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Abstract: This paper deals with the design of short irregular Low-Density Parity-Check (LDPC) codes. An optimization
method for the underlying symbol-node degree-distribution (SNDD) of an irregular LDPC code is introduced,
which is based on the Downhill-Simplex (DHS) algorithm. In order to compare our method with the opti-
mization described in (Hu et al., 2005), which is based on a simplified version of the DHS algorithm, we
first designed a rate 0.5 irregular LDPC code of lengthn= 504 for an Additive White Gaussian Noise Chan-
nel (AWGNC). The proposed optimization method was then used to design an irregular LDPC code for a
Markov-modulated Gaussian Channel (MMGC). The decoding performance of the resulting LDPC code is
then compared to the design based on the Density-Evolution (DE) method.

1 INTRODUCTION

The importance of channel coding has increased
rapidly together with the still vast growing market in
the field of digital signal processing. One channel
code that is more and more significant is the Low-
Density Parity-Check (LDPC) code. The principle
of this linear block code has already been published
in 1962 by Robert Gallager (Gallager, 1962). After
LDPC codes had been forgotten for decades, mainly
because of their computational burden, they were re-
discovered by MacKay and Neal in 1995 (MacKay
and Neal, 1995). Since then lots of design techniques
have been developed, yielding in LDPC codes opti-
mized with respect to different design criteria (e.g.
low error-floor, performance close to capacity, hard-
ware implementation). A commonly used tool for
the design of a class of LDPC codes called irregular
LDPC codes is Density-Evolution (DE) (Richardson
et al., 2001)(Luby et al., 2001). In (Eckford, 2004)
the author derived Density-Evolution for Markov-
modulated channels and based on that designed an
irregular LDPC code for a Markov-modulated Gaus-
sian Channel (MMGC).

In section 2 we briefly explain irregular LDPC
codes and their design. In the next section we intro-
duce the DHS-based design that we propose and then
show results in section 4.

2 IRREGULAR LDPC CODES

Low-Density Parity-Check (LDPC) codes are based
on a sparse Parity-Check Matrix (PCM). Then
columns of a PCM stand for then symbols of a LDPC
codeword and each row represents one ofm= n− k
unique parity-check equations withk being the num-
ber of information symbols. The code rate is then
r = k

n. An alternative representation is obtained by
use of a Tanner-graph (Tanner, 1981). Such a bi-
partite graph consists ofn symbol-nodes (SN) and
m check-nodes (CN) corresponding to then columns
andm rows of the PCM respectively. The SNs and
CNs are connected dependent on the nonzero entries
in the PCM. Considering an AWGNC the decoding
of LDPC codes is done using the Belief-Propagation
(BP) algorithm (Gallager, 1962) or an approximation
of it (e.g. the Min-Sum (MS) decoder) (Hu et al.,
2002). The LDPC code of interest in this work is
the irregular LDPC code that, in contrast to regular
LDPC codes, exhibit several row weights and col-
umn weights. They are described by use of polyno-
mials. The following polynomial is used to specify
the symbol-node degree-distribution (SNDD).

λ(x) =
N

∑
j=1

λ jx
d j (1)

λ j is the fraction of SNs that havej +1 connected
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edges anddN is the maximum number of adjacent
edges. The description of the check-node degree-
distribution is likewise.

Density-Evolution (DE) is a powerful tool to ana-
lyze the asymptotic performance of a LDPC code en-
semble described by a pair of degree-distributions (for
the SNs and CNs respectively). In (Richardson et al.,
2001) and (Luby et al., 2001) the authors showed the
possibility of designing good irregular LDPC codes
based on DE. In (Luby et al., 1998) and (Richard-
son and Urbanke, 2001) a concentration theorem is
proved that states, that the performance of an ensem-
ble of LDPC codes decoded with a BP-decoder is con-
centrated around the average performance of the en-
semble. The analysis of LDPC codes using DE is
based on the concentration theorem and on the as-
sumption of a cycle-free code. It is well known that
the shorter the LDPC code the more cycles occur.
Furthermore for short LDPC codes the length of the
cycles is short with respect to the decoding iterations
required in average, which leads to an harmful im-
pact on the decoding performance. In (Amin et al.,
1999) it can be seen that the gap between the pre-
dicted performance based on DE and the real perfor-
mance increases inversely proportional to the block-
length. Furthermore the concentration theorem does
not hold for short LDPC codes. This can be seen in
(MacKay et al., 1999) where a significant variation of
the decoding performance over an ensemble of LDPC
codes is shown. Thus DE is not an appropriate tool
for the design of short LDPC codes. That is the rea-
son for Hu et al. to consider the Downhill-Simplex
(DHS) optimization (Nelder and Mead, 1965) for the
design of short LDPC codes in (Hu et al., 2005).

3 DHS-BASED DESIGN

We adopt the concept of designing short LDPC
codes by means of the DHS algorithm and the
Progressive-Edge-Growth (PEG) algorithm, but in
contrast to (Hu et al., 2005) we establish the whole
DHS-algorithm instead of using a simplified version.
The DHS optimization is based on a simplexS =
{λλλ1,λλλ2, · · · ,λλλN,λλλN+1} with each vertexλλλi represent-
ing a unique SNDD and thus consists ofN values
{λi, j}

N
j=1. During the optimization process the ver-

tices are constantly sorted according to their function
evaluations so thatf (λλλ1) ≤ f (λλλ2) ≤ ·· · ≤ f (λλλN) ≤
f (λλλN+1). In the context of SNDD-optimization the
function evaluation is represented by the computation
of the Word-Error-Ratio (WER). For the AWGNC we
used the Min-Sum-decoder (Hu et al., 2002) and for
the MMGC we decoded by means of the Estimation-

Decoder (ED) as described in (Proß et al., 2010).
The DHS algorithm always tries to replaceλλλN+1 (the
worst vertex) by a better one. This is done based on
an operation calledReflectionwhich is computed by

λλλr = λ̄λλ′+α(λ̄λλ′−λλλN+1) (2)

with α=1 andλ̄λλ′ being the centroid of the simplex
(computed without consideringλλλN+1) on which the
worst vertex is reflected. It is calculated according to

λ̄λλ′ =
1
N

N

∑
i=1

λλλi . (3)

Depending on the WER of the reflected vertexλλλr
one of the following four operations is processed:
Inward Contraction:

λλλic = λλλN+1+β(λ̄λλ′−λλλN+1); (β = 0.5) (4)

Outward Contraction:

λλλoc = λ̄λλ′+β(λ̄λλ′−λλλN+1); (β = 0.5) (5)

Reduction:

λλλinew = λλλ1+σ(λλλi−λλλ1) ∀i \1;(σ = 0.5) (6)

The computation of theExpansionoperation is
based on equation 5 withβ = 2. The whole algorithm
can be seen in Algorithm 1.

rav is the average distance of the vertices to the
centroidλ̄λλ of the simplex and is computed by

rav =
1

N+1

N+1

∑
i=1

√

√

√

√

N

∑
j=1

(λi, j − λ̄ j)2. (7)

λ̄λλ is calculated as in equation 3 except that the sum
includesλλλN+1. Two constraints have to be considered
when optimizing a SNDD:

0< λ j < 1 ∀ j \N (8)

0<
N−1

∑
j=1

λ j < 1 (9)

We respect the constraints in the same way as in
(Hu et al., 2005). In order to reduce the probability of
converging to a local minimum, we repeat the DHS
optimization ten times. The thresholdrthres in Algo-
rithm 1 is set to 1e−4 for the first nine rounds. In
the last round we then include the resulting SNDDs
of the nine previous rounds when creating the initial
simplex and setrthres = 1e−10. For the first round
the ith vertexλλλi = {λi,1, ...,λi,N} of the simplexS =
{λλλ1,λλλ2, ...,λλλN,λλλN+1} is initialized as follows:

λi, j =











0.5− 1
N

N−1 ,∀i \N,∀ j \ i

0.5+ 1
N , j = i

random[0, rmax
j ] , i = N+1

(10)
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with

rmax
j = 1−

j−1

∑
l=1

λi,l (11)

The initializations of the next eight start-simplezes are
done randomly.

4 RESULTS

We designed two short irregular LDPC codes using
the optimization method described in section 3. In
order to compare our design with the one described
in (Hu et al., 2005) we designed one irregular LDPC
code with the same code rater = 0.5 and blocklength
n = 504. We thereby used the only channel-model
that the authors in (Hu et al., 2005) designed for,

Algorithm 1: DHS optimization of the SNDD.

1: Sinitial = {λλλ1,λλλ2, ...,λλλN,λλλN+1} ⊲ create initial
simplex

2: while (rav > rthres) do
3: SORT VERTICES;
4: COMPUTE REFLECTION;

⊲ f (λλλr) in between worst and 2.worst
5: if f (λλλN)< f (λλλr)< f (λλλN+1) then
6: COMPUTE OUTWARDCONTRACTION;
7: if f (λλλoc)< f (λλλr) then
8: λλλN+1← λλλoc
9: else

10: PERFORM REDUCTION;
11: end if

⊲ f (λλλr) worse than worst or equal
12: else if f (λλλN+1)≤ f (λλλr) then
13: COMPUTE INWARDCONTRACTION;
14: if f (λλλic)< f (λλλN+1) then
15: λλλN+1← λλλic
16: else
17: PERFORM REDUCTION;
18: end if

⊲ f (λλλr) better than best or equal
19: else if f (λλλr ≤ f (λλλ1) then
20: COMPUTE EXPANSION;
21: if f (λλλe)< f (λλλr) then
22: λλλN+1← λλλe
23: else
24: λλλN+1← λλλr
25: end if

⊲ f (λλλr) in between best and 2.worst
26: else if f (λλλ1)< f (λλλr)≤ f (λλλN) then
27: λλλN+1← λλλr
28: end if
29: end while

which is the AWGNC. The second design was done
for comparison purposes with the DE-based design
in (Eckford, 2004), where the author designed a rate
r = 0.608 irregular LDPC code for a MMGC. Thus
we designed a LDPC code with the same code rate for
the MMGC as well and chose the blocklength to be
n= 576. For both designs the maximum symbol-node
degree was set todN = 15. Based on the designed
SNDD a PCM was constructed using the PEG algo-
rithm and based on a following simulation the Bit-
Error-Ratio (BER) and the Word-Error-Ratio (WER)
were computed for different values ofEb

N0
.

The resulting SNDD for the AWGNC was
λ(x) = 0.42958x2 + 0.40154x3 + 0.00017x4 +
0.07714x5 + 0.0001x6 + 0.00362x7 + 0.00085x8 +
0.06449x9 + 0.00028x10 + 0.00029x11 +
0.00347x12+0.01379x13+0.00031x14+0.00438x15.
The simulation-results can be seen in Figure 1. For
comparison purposes the results based on the SNDD
of (Hu et al., 2005) are depicted as well. All curves
in Figure 1 are based on 100 decoding iterations with
the Min-Sum decoder (Hu et al., 2002). It is well
seen that the performance of our LDPC code beats
the one from (Hu et al., 2005) with up to 0.25dB for
the BER and up to 0.35dB for the WER.

The design results for the MMGC can be seen in
Figure 2. For each of the three simulations a MMGC
with Pgood= 0.6 andPbad = 0.3 and an ED-decoder
as described in (Proß et al., 2010) was used. The
first simulation is based on the design results in (Eck-
ford, 2004) that are obtained by using DE. The second
simulation evaluates the decoding performance by us-
ing our design method described in section 3. The re-
sulting SNDD wasλ(x) = 0.35489x2+ 0.24392x3+
0.18349x4 + 0.12821x5 + 0.04756x6 + 0.00259x7 +
0.00221x8+0.00227x9+0.00231x10+0.00239x11+
0.00661x12+0.00279x13+0.01083x14+0.00995x15.
We additionally added the results of a simulation with
a regular LDPC code having a SNDD ofλ(x) = x3.
The results in Figure 2 show that the irregular LDPC
code designed with our DHS-method beats the reg-
ular LDPC code as well as the irregular LDPC code
designed with DE in terms of BER and WER.

5 CONCLUSIONS

In this paper an optimization method for the symbol-
node degree-distribution of irregular LDPC codes is
introduced, that is based on the Downhill-Simplex al-
gorithm. We proved that the decoding performance
increases when designing short irregular LDPC codes
with our design method instead of the simplified DHS
version in (Hu et al., 2005). Furthermore an irregular
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Figure 1: Twor = 0.5 LDPC codes withn = 504 and an
AWGNC. DHS refers to the Downhill-Simplex based de-
sign proposed in this paper and Hu refers to the design re-
sults obtained in (Hu et al., 2005).
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Figure 2: Three rate 0.608 LDPC codes of lengthn= 576
with a MMGC and Estimation-Decoding. DE stands for the
Density-Evolution design, DHS for the Downhill-Simplex
based design described in section 3 and reg for a regular
LDPC code.

LDPC code of lengthn = 576 is designed with the
proposed algorithm for a Markov-modulated Gaus-
sian Channel. The results of a following simulation
reveal a superior decoding performance of the LDPC
code designed with our method compared to the de-
sign by means of Density-Evolution.
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