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Abstract: Boosting the evolutionary process of genetic algorithms by generating better individuals, avoiding 
stagnation at local optima and refreshing population in a desirable way is a challenging task. Typically 
operators are used to achieve these objectives. On the other hand using operators can become a challenging 
task in itself if applying them requires setting many parameters through human intervention. Therefore, 
developing operators, which do not require human intervention and at the same time are capable of assisting 
the evolutionary process, is highly desirable. Most typical genetic operators are mutation and crossover. 
However, experience has proved that these operators in their classical form are not capable of refining the 
population efficiently enough. In this work a new dynamic mutation operator called polymorphic random 
building block operator with variable mutation rate is proposed. This operator does not require any pre-fixed 
parameter. It randomly selects a section from the binary presentation of the individual, then generates a 
random bit-string of the same length as the selected section and applies bitwise logical AND, OR and XOR 
operators between the randomly generated bit-string and the selected section from the individual. In the next 
step all three newly generated offspring will go through selection procedure and will replace a possibly 
worse individual in the population. Experimentation with 33 test functions and 11550 test runs proved the 
superiority of the proposed dynamic mutation operator over single-point mutation operator with 1%, 5% and 
8% mutation rates and the multipoint mutation operator with 5%, 8% and 15% mutation rates. 

1 INTRODUCTION 

Most often genetic algorithms (GAs) have at least 
the following elements in common: populations of 
chromosomes, selection according to fitness, 
crossover to produce new offspring, and random 
mutation of new offspring.  

A simple GA works as follows: 1) A population 
of n  l -bit strings (chromosomes) is randomly 
generated, 2) the fitness )(xf  of each chromosome 
x  in the population is calculated, 3) chromosomes 
are selected to go through crossover and mutation 
operators with cp  and mp  probabilities respectively, 
4) the old population is replaced by the new one, 5) 
the process is continued until the termination 
conditions are met. 

However, more sophisticated genetic algorithms 
typically include other intelligent operators, which 
apply to the specific problem. In addition, the whole 
algorithm is normally implemented in a novel way 

with user-defined features while for instance 
measuring and controlling parameters, which affect 
the behaviour of the algorithm.  

 
1.1 Genetic Operators 

For any evolutionary computation an appropriate 
representation (encoding) of problem variables must 
be chosen along with the appropriate evolutionary 
computation operators. Data might be represented in 
different formats: binary strings, real-valued vectors, 
permutations, finite-state machines, parse trees and 
so on. 

Decision on what genetic operators to use greatly 
depends on the encoding strategy of the GA. For 
each representation, several operators might be 
employed (Michalewicz, 2000). The most 
commonly used genetic operators are crossover and 
mutation. 
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1.1.1 Crossover  

The simplest form of crossover is single-point: a 
single crossover position is chosen randomly and the 
parts of the two parents after the crossover position 
are exchanged to form two new individuals 
(offspring). The idea is to recombine building blocks 
(schemas) on different strings.  

In two-point crossover, two positions are chosen 
at random and the segments between them are 
exchanged. Two-point crossover reduces positional 
bias and endpoint effect, it is less likely to disrupt 
schemas with large defining lengths, and it can 
combine more schemas than single-point crossover 
(Mitchell, 1998). Two-point crossover has also its 
own shortcomings; it cannot combine all schemas. 

Multipoint-crossover has also been implemented, 
e.g. in one method, the number of crossover points 
for each parent is chosen from a Poisson distribution 
whose mean is a function of the length of the 
chromosome. Another method of implementing 
multipoint-crossover is the “parameterized uniform 
crossover” in which each bit is exchanged with 
probability p , typically 8.05.0 ≤≤ p  (Mitchell, 
1998).  

In parameterized uniform crossover, any 
schemas contained at different positions in the 
parents can potentially be recombined in the 
offspring; there is no positional bias. This implies 
that uniform crossover can be highly disruptive of 
any schema and may prevent coadapted alleles from 
ever forming in the population (Mitchell, 1998). 

The one-point and uniform crossover methods 
have been combined by some researchers through 
extending a chromosomal representation by an 
additional bit. There has also been some 
experimentation with other crossovers: segmented 
crossover and shuffle crossover (Eshelman et al., 
1991; Michalewicz, 1996).  

Segmented crossover, a variant of the multipoint, 
allows the number of crossover points to vary. The 
fixed number of crossover points and segments 
(obtained after dividing a chromosome into pieces 
on crossover points) are replaced by a segment 
switch rate, which specifies the probability that a 
segment will end at any point in the string.  

The shuffle crossover is an auxiliary mechanism, 
which is independent of the number of the crossover 
points. It 1) randomly shuffles the bit positions of 
the two strings in tandem, 2) exchanges segments 
between crossover points, and 3) unshuffles the 
string (Michalewicz, 1996). In gene pool 
recombination, genes are randomly picked from the 
gene pool defined by the selected parents. 

1.1.2 Mutation 

The common mutation operator used in canonical 
genetic algorithms to manipulate binary strings 

l
l }1,0{),...( 1 =∈= Iaaa  of fixed length l  was 

originally introduced by Holland (Holland, 1975) for 
general finite individual spaces lAAI ...1 ×= , where 

},...,{
1 lkiiiA αα= . By this definition, the mutation 

operator proceeds by: 

i. determining the position }),...,1{(,...,1 liii jh ∈  to 
undergo mutation by a uniform random choice, 
where each position has the same small 
probability mp  of undergoing mutation, 
independently of what happens at other position  

ii. forming the new vector 
),...,,,...,,,,...,( 11111111 laiaiaiaaiaaaia

hhhii +−+− ′′=′ , 

where ii Aa ∈′ is drawn uniformly at random from 
the set of admissible values at position i . 

The original value ia  at a position undergoing 
mutation is not excluded from the random choice of 

ii Aa ∈′ . This implies that although the position is 
chosen for mutation, the corresponding value might 
not change at all (Bäck et al., 2000). 

Mutation rate is usually very small, like 0.001 
(Mitchell, 1998). A good starting point for the bit-
flip mutation operation in binary encoding is 

LPm
1= , where L  is the length of the chromosome 

(Mühlenbein, 1992). Since L
1  corresponds to 

flipping one bit per genome on average, it is used as 
a lower bound for mutation rate. A mutation rate of 
range [ ]01.0,005.0∈mP  is recommended for binary 
encoding (Ursem, 2003). For real-value encoding 
the mutation rate is usually [ ]9.0,6.0∈mP  and the 
crossover rate is [ ]0.1,7.0∈mP  (Ursem, 2003). 

While recombination involves more than one 
parent, mutation generally refers to the creation of a 
new solution from one and only one parent. Given a 
real-valued representation where each element in a 
population is an n -dimensional vector nx ℜ∈ , there 
are many methods for creating new offspring using 
mutation. The general form of mutation can be 
written as: 

)(xmx =′  (1)

where x  is the parent vector, m  is the mutation 
function and x′  is the resulting offspring vector. The 
more common form of mutation generated offspring 
vector: 

Polymorphic�Random�Building�Block�Operator�for�Genetic�Algorithms

343



Mxx +=′  (2)

where the mutation M  is a random variable. M  has 
often zero mean such that 

xxE =′)(  (3)

the expected difference between the real values of a 
parent and its offspring is zero (Bäck et al., 2000). 

Some forms of evolutionary algorithms apply 
mutation operators to a population of strings without 
using recombination, while other algorithms may 
combine the use of mutation with recombination. 
Any form of mutation applied to a permutation must 
yield a string, which also presents a permutation. 
Most mutation operators for permutations are related 
to operators, which have also been used in 
neighbourhood local search strategies (Whitley, 
2000). Some other variations of the mutation 
operator for more specific problems have been 
introduced in (Bäck et al., 2000). Some new 
methods and techniques for applying crossover and 
mutation operators have also been presented in 
(Moghadampour, 2006).  

1.1.3 Other Operators and Mating 
Strategies 

In addition to common crossover and mutation some 
other operators are used in GAs including inversion, 
gene doubling and other operators for preserving 
diversity in the population. For instance, a 
“crowding” operator has been used in (De Jong, 
1975; Mitchell, 1998) to prevent too many similar 
individuals (“crowds”) from being in the population 
at the same time. This operator replaces an existing 
individual by a newly formed and most similar 
offspring.  

In (Mengshoel et al., 2008) a probabilistic 
crowding niching algorithm in which subpopulations 
are maintained reliably, is presented. It is argued that 
like the closely related deterministic crowding 
approach, probabilistic crowding is fast, simple, and 
requires no parameters beyond those of classical 
genetic algorithms. 

Diversity in the population can also be promoted 
by putting restrictions on mating. For instance, 
distinct “species” tend to be formed if only 
sufficiently similar individuals are allowed to mate 
(Mitchell, 1998). Another attempt to keep the entire 
population as diverse as possible is disallowing 
mating between too similar individuals, “incest” 
(Eshelman et al., 1991; Mitchell, 1998).  

Another solution is to use a “sexual selection” 
procedure; allowing mating only between 
individuals having the same “mating tags” (parts of 

the chromosome that identify prospective mates to 
one another). These tags, in principle, would also 
evolve to implement appropriate restrictions on new 
prospective mates (Holland, 1975). 

Another solution is to restrict mating spatially. 
The population evolves on a spatial lattice, and 
individuals are likely to mate only with individuals 
in their spatial neighborhoods. Such a scheme would 
help preserve diversity by maintaining spatially 
isolated species, with innovations largely occurring 
at the boundaries between species (Mitchell, 1998). 

The efficiency of genetic algorithms has also 
been tried by imposing adaptively, where the 
algorithm operators are controlled dynamically 
during runtime (Eiben et al. 2008). These methods 
can be categorized as deterministic, adaptive, and 
self-adaptive methods (Eiben & Smitt, 2007; Eiben 
et al. 2008). Adaptive methods adjust the 
parameters’ values during runtime based on 
feedback from the algorithm (Eiben et al. 2008), 
which are mostly based on the quality of the 
solutions or speed of the algorithm (Smit et al., 
2009). 

2 THE POLYMORPHIC 
RANDOM BUILDING BLOCK 
OPERATOR 

The polymorphic random building block (PRBB) 
operator is a new self-adaptive operator proposed 
here. The random building block (RBB) operator 
was originally presented in (Moghadampour, 2006; 
Moghadampour, 2011; Moghadampour, 2012), 
where promising results were also reported.  

In this paper we modify the original idea of the 
operator by applying multiple logical bitwise 
operators, namely AND, OR and XOR during 
mutation process in order to produce new offspring. 
During the classical crossover operation, building 
blocks of two or more individuals of the population 
are exchanged in the hope that a better building 
block from one individual will replace a worse 
building block in the other individual and improve 
the individual’s fitness value. However, the 
polymorphic random building block operator 
involves only one individual.  

The polymorphic random building block 
operator resembles more the multipoint mutation 
operator, but it lacks the frustrating complexity of 
such an operator. The reason for this is that the 
random building block operator does not require any 
pre-defined parameter value and it automatically 
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takes into account the length (number of bits) of the 
individual at hand. In practice, the polymorphic 
random building block operator selects a section 
( 1s ) of random length ( sl ) from the binary 
presentation of the individual at hand. In the next 
step the operator produces randomly a binary string 
( 2s ) of the same size ( sl ) and then applies AND, 
OR and XOR bitwise operators between 1s  and 2s  
in turn in order to produce three new offspring. In 
the next step these newly generated offspring go 
through selection procedure one by one to be either 
selected or discarded. 

This operator can help breaking the possible 
deadlock when the classic crossover operator fails to 
improve individuals. It can also refresh the 
population by injecting better building blocks into 
individuals, which are not currently found from the 
population. Figure 1 describes the random building 
block operator. 

 
Figure 1: The polymorphic random building block 
operator. A random building block is generated and is 
combined with the individual through AND, OR and XOR 
operators to generate three new offspring. 

This operation is implemented in the following 
order: 1) for each individual ind  of binary length l  
in the population a section length sl  proportionate 
to the number of variables in the problem is 
randomly generated so that 

variablesnumber_of_
l

sl ≤≤1 ,  2) two crossover points 

1cp  and 2cp  are randomly selected so that 
12 cpcpls −= , 3) a random bit string bstr  of length  

sl  is generated, 4) bits between the crossover points 
on the individual ind  go through bitwise AND, OR 
and XOR logical operators with the bits on the bit 
string bstr to generate three new offspring, and 5) 
each newly generated offspring go through the 
selection procedure. 

2.1 Survivor Selection 

After each operator application, new offspring are 
evaluated and compared to the population 
individuals. Newly generated offspring will replace 
the worst individual in the population if they are 
better than the worst individual. Therefore, the 
algorithm is a steady state genetic algorithm. 

3 EXPERIMENTATION 

The random building block operator, three versions 
of single-point mutation operator (with 1%, 5% and 
8% mutation rates) and three versions of multipoint 
mutation operator (with 5%, 8% and 15% mutation 
rates) were implemented as prat of a genetic 
algorithm to solve the following demanding minimi-
zation problems: Ackley’s ( 768.32768.32: ≤≤−∀ ii xx ), 
Colville’s ( 1010: ≤≤−∀ ii xx ), Griewank’s F1 
( 600600: ≤≤−∀ ii xx ), Rastrigin’s ( 5.12-5.12: ≤≤∀ ii xx ), 
Rosenbrock’s ( 100-100: ≤≤∀ ii xx ) and Schaffer’s F6 
( 100100: ≤≤−∀ ii xx ). Some of these functions have a 
fixed number of variables and some others are 
multidimensional in which the number of variables 
could be determined by the user. For 
multidimensional problems with an optional number 
of dimensions ( n ), the algorithm was tested for 

100 ,50 ,30 ,10 ,5 3, ,2 ,1=n . The exception to this was the 
Rosenbrock’s function for which the minimum 
number of variables is 2. The efficiency of each of 
the operators in generating better fitness values was 
studied.   

During experimentation only one operator was 
tested at each time. To simplify the situation and 
clarify interpretation of experimentation results the 
operators were not combined with other operators, 
like crossover.  
Single-point mutation operator was implemented so 
that the total number of mutation points 
( mut_pointstotal _ ) was calculated by multiplying the 
mutation rate ( ratem _ ) by the binary length of the 
individual ( lengthbinind __ ) and the population size 
( sizepop _ ): 

sizepoplengthbinindratemmut_pointstotal _____ ××=  (4)

Then during each generation for the total number 
of mutation points one gene was randomly selected 
from an individual in the population and mutated. 
Multipoint mutation operator was implemented so 
that during each generation for the total number of 

Polymorphic�Random�Building�Block�Operator�for�Genetic�Algorithms

345



mutation points ( mut_pointstotal _ ) a random number 
of mutation points ( mut_pointssub _ ) from a random 
number of individuals in the population was selected 
and mutated. This process was continued until the 
total number of mutation points was consumed: 

∑
=

=
n

i
iintssub_mut_popointstotal_mut_

1
 (5)

For each test case the steady-state algorithm was 
run for 50 times. The population size was set to 9 
and the maximum number of function evaluations 
for each run was set to 10000. The exception to this 
was the Rosenbrock’s function for which the number 
of function evaluations was set to 100000 in order to 
get some reasonable results.  

The mapping between binary strings into 
floating-point numbers and vice versa was 
implemented according to the following well-known 
steps: 
1. The distance between the upper and the lower 

bounds of variables is divided according to the 
required precisions, precision (e.g. the precision 
for 6 digits after the decimal point is )10(1000000 ) 
in the following way: 

precisionlowerboundupperbound ×− )(  (6)

2. Then an integer number l  is found so that: 
lprecisionlowerboundupperbound 2)( ≤×−  (7)

Thus, l determines the length of binary 
representation, which implies that each chromosome 
in the population is   l  bits long. Therefore, if we 
have a binary string x′ of length l , in order to 
convert it to a real value x , we first convert the 
binary string to its corresponding integer value in 
base 10, )10(x′  and then calculate the corresponding 
floating-point value x   according to the following 
formula:  

12
)10(

−

−
×′+=

l
lowerboundupperboundxlowerboundx  (8)

The variable and solution precisions set for different 
problems were slightly different, but the same 
variable and solution precisions were set the same 
for all operators. During each run the best fitness 
value achieved during each generation was recorded. 
This made it possible to figure out when the best 
fitness value of the run was actually found. Later at 
the end of 50 runs for each test case the average of 
the best fitness values and the required function 
evaluations were calculated for comparison. In the 

following, test results for comparing the efficiency 
of polymorphic random building block operator with 
different versions of mutation operator are reported. 

Experimentation results indicated that the 
polymorphic random building block operator had 
produced much better results than different versions 
of the single-point mutation operator in all test cases. 
The difference in performance seemed to be 
significant for Colville’s function and Ackley’s and 
Griewank’s functions when the number of variables 
increases.  

Very low p-values for T-test and F-test indicated 
that the performance values achieved by 
Polymorphic Random Building Block operator were 
significantly smaller than the ones achieved by other 
operators.  

The performance of the polymorphic random 
building block operator against the single-point 
mutation operator was also tested on Rastrigin’s, 
Rosenbrock’s and Schaffer’s F6 functions. 

Studying results proved that the polymorphic 
random building block operator has been able to 
produce significantly better results in more than 87% 
of test cases. The results indicated that for 
Rosenbrock50 and Rosenbrock 100 the polymorphic 
random building block had on average produced 
worse results than the single mutation point 
operator. However, studying the results showed that 
there are huge differences between the median 
values (in parentheses) of test results for the benefit 
of the polymorphic random building block. While 
the median values for polymorphic random building 
block operator were less than the average values, the 
situation was vice versa in all cases for different 
versions of single point mutation operators. For 
Rosenbrock50 in 58% of test cases the fitness value 
achieved by polymorphic random building block 
operator was less than 351, which is the average of 
fitness values achieved by single mutation operator 
with 8% mutation rate. This means that in 58% of 
test cases polymorphic random building block had a 
better performance in finding the best fitness value 
for Rosenbrock’s function with 50 variables. 

For Rosenbrock100 in 60% of test cases the 
fitness value achieved by polymorphic random 
building block operator was less than 342, which is 
the average of fitness values achieved by single 
mutation operator with 8% mutation rate. This 
means that in 60% of test cases polymorphic random 
building block had a better performance over 
mutation operator with 1% and 5% mutation rates in 
finding the best fitness value for Rosenbrock’s 
function with 100 variables.  
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Very low p-values for T-test and F-test indicated 
that the performance values achieved by 
polymorphic random building block operator are 
significantly smaller than the ones achieved by other 
operators. 

Analysis showed that the differences between 
average fitness values achieved with different 
operators wer not significant for Rosenbrock’s 
function with 50 and 100 variables. The superiority 
of polymorphic random building block operator 
becomes clear if we recall that it produced in most 
cases better results than the average values achieved 
by other operators.  

The performance of the polymorphic random 
building block operator was also compared against 
the multipoint mutation operator in which several 
points of the individual were mutated during each 
mutation operator. As it was earlier mentioned the 
number of points to be mutated during each 
mutation operation was randomly determined. 
Mutation cycles were repeated until total mutation 
points were utilized. Clearly, the total number of 
mutation points was determined by the mutation 
rate, which was 5%, 8% and 15% for different 
experimentations. 

Comparing results proved that the fitness values 
achieved by the building block operator were better 
than the ones achieved by different versions of 
multipoint mutation operator in all cases. 
Differences between the average fitness values 
achieved for Ackley’s and Griewank’s functions 
with 30, 50 and 100 variables by the polymorphic 
random building block and different versions of 
multipoint mutation operator were even more 
substantial. 

Very low p-values for T-test and F-test indicated 
that the performance values achieved by 
polymorphic random building block operator were 
significantly smaller than the ones achieved by other 
operators.  

The performance of the polymorphic random 
building block operator against the multipoint 
mutation operator was also tested on Rastrigin’s, 
Rosenbrock’s and Schaffer’s F6 functions. 

Experimentation showed that the polymorphic 
random building block operator had also 
outperformed multipoint mutation operator with 5%, 
8% and 15% mutation rates. In most cases 
differences in performance were huge in favour of 
polymorphic random building block operator.  

A small p-value for T-test and very low p-value 
for F-test indicate that the performance values 
achieved by polymorphic random building block 

operator were significantly smaller than the ones 
achieved by other operators. 

4 CONCLUSIONS 

In this paper a dynamic mutation operator; 
polymorphic random building block operator for 
genetic algorithms was proposed. The operator was 
tested against single-point mutation operator with 
1%, 5% and 8% mutation rates and multipoint 
mutation operator with 5%, 8% and 15% mutation 
rates.  

Comparing test results revealed that the 
polymorphic random building block operator was 
capable of achieving better fitness values within less 
function evaluations compared to different versions 
of single-point and multipoint mutation operators. 
The fascinating feature of polymorphic random 
building block is that it is dynamic and therefore 
does not require any pre-set parameter.  

However, for mutation operators the mutation 
rate and the number of mutation points should be set 
in advance. The polymorphic random building block 
can be used straight off the shelf without needing to 
know its best recommended rate. Hence, it lacks 
frustrating complexity, which is typical for different 
versions of the mutation operator.  

Therefore, it can be claimed that the polymorphic 
random building block is superior to the mutation 
operator and capable of improving individuals in the 
population more efficiently. 

4.1 Future Research 

The proposed operator can be combined with other 
operators and applied to new problems and its 
efficiency in helping the search process can be 
evaluated more thoroughly with new functions. 
Moreover, the polymorphic random building block 
operator can be adopted as part of the genetic 
algorithm to compete with other state-of-the-art 
algorithms on solving more problems.   
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