
Polymorphic Random Building Block Operator for Genetic
Algorithms

Ghodrat Moghadampour
VAMK, University of Applied Sciences, Technology and Communication, Wolffintie 30, 65200, Vaasa, Finland

Keywords: Evolutionary Algorithm, Genetic Algorithm, Function Optimization, Mutation Operator, Multipoint
Mutation Operator, Polymorphic Random Building Block Operator, Fitness Evaluation and Analysis.

Abstract: Boosting the evolutionary process of genetic algorithms by generating better individuals, avoiding
stagnation at local optima and refreshing population in a desirable way is a challenging task. Typically
operators are used to achieve these objectives. On the other hand using operators can become a challenging
task in itself if applying them requires setting many parameters through human intervention. Therefore,
developing operators, which do not require human intervention and at the same time are capable of assisting
the evolutionary process, is highly desirable. Most typical genetic operators are mutation and crossover.
However, experience has proved that these operators in their classical form are not capable of refining the
population efficiently enough. In this work a new dynamic mutation operator called polymorphic random
building block operator with variable mutation rate is proposed. This operator does not require any pre-fixed
parameter. It randomly selects a section from the binary presentation of the individual, then generates a
random bit-string of the same length as the selected section and applies bitwise logical AND, OR and XOR
operators between the randomly generated bit-string and the selected section from the individual. In the next
step all three newly generated offspring will go through selection procedure and will replace a possibly
worse individual in the population. Experimentation with 33 test functions and 11550 test runs proved the
superiority of the proposed dynamic mutation operator over single-point mutation operator with 1%, 5% and
8% mutation rates and the multipoint mutation operator with 5%, 8% and 15% mutation rates.

1 INTRODUCTION

Most often genetic algorithms (GAs) have at least
the following elements in common: populations of
chromosomes, selection according to fitness,
crossover to produce new offspring, and random
mutation of new offspring.

A simple GA works as follows: 1) A population
of n l -bit strings (chromosomes) is randomly
generated, 2) the fitness)(xf of each chromosome
x in the population is calculated, 3) chromosomes
are selected to go through crossover and mutation
operators with cp and mp probabilities respectively,
4) the old population is replaced by the new one, 5)
the process is continued until the termination
conditions are met.

However, more sophisticated genetic algorithms
typically include other intelligent operators, which
apply to the specific problem. In addition, the whole
algorithm is normally implemented in a novel way

with user-defined features while for instance
measuring and controlling parameters, which affect
the behaviour of the algorithm.

1.1 Genetic Operators

For any evolutionary computation an appropriate
representation (encoding) of problem variables must
be chosen along with the appropriate evolutionary
computation operators. Data might be represented in
different formats: binary strings, real-valued vectors,
permutations, finite-state machines, parse trees and
so on.

Decision on what genetic operators to use greatly
depends on the encoding strategy of the GA. For
each representation, several operators might be
employed (Michalewicz, 2000). The most
commonly used genetic operators are crossover and
mutation.

342 Moghadampour G..
Polymorphic Random Building Block Operator for Genetic Algorithms.
DOI: 10.5220/0004014103420348
In Proceedings of the 14th International Conference on Enterprise Information Systems (ICEIS-2012), pages 342-348
ISBN: 978-989-8565-10-5
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

1.1.1 Crossover

The simplest form of crossover is single-point: a
single crossover position is chosen randomly and the
parts of the two parents after the crossover position
are exchanged to form two new individuals
(offspring). The idea is to recombine building blocks
(schemas) on different strings.

In two-point crossover, two positions are chosen
at random and the segments between them are
exchanged. Two-point crossover reduces positional
bias and endpoint effect, it is less likely to disrupt
schemas with large defining lengths, and it can
combine more schemas than single-point crossover
(Mitchell, 1998). Two-point crossover has also its
own shortcomings; it cannot combine all schemas.

Multipoint-crossover has also been implemented,
e.g. in one method, the number of crossover points
for each parent is chosen from a Poisson distribution
whose mean is a function of the length of the
chromosome. Another method of implementing
multipoint-crossover is the “parameterized uniform
crossover” in which each bit is exchanged with
probability p , typically 8.05.0 ≤≤ p (Mitchell,
1998).

In parameterized uniform crossover, any
schemas contained at different positions in the
parents can potentially be recombined in the
offspring; there is no positional bias. This implies
that uniform crossover can be highly disruptive of
any schema and may prevent coadapted alleles from
ever forming in the population (Mitchell, 1998).

The one-point and uniform crossover methods
have been combined by some researchers through
extending a chromosomal representation by an
additional bit. There has also been some
experimentation with other crossovers: segmented
crossover and shuffle crossover (Eshelman et al.,
1991; Michalewicz, 1996).

Segmented crossover, a variant of the multipoint,
allows the number of crossover points to vary. The
fixed number of crossover points and segments
(obtained after dividing a chromosome into pieces
on crossover points) are replaced by a segment
switch rate, which specifies the probability that a
segment will end at any point in the string.

The shuffle crossover is an auxiliary mechanism,
which is independent of the number of the crossover
points. It 1) randomly shuffles the bit positions of
the two strings in tandem, 2) exchanges segments
between crossover points, and 3) unshuffles the
string (Michalewicz, 1996). In gene pool
recombination, genes are randomly picked from the
gene pool defined by the selected parents.

1.1.2 Mutation

The common mutation operator used in canonical
genetic algorithms to manipulate binary strings

l
l }1,0{),...(1 =∈= Iaaa of fixed length l was

originally introduced by Holland (Holland, 1975) for
general finite individual spaces lAAI ...1 ×= , where

},...,{
1 lkiiiA αα= . By this definition, the mutation

operator proceeds by:

i. determining the position }),...,1{(,...,1 liii jh ∈ to
undergo mutation by a uniform random choice,
where each position has the same small
probability mp of undergoing mutation,
independently of what happens at other position

ii. forming the new vector
),...,,,...,,,,...,(11111111 laiaiaiaaiaaaia

hhhii +−+− ′′=′ ,

where ii Aa ∈′ is drawn uniformly at random from
the set of admissible values at position i .

The original value ia at a position undergoing
mutation is not excluded from the random choice of

ii Aa ∈′ . This implies that although the position is
chosen for mutation, the corresponding value might
not change at all (Bäck et al., 2000).

Mutation rate is usually very small, like 0.001
(Mitchell, 1998). A good starting point for the bit-
flip mutation operation in binary encoding is

LPm
1= , where L is the length of the chromosome

(Mühlenbein, 1992). Since L
1 corresponds to

flipping one bit per genome on average, it is used as
a lower bound for mutation rate. A mutation rate of
range []01.0,005.0∈mP is recommended for binary
encoding (Ursem, 2003). For real-value encoding
the mutation rate is usually []9.0,6.0∈mP and the
crossover rate is []0.1,7.0∈mP (Ursem, 2003).

While recombination involves more than one
parent, mutation generally refers to the creation of a
new solution from one and only one parent. Given a
real-valued representation where each element in a
population is an n -dimensional vector nx ℜ∈ , there
are many methods for creating new offspring using
mutation. The general form of mutation can be
written as:

)(xmx =′ (1)

where x is the parent vector, m is the mutation
function and x′ is the resulting offspring vector. The
more common form of mutation generated offspring
vector:

Polymorphic�Random�Building�Block�Operator�for�Genetic�Algorithms

343

Mxx +=′ (2)

where the mutation M is a random variable. M has
often zero mean such that

xxE =′)((3)

the expected difference between the real values of a
parent and its offspring is zero (Bäck et al., 2000).

Some forms of evolutionary algorithms apply
mutation operators to a population of strings without
using recombination, while other algorithms may
combine the use of mutation with recombination.
Any form of mutation applied to a permutation must
yield a string, which also presents a permutation.
Most mutation operators for permutations are related
to operators, which have also been used in
neighbourhood local search strategies (Whitley,
2000). Some other variations of the mutation
operator for more specific problems have been
introduced in (Bäck et al., 2000). Some new
methods and techniques for applying crossover and
mutation operators have also been presented in
(Moghadampour, 2006).

1.1.3 Other Operators and Mating
Strategies

In addition to common crossover and mutation some
other operators are used in GAs including inversion,
gene doubling and other operators for preserving
diversity in the population. For instance, a
“crowding” operator has been used in (De Jong,
1975; Mitchell, 1998) to prevent too many similar
individuals (“crowds”) from being in the population
at the same time. This operator replaces an existing
individual by a newly formed and most similar
offspring.

In (Mengshoel et al., 2008) a probabilistic
crowding niching algorithm in which subpopulations
are maintained reliably, is presented. It is argued that
like the closely related deterministic crowding
approach, probabilistic crowding is fast, simple, and
requires no parameters beyond those of classical
genetic algorithms.

Diversity in the population can also be promoted
by putting restrictions on mating. For instance,
distinct “species” tend to be formed if only
sufficiently similar individuals are allowed to mate
(Mitchell, 1998). Another attempt to keep the entire
population as diverse as possible is disallowing
mating between too similar individuals, “incest”
(Eshelman et al., 1991; Mitchell, 1998).

Another solution is to use a “sexual selection”
procedure; allowing mating only between
individuals having the same “mating tags” (parts of

the chromosome that identify prospective mates to
one another). These tags, in principle, would also
evolve to implement appropriate restrictions on new
prospective mates (Holland, 1975).

Another solution is to restrict mating spatially.
The population evolves on a spatial lattice, and
individuals are likely to mate only with individuals
in their spatial neighborhoods. Such a scheme would
help preserve diversity by maintaining spatially
isolated species, with innovations largely occurring
at the boundaries between species (Mitchell, 1998).

The efficiency of genetic algorithms has also
been tried by imposing adaptively, where the
algorithm operators are controlled dynamically
during runtime (Eiben et al. 2008). These methods
can be categorized as deterministic, adaptive, and
self-adaptive methods (Eiben & Smitt, 2007; Eiben
et al. 2008). Adaptive methods adjust the
parameters’ values during runtime based on
feedback from the algorithm (Eiben et al. 2008),
which are mostly based on the quality of the
solutions or speed of the algorithm (Smit et al.,
2009).

2 THE POLYMORPHIC
RANDOM BUILDING BLOCK
OPERATOR

The polymorphic random building block (PRBB)
operator is a new self-adaptive operator proposed
here. The random building block (RBB) operator
was originally presented in (Moghadampour, 2006;
Moghadampour, 2011; Moghadampour, 2012),
where promising results were also reported.

In this paper we modify the original idea of the
operator by applying multiple logical bitwise
operators, namely AND, OR and XOR during
mutation process in order to produce new offspring.
During the classical crossover operation, building
blocks of two or more individuals of the population
are exchanged in the hope that a better building
block from one individual will replace a worse
building block in the other individual and improve
the individual’s fitness value. However, the
polymorphic random building block operator
involves only one individual.

The polymorphic random building block
operator resembles more the multipoint mutation
operator, but it lacks the frustrating complexity of
such an operator. The reason for this is that the
random building block operator does not require any
pre-defined parameter value and it automatically

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

344

takes into account the length (number of bits) of the
individual at hand. In practice, the polymorphic
random building block operator selects a section
(1s) of random length (sl) from the binary
presentation of the individual at hand. In the next
step the operator produces randomly a binary string
(2s) of the same size (sl) and then applies AND,
OR and XOR bitwise operators between 1s and 2s
in turn in order to produce three new offspring. In
the next step these newly generated offspring go
through selection procedure one by one to be either
selected or discarded.

This operator can help breaking the possible
deadlock when the classic crossover operator fails to
improve individuals. It can also refresh the
population by injecting better building blocks into
individuals, which are not currently found from the
population. Figure 1 describes the random building
block operator.

Figure 1: The polymorphic random building block
operator. A random building block is generated and is
combined with the individual through AND, OR and XOR
operators to generate three new offspring.

This operation is implemented in the following
order: 1) for each individual ind of binary length l
in the population a section length sl proportionate
to the number of variables in the problem is
randomly generated so that

variablesnumber_of_
l

sl ≤≤1 , 2) two crossover points

1cp and 2cp are randomly selected so that
12 cpcpls −= , 3) a random bit string bstr of length

sl is generated, 4) bits between the crossover points
on the individual ind go through bitwise AND, OR
and XOR logical operators with the bits on the bit
string bstr to generate three new offspring, and 5)
each newly generated offspring go through the
selection procedure.

2.1 Survivor Selection

After each operator application, new offspring are
evaluated and compared to the population
individuals. Newly generated offspring will replace
the worst individual in the population if they are
better than the worst individual. Therefore, the
algorithm is a steady state genetic algorithm.

3 EXPERIMENTATION

The random building block operator, three versions
of single-point mutation operator (with 1%, 5% and
8% mutation rates) and three versions of multipoint
mutation operator (with 5%, 8% and 15% mutation
rates) were implemented as prat of a genetic
algorithm to solve the following demanding minimi-
zation problems: Ackley’s (768.32768.32: ≤≤−∀ ii xx),
Colville’s (1010: ≤≤−∀ ii xx), Griewank’s F1
(600600: ≤≤−∀ ii xx), Rastrigin’s (5.12-5.12: ≤≤∀ ii xx),
Rosenbrock’s (100-100: ≤≤∀ ii xx) and Schaffer’s F6
(100100: ≤≤−∀ ii xx). Some of these functions have a
fixed number of variables and some others are
multidimensional in which the number of variables
could be determined by the user. For
multidimensional problems with an optional number
of dimensions (n), the algorithm was tested for

100 ,50 ,30 ,10 ,5 3, ,2 ,1=n . The exception to this was the
Rosenbrock’s function for which the minimum
number of variables is 2. The efficiency of each of
the operators in generating better fitness values was
studied.

During experimentation only one operator was
tested at each time. To simplify the situation and
clarify interpretation of experimentation results the
operators were not combined with other operators,
like crossover.
Single-point mutation operator was implemented so
that the total number of mutation points
(mut_pointstotal _) was calculated by multiplying the
mutation rate (ratem _) by the binary length of the
individual (lengthbinind __) and the population size
(sizepop _):

sizepoplengthbinindratemmut_pointstotal _____ ××= (4)

Then during each generation for the total number
of mutation points one gene was randomly selected
from an individual in the population and mutated.
Multipoint mutation operator was implemented so
that during each generation for the total number of

Polymorphic�Random�Building�Block�Operator�for�Genetic�Algorithms

345

mutation points (mut_pointstotal _) a random number
of mutation points (mut_pointssub _) from a random
number of individuals in the population was selected
and mutated. This process was continued until the
total number of mutation points was consumed:

∑
=

=
n

i
iintssub_mut_popointstotal_mut_

1
 (5)

For each test case the steady-state algorithm was
run for 50 times. The population size was set to 9
and the maximum number of function evaluations
for each run was set to 10000. The exception to this
was the Rosenbrock’s function for which the number
of function evaluations was set to 100000 in order to
get some reasonable results.

The mapping between binary strings into
floating-point numbers and vice versa was
implemented according to the following well-known
steps:
1. The distance between the upper and the lower

bounds of variables is divided according to the
required precisions, precision (e.g. the precision
for 6 digits after the decimal point is)10(1000000)
in the following way:

precisionlowerboundupperbound ×−)((6)

2. Then an integer number l is found so that:
lprecisionlowerboundupperbound 2)(≤×− (7)

Thus, l determines the length of binary
representation, which implies that each chromosome
in the population is l bits long. Therefore, if we
have a binary string x′ of length l , in order to
convert it to a real value x , we first convert the
binary string to its corresponding integer value in
base 10,)10(x′ and then calculate the corresponding
floating-point value x according to the following
formula:

12
)10(

−

−
×′+=

l
lowerboundupperboundxlowerboundx (8)

The variable and solution precisions set for different
problems were slightly different, but the same
variable and solution precisions were set the same
for all operators. During each run the best fitness
value achieved during each generation was recorded.
This made it possible to figure out when the best
fitness value of the run was actually found. Later at
the end of 50 runs for each test case the average of
the best fitness values and the required function
evaluations were calculated for comparison. In the

following, test results for comparing the efficiency
of polymorphic random building block operator with
different versions of mutation operator are reported.

Experimentation results indicated that the
polymorphic random building block operator had
produced much better results than different versions
of the single-point mutation operator in all test cases.
The difference in performance seemed to be
significant for Colville’s function and Ackley’s and
Griewank’s functions when the number of variables
increases.

Very low p-values for T-test and F-test indicated
that the performance values achieved by
Polymorphic Random Building Block operator were
significantly smaller than the ones achieved by other
operators.

The performance of the polymorphic random
building block operator against the single-point
mutation operator was also tested on Rastrigin’s,
Rosenbrock’s and Schaffer’s F6 functions.

Studying results proved that the polymorphic
random building block operator has been able to
produce significantly better results in more than 87%
of test cases. The results indicated that for
Rosenbrock50 and Rosenbrock 100 the polymorphic
random building block had on average produced
worse results than the single mutation point
operator. However, studying the results showed that
there are huge differences between the median
values (in parentheses) of test results for the benefit
of the polymorphic random building block. While
the median values for polymorphic random building
block operator were less than the average values, the
situation was vice versa in all cases for different
versions of single point mutation operators. For
Rosenbrock50 in 58% of test cases the fitness value
achieved by polymorphic random building block
operator was less than 351, which is the average of
fitness values achieved by single mutation operator
with 8% mutation rate. This means that in 58% of
test cases polymorphic random building block had a
better performance in finding the best fitness value
for Rosenbrock’s function with 50 variables.

For Rosenbrock100 in 60% of test cases the
fitness value achieved by polymorphic random
building block operator was less than 342, which is
the average of fitness values achieved by single
mutation operator with 8% mutation rate. This
means that in 60% of test cases polymorphic random
building block had a better performance over
mutation operator with 1% and 5% mutation rates in
finding the best fitness value for Rosenbrock’s
function with 100 variables.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

346

Very low p-values for T-test and F-test indicated
that the performance values achieved by
polymorphic random building block operator are
significantly smaller than the ones achieved by other
operators.

Analysis showed that the differences between
average fitness values achieved with different
operators wer not significant for Rosenbrock’s
function with 50 and 100 variables. The superiority
of polymorphic random building block operator
becomes clear if we recall that it produced in most
cases better results than the average values achieved
by other operators.

The performance of the polymorphic random
building block operator was also compared against
the multipoint mutation operator in which several
points of the individual were mutated during each
mutation operator. As it was earlier mentioned the
number of points to be mutated during each
mutation operation was randomly determined.
Mutation cycles were repeated until total mutation
points were utilized. Clearly, the total number of
mutation points was determined by the mutation
rate, which was 5%, 8% and 15% for different
experimentations.

Comparing results proved that the fitness values
achieved by the building block operator were better
than the ones achieved by different versions of
multipoint mutation operator in all cases.
Differences between the average fitness values
achieved for Ackley’s and Griewank’s functions
with 30, 50 and 100 variables by the polymorphic
random building block and different versions of
multipoint mutation operator were even more
substantial.

Very low p-values for T-test and F-test indicated
that the performance values achieved by
polymorphic random building block operator were
significantly smaller than the ones achieved by other
operators.

The performance of the polymorphic random
building block operator against the multipoint
mutation operator was also tested on Rastrigin’s,
Rosenbrock’s and Schaffer’s F6 functions.

Experimentation showed that the polymorphic
random building block operator had also
outperformed multipoint mutation operator with 5%,
8% and 15% mutation rates. In most cases
differences in performance were huge in favour of
polymorphic random building block operator.

A small p-value for T-test and very low p-value
for F-test indicate that the performance values
achieved by polymorphic random building block

operator were significantly smaller than the ones
achieved by other operators.

4 CONCLUSIONS

In this paper a dynamic mutation operator;
polymorphic random building block operator for
genetic algorithms was proposed. The operator was
tested against single-point mutation operator with
1%, 5% and 8% mutation rates and multipoint
mutation operator with 5%, 8% and 15% mutation
rates.

Comparing test results revealed that the
polymorphic random building block operator was
capable of achieving better fitness values within less
function evaluations compared to different versions
of single-point and multipoint mutation operators.
The fascinating feature of polymorphic random
building block is that it is dynamic and therefore
does not require any pre-set parameter.

However, for mutation operators the mutation
rate and the number of mutation points should be set
in advance. The polymorphic random building block
can be used straight off the shelf without needing to
know its best recommended rate. Hence, it lacks
frustrating complexity, which is typical for different
versions of the mutation operator.

Therefore, it can be claimed that the polymorphic
random building block is superior to the mutation
operator and capable of improving individuals in the
population more efficiently.

4.1 Future Research

The proposed operator can be combined with other
operators and applied to new problems and its
efficiency in helping the search process can be
evaluated more thoroughly with new functions.
Moreover, the polymorphic random building block
operator can be adopted as part of the genetic
algorithm to compete with other state-of-the-art
algorithms on solving more problems.

REFERENCES

Bäck, Thomas, David B. Fogel, Darrell Whitely & Peter J.
Angeline, 2000. Mutation operators. In: Evolutionary
Computation 1, Basic Algorithms and Operators. Eds
T. Bäck, D.B. Fogel & Z. Michalewicz. United
Kingdom: Institute of Physics Publishing Ltd, Bristol
and Philadelphia. ISBN 0750306645.

Polymorphic�Random�Building�Block�Operator�for�Genetic�Algorithms

347

De Jong, K. A., 1975. An Analysis of the Behavior of a
Class of Genetic Adaptive Systems. Ph.D. thesis,
University of Michigan. Michigan: Ann Arbor.

Eiben, A. and J. Smith, 2007. Introduction to Evolutionary
Computing. Natural Computing Series. Springer, 2nd
edition.

Eiben, G. and M. C. Schut, 2008. New Ways To Calibrate
Evolutionary Algorithms. In Advances in
Metaheuristics for Hard Optimization, pages 153–177.

Eshelman, L. J. & J. D. Schaffer, 1991. Preventing
premature convergence in genetic algorithms by
preventing incest. In Proceedings of the Fourth
International Conference on Genetic Algorithms. Eds.
R. K. Belew & L. B. Booker. San Mateo, CA :
Morgan Kaufmann Publishers.

Holland, J. H., 1975. Adaptation in Natural and Artificial
Systems. Ann Arbor: MI: University of Michigan
Press.

Mengshoel, Ole J. & Goldberg, David E., 2008. The
crowding approach to niching in genetic algorithms.
Evolutionary Computation, Volume 16 , Issue 3 (Fall
2008). ISSN:1063-6560.

Michalewicz, Zbigniew (1996). Genetic Algorithms +
Data Structures = Evolution Programs. Third,
Revised and Extended Edition. USA: Springer. ISBN
3-540-60676-9.

Michalewicz, Zbigniew, 2000. Introduction to search
operators. In Evolutionary Computation 1, Basic
Algorithms and Operators. Eds T. Bäck, D.B. Fogel &
Z. Michalewicz. United Kingdom: Institute of Physics
Publishing Ltd, Bristol and Philadelphia. ISBN
0750306645.

Mitchell, Melanie, 1998. An Introducton to Genetic
Algorithms. United States of America: A Bradford
Book. First MIT Press Paperback Edition.

Moghadampour, Ghodrat (2006). Genetic Algorithms,
Parameter Control and Function Optimization: A New
Approach. PhD dissertation. ACTA WASAENSIA
160, Vaasa, Finland. ISBN 952-476-140-8.

Moghadampour, Ghodrat (2011). Random Building Block
Operator for Genetic Algorithms. 13th International
Conference on Enterprise Information Systems (ICEIS
2011), 08 - 11 June 2011Beijing – China.

Moghadampour, Ghodrat (2012). Outperforming Mutation
Operator with Random Building Block Operator in
Genetic Algorithms. In Enterprise Information
Systems International Conference, ICEIS 2011
Beijing, China, June 8-11, 2011 Revised Selected
Papers. Eds. Runtong Zhang, Zhenji Zhang, Juliang
Zhang, Joaquim Filipe and José Cordeiro. Springer-
Verlag LNBIP Series book.

Mühlenbein, H., 1992. How genetic algorithms really
work: 1. mutation and hill-climbing. In: Parallel
Problem Solving from Nature 2. Eds R. Männer & B.
Manderick. North-Holland.

Smit, S. K. and Eiben, A. E., 2009. Comparing Parameter
Tuning Methods for Evolutionary Algorithms. In IEEE
Congress on Evolutionary Computation (CEC), pages
399–406, May 2009.

Spears, W. M., 1993. Crossover or mutation? In:
Foundations of Genetic Algorithms 2. Ed. L. D.
Whitely. Morgan Kaufmann.

Ursem, Rasmus K., 2003. Models for Evolutionary
Algorithms and Their Applications in System
Identification and Control Optimization (PhD
Dissertation). A Dissertation Presented to the Faculty
of Science of the University of Aarhus in Partial
Fulfillment of the Requirements for the PhD Degree.
Department of Computer Science, University of
Aarhus, Denmark.

Whitley, Darrell, 2000. Permutations. In Evolutionary
Computation 1, Basic Algorithms and Operators. Eds
T. Bäck, D.B. Fogel & Z. Michalewicz. United
Kingdom: Institute of Physics Publishing Ltd, Bristol
and Philadelphia. ISBN 0750306645.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

348

