4.2 Use Cases Points in NDT

If we intended to offer an automatic support, the

integration of this estimation technique would

require an extension of both, the methodology and

structure. Thus, the initial requirements metamodel

of NDT has to be analysed and extended to support

and manage aspects required by the Use Cases

Points. In fact, aspects supported in STEP 1, Actors,

Use Cases and Complexity, were included in the

original metamodel, so no changes were required.

However, we need special support for the aspect

included in STEP 2. Thus, the metamodel was

enriched with Technical Complexity Factors and the

Environment Factors. This extension was

implemented and included in NDT-Profile and a

suitable interface was developed in order to make

easier the application of techniques. The following

technique begins with obtaining Actors and Use

Cases that take part in the software project being

currently studied. They are assigned a complexity

from 1 to n. In the case of Actors, NDT considers

that the complexity of an Actor depends on the

number of use cases in which it is involved. The Use

Cases Complexity is determined by the number of

sub-tasks in which it is involved and it is assigned a

number from 1 to n. The more sub-tasks a Use Case

has, the more complex it is. The adjusted Use Cases

Project Estimation with NDT

123

are calculated by means of this data. Once Actors

and Use Cases Complexities are defined, non

adjusted Use Cases Points are obtained evaluating,

technical and environment factors of the project. For

that purpose, as determined elements have influence

on each project, NDT assigns them a default

complexity, so if these values are aimed to be

changed, the user will adapt them to his/her needs.

This complexity represents the relevance of a factor

within the project. The higher the number

associated to the complexity is, the higher influence

this factor will have on the project being estimated.

After setting these elements, the process continues

by calculating the effort. The estimation obtained

will be given in hour/ person. These steps are

automatically performed. Considering the definition

of Actors and Use Cases in NDT, and taking

advantage of the methodology integration with the

Enterprise Architect tool, we conclude that a

software tool can perform this automatic and

feasible process. For this reason, it is decided to

implement a software tool which can cope with this

estimation technique.

4.3 NDT-Counter

NDT-Counter is a desktop application integrated

into the suite of the methodology with the same

name, developed by the research group IWT2 at the

University of Seville. This application helps us

apply the Use Case Points previously explained.

This application provides a detailed hour/person-

cost report from/in the system we are developing.

These estimates are related to the Implementation

phase and translated into the economic cost of the

project.

NDT-Counter has a number of outstanding

features, for example, multiple language support or

the possibility of exporting the results obtained by

offering reports. At the same time, due to the needs

showed in the previous section, this tool offers the

possibility of analysing software projects developed

with agile and not agile methodologies and

configuring any parameter involved in our project.

The NDT-Counter interface is simple and

intuitive. The effort estimation process for this tool is

showed in the following figures and explained below.

In the main screen, we start by writing our

project estimation in Project name field. This will be

the name of the report obtained when the estimation

may be carried out. Then, the File selection button

allows selecting the desired Enterprise Architect file

to execute the estimation. This Case tool is used in

the NDT Suite to build software systems. A baseline

for Enterprise Architect is adopted to make the tools

of the suite automate the phases of software

development proposed by NDT. In this file, we get

Actors and Use Cases involved in the project which

are necessary to estimate effort in NDT-Counter.

Figure 1: NDT-Counter main interface.

Finally, the estimation process starts by clicking

on Start estimation button. The effort estimation of

the selected project will be achieved when the chosen

parameters preferences are set up. Initially, this button

will be unavailable until the parameters preferences

have been correctly set up. When clicking on

Parameters preferences button, the Preferences

window will open and the values of the parameters

involved in the estimation process can be chosen.

Next, the parameters preferences screen is showed

and the important details are explained. The previous

screen shows how the parameters involved in our

software project can be configured. After loading the

selected file, Actors (Actor complexity tab), and Use

Cases (Use case complexity tab), it is possible to

configure several parameters. Different options must

be selected: using default values, load a configuration

previously saved or configure the factors and their

complexities manually. In the latter case, and in order

to adjust these factors as much as possible to our

project specifications, the user can add and/or remove

Technical Complexity Factors (Technical Complexity

Figure 2: Parameters preferences interface.

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

124

Factors tab) and Environment Factors, (Environment

Factors tab), and modify the weights associated with

them, as needed.

A very important aspect to note is the Scrum tab.

This tab supports agile methodologies, so that we

can select to "sprint", to run the estimation process

and get an effort result for each sprint. Once the

parameters to be estimated related to our project are

defined and configured, the estimation process

begins. After applying the Use Cases Points

technique, with their steps and calculations, the

report screen with the estimate results appears.

Figure 3: Estimation, result reading and report.

The screen above shows the estimate for our

software project. The tabs offers the factors defined

and involved in the project to obtain the final result

together with their configuration. The Summary tab

shows all the hour/person information included in

the project. We obtain partial results of the effort

required to complete it at each stage of the life cycle

of a software project. It should be remarked that the

result obtained by the Use Case Points technique

corresponds to the Implementation phase, and the

hour/person references of the other phases have been

calculated by adjustment. Finally, to facilitate the

presentation and portability of results, a PDF file

will be generated in order to record the final

estimation result, just by clicking on the Generate

PDF button.

5 EMPIRICAL RESULTS

After studying in depth some projects involving

NDT, it must be checked that the result of the

estimation given by NTD-Counter tool is similar to

the final project length. Even though we must

assume a percentage of risk when we undertake an

enterprise like the Software Project Development,

these risk elements may affect the necessary effort

by delaying the project and increasing its cost.

We should remember that estimation is applied

to obtain the necessary effort at the Implementation

phase. The total effort to develop a software project

is obtained when applying a generic effort

distribution; the Analysis phase takes up a 10%, the

Design phase a 20%, the Implementation phase a

40%, the Testing phase a 15%, and overload and

other activities a 15%. Figure 4 shows some projects

where we face up the estimate data with NDT-

Counter and their total duration, once finished. This

confrontation of results has been done when the

projects finished, to see the power of the tool and the

similarity of the result of effort between our

application and the reality. The graphic above

represents how the three analysed projects had a

total duration similar to that estimated with NDT-

Counter. The projects are diverse. The first project

(project 35) is a web application where we can

highlight the inclusion of a search engine for

documents with numerous search formats, plain-text,

date, advanced search, parameterized... The second

project (project 56) concerns SMITA system that

allows users to locate nearby activities and sights to

visit. The power of this system lies in its access via

mobile phone, allowing users to have the

information in real time. The third project (project

72) discussed is reference to @rchivA system, which

has been developed for the Junta de Andalucía. This

sets up a single information system for files attached

to the Administration of the Government of

Andalusia in the File System as well as court

records. This shows the basic tool for the

management of archived not only paper but also in

digital format as a fundamental part of eGovernment

model of the Junta de Andalucía. In this regard, we

have selected a configuration as close as possible to

the features studied at that moment by the

responsible for these projects. Once these factors are

configured, NDT-Counter returns an estimation

result given in hour/person. To present data, we have

transformed these hours in days and have

extrapolated them according to the generic

distribution, previously showed, so as to obtain the

total length of a project. We note that in the first two

projects, NDT-Counter has given an estimate,

measured in days, lower than the total project

duration. This is due to many random factors that

may influence the duration of any types of projects

and delay the deadline for a project completion.

Nevertheless, in the last projects studied, we

observed that the tool estimates a longer period of

less significance than the final length the project

Project Estimation with NDT

125

finally had. According to the studies analyzed, we

can conclude that, when identifying the factors that

are involved in the project and assigning

complexities as closest to reality as possible, the

developed tool to implement NDT methodology

obtained similar estimation results to those occurred

in real life. Our idea consists in applying this

estimation to the projects at the Requirements phase,

so the viability study will be easy and directly

applied by a software tool in an automatic way.

0
200
400

120 365 395
113,4

346,76

396,34

real time (days) counter time (days)

Figure 4: NDT-Counter estimation vs real time.

6 CONCLUSIONS AND FUTURE

WORK

Software Cost Estimation in software development

is a very relevant phase to manage and decide

whether a project should be undertook in terms of

profitability. Several techniques have been presented

in the article, but due to NDT methodology nature,

its Requirements phase analysis and definition of

Actors and Use Cases, we decided to extend the

methodology to carry out estimates by means of the

Use Cases Points technique. For this reason, and the

fact that NDT is well integrated within the

Enterprise Architect tool and this technique could be

automatically applied, we developed the software

tool NDT-Counter. NDT-Counter allows you to

extract the necessary information from the files

containing the requirements in a software project as

well as develop the estimation technique

automatically. The set of factors involved in a

project can be modified by the user, so it can be

adapted to one’s needs. This article shows how

NDT-Counter has been applied for the estimation of

some completed projects and how this estimation

result is very close to the final efforts of the project.

Up to date, estimates were calculated when projects

had been completed. From now on, as this tool

allows automation, we will calculate effort before

executing the project.

ACKNOWLEDGEMENTS

This research has been supported by the Tempros
project (TIN2010-20057-C03-02) and Red CaSA
(TIN 2010-12312-E) of the Ministerio de Ciencia e
Innovación, Spain, and NDTQ-Framework project
of the Junta de Andalucía, Spain (TIC-5789).

REFERENCES

Karner, Gustav. "Resource Estimation for Objectory

Projects" Objective Systems SF AB, 1993.

Escalona, M.J., Aragón, G. “NDT. A Model-Driven

approach for Web requirements”. IEEE Transaction

on Software Engineering, 34(3), pp. 370-390, 2008.

Shepperd, M.; Schofield, C.; Kitchenham, B. "Effort

estimation using analogy". Dept. of Comput.,

Bournemouth Univ. Software Engineering, 1996.

Jorgensen, M."Practical guidelines for expert-judgment-

based software effort estimation". Oslo Univ.,

Norway. Software, pp. 57 - 63, 2005.

Lilja, K. K.; Laakso, K.; Palomki, J. "Using the Delphi

method". Technology Management in the Energy

Smart World (PICMET), 2011 Proceedings of

PICMET '11. Tampere Univ. of Technol., Pori,

Finland, 2011

Boehm, B. W. “Software engineering economics”,

Englewood Cliffs, NJ: Prentice-Hall, 1981.

Boehm, B. W., Abts C., Winsor Brown A., Chulani S.,

Clark B. K., Horowitz E., Madachy R., Reifer D. J., and

Steece B.. “Software Cost Estimation with COCOMO

II”. Englewood Cliffs, NJ: Prentice-Hall, 2000.

Object Constraint Language. OCL. Specification Beta 2.3.

http://www.omg.org/spec/OCL/2.3 /Beta2. 03/2011.

Last visited 04/2012.

Object Management Group. Query View Transformation

Specification 1.0. 2010. http://www.omg.org. Last

visited 10/2011.

Enterprise Architect. www.sparxsystems.com. Last visited

04/2012.

Putnam, L. H., "A general empirical solution to the

macrosoftware sizing and estimating problem", IEEE

Transaction on Software Engineering, 4(4), pp 345-

361, 1978.

Albrecht, A. J.; Gaffney, J. E. "Software function, source

lines of codes, and development effort prediction: a

software science validation", IEEE TSE. SE-9, pp.639-

648, 1983.

Emilia Mendes: “The Use of Bayesian Networks for Web

Effort Estimation: Further Investigation”. ICWE 2008.

Bailey J. W., Basili V. R., “A meta-model for software

development resource expenditures”, Proceedings of

the 5th ICSE, pp 107-116, March 09-12, 1981, San

Diego, California, United States.

Attarzadeh, I.; Siew Hock Ow. "Proposing a new software

cost estimation model based on artificial neural

networks". (ICCET), Vol. 3, pp. 487-4.

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

126

