
Two Dragons
A Family of Fast Word-based Stream Ciphers

Matt Henricksen
Institute of Infocomm Research, A*STAR, Singapore, Singapore

Keywords: Dragon, Stream Ciphers, AES-NI, Cryptology.

Abstract: The EU eSTREAM competition selected two portfolios of stream ciphers, from among thirty-four candidates,
with members that were either fast in software or compact in hardware. Dragon was among the eight finalists
in the software category. While meeting the performance requirement of being faster than the Advanced
Encryption Standard (AES) on many platforms, it was less efficient than the four ciphers selected for the
portfolio. Cryptanalysis revealed some less-than-ideal properties. In this paper, we provide some new insights
into Dragon, and propose two modifications: Black Dragon, which is tailored for efficient implementation in
modern SIMD architectures; and Yellow Dragon, which utilizes recent developments in Chinese block ciphers.
We show the improved security and performance of these two variants.

1 INTRODUCTION

Symmetric ciphers are primitives that form the back-
bone of information security by providing an efficient
way to encrypt and authenticate data. They comprise
stream ciphers, which process a secret state, and state-
less block ciphers. Stream ciphers can be faster and
more compact than block ciphers.

The most famous symmetric cipher is the Ad-
vanced Encryption Standard (AES) (Daemen and Ri-
jmen, 2002), ratified by the US’ National Institute of
Standards in 2001 after a competition that saw crypt-
analysts evaluating fifteen block ciphers. The winning
candidate, Rijndael, has high efficiency, provable se-
curity against common attacks, and an elegant design.

Following the model of the AES competition, the
EU ECRYPT node of excellence held several compe-
titions for new stream ciphers. The first competition
failed to find candidates with sufficient security. The
second, the ECRYPT eSTREAM project, had more
success in identifying stream ciphers at least as secure
as the AES when used with a 128-bit key, but faster in
software; or smaller than the AES in hardware, while
achieving at least 80 bits of security. The competition
yielded two portfolios: one for hardware, with three
members, and one for software, with four members.

There were many finalists that were not selected
for various reasons. The final report on the eS-
TREAM finalists said:

Dragon cipher appears to be of solid con-

struction. The downside to the current de-
sign of Dragon, is that while its performance
is competitive with the AES, it does not com-
pare too well to the other submissions in the
final phase. It would certainly be interest-
ing if a future version of the cipher were
able to maintain some of the successful de-
sign ideas while delivering even better perfor-
mance“ (eSTREAM, 2008)

Delivering better performance for equivalent secu-
rity is the motivation for this paper. It is made timely
by the delivery of a ubiquitous and very fast imple-
mentation of a 32×32 non-linear mapping that can be
used to replace the weakest component of Dragon1.

In Section 2, we discuss the original design of
Dragon, as presented to eSTREAM, and in Section 3,
the problems with the cipher. In Section 4, we present
two new Dragons: Black Dragon, which makes use of
the new AES-NI instruction set, and Yellow Dragon,
which utilizes the structure of the SMS-4. In Section
5, we indicate our reasons for these designs. In Sec-
tion 6, we give an analysis of their security, and in
Section 7, performance benchmarks and implementa-
tion notes. We conclude in Section 8.

1On a light note, the timing is also impeccable as 2012
is the year of the Dragon

35Henricksen M..
Two Dragons - A Family of Fast Word-based Stream Ciphers.
DOI: 10.5220/0004014000350044
In Proceedings of the International Conference on Security and Cryptography (SECRYPT-2012), pages 35-44
ISBN: 978-989-8565-24-2
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

2 THE DRAGON CIPHER

Dragon (Chen et al., 2004) is a stream cipher with
a conservative design. It is based on a 1,024-bit
NLFSR, with an additional 64-bit register intended to
give assurances about the cipher period. A 192×192-
bit function F serves both as the update function on
the state, and the output filter. The state is initialized
by a 128- or 256-bit key, using slightly different meth-
ods, both of which useF .

2.1 The F function

TheF function is shown in Figure 1. It has three lay-
ers. The first and third layers perform word-based dif-
fusion, using binary addition (⊕) and addition mod-
ulo 232 (⊞) while the second introduces strong non-
linearity through theG andH functions.

Figure 1: Schematic of Dragon’sF Function.

TheG andH functions are 32×32-bit mappings
based on a set of heuristically designed 8×32-bit s-
boxesS1 andS2. The construction of the functions
is simple. Forx = x0|x1|x2|x3, G/H(x) = Sa(x0)⊕
Sb(x1)⊕Sc(x2)⊕Sd(x3), where eachS represents one
of two s-boxesS1 or S2. In each of the six functions
G/H, either of the s-boxes is used three times, and the
other once. This asymmetry prevents cancellation in
a byte-symmetric input word.

2.2 Key Initialization Algorithm

Due to a historical quirk, Dragon has different key
initialization algorithms for its two key sizes of 128-

and 256-bits. During key initialization, the 1,024 bit
NLFSR stateW is divided into eight 128-bit words.
For the 256-bit master key, the state is filled by con-
catenatingK andIV with their bitwise sum and com-
plement such thatW = K ‖ K ⊕ IV ‖ K ⊕ IV ‖ IV ,
with the over-score representing complementation.
For the 128-bit master key, the state is filled by
(K||K′ ⊕ IV ′||IV ||K ⊕ IV ′||K′||K ⊕ IV ||IV ′||K′ ⊕ IV)
wherex′ denotes swapping of the upper and lower
halves of the 128-bit quantityx. The 64-bit register
is filled with a constant representing the ASCII repre-
sentation of ‘Dragon’.

The cipher is clocked sixteen times. During each
clock, the the six input words to theF function are
chosen as 128-bit quantity (W0⊕W6⊕W7) and 64-bit
quantityM. Every word in the NLFSR is shifted one
place to the right, the topmost word being discarded.
The void at the bottom-most position in the NLFSR is
filled by four of the six 32-bit output words ofF . The
remaining two words overwrites the contents ofM.
The phase completes when every stage of the NLFSR
has been overwritten twice.

2.3 Keystream Generation Algorithm

Each clock of the cipher during keystream genera-
tion mode produces a 64-bit keystream word, which
is chosen as the concatentation of theF outputa′||e′.
The outputb′||c′ is used as feedback to the NLFSR.
Outputsd and f are discarded (so in the keystream
generation mode, the functionF can be modelled as
a 192→ 128-bit function). During each clock, the
memoryM is incremented by 1.

Fortunately, the designers of Dragon stipulated
that after 264 bits of keystream have been generated
under a single key-IV pair, the key initialization algo-
rithm must be executed with a new key-IV pair.

3 WHAT'S WRONG WITH
DRAGON?

The straight answer to the question ‘What’s wrong
with Dragon?’ is ‘nothing really’, except that it
doesn’t do anything better than its competitors. It was
scrutinized for a long time by cryptanalysts during the
eSTREAM competition, with only a theoretical dis-
tinguishing attack, which could not occur under the
correct usage model, being noted.

But in order that anyone other than its designers
use it, however, improvements need to be made in two
areas - performance, and security.

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

36

Table 1: Number of s-box lookups per 32-bit word of
keystream.

Cipher S-box size Number lookups
Dragon 8×32 12
SNOW 2.0 8×8 4
HC-128 9×32 8
Rabbit None 0
Sosemanuk Bitsliced 0
Salsa-20 None 0

3.1 Performance

In the context of the eSTREAM competition, Dragon
has two problems with performance. The first is that
it is a cipher designed for a 256-bit key, but retrofitted
with a key initialization algorithm for a 128-bit key. If
it competes with a cipher designed for a 128-bit key
(eg. eSTREAM finalists HC (Wu, 2008) or SOSE-
MANUK (Berbain et al., 2008)2), it is unsurprising
it will be slower.

The second problem is the design of itsG andH
functions, which provide most of the strength in the
cipher while also being quite slow.

3.1.1 S-boxes

On most architectures, look-up tables are not
atomic operations like additions, multiplications or
exclusive-ors. They are usually composed from three
or four instructions, including retrieving data from
memory, which incurs a penalty if the data is not al-
ready in the cache.

Table 1 compares the number of s-box lookups,
among Dragon and the eSTREAM software portfo-
lio members, per 32-bit word of keystream. Dragon
uses the largest number of s-boxes. Most of the port-
folio members do not use s-boxes, or provide ways in
which to implement them using logical operations.

It is not only the number of s-boxes that is impor-
tant, but also whether they can be parallelized, to alle-
viate some of the stress on the execution ports respon-
sible for retrieving data from memory. In Dragon, all
of the s-box lookups are localized to the middle ’S-
box’ layer ofF . Contemporary super-scalar architec-
tures can execute multiple additions or exclusive-ors
in a single cycle, but only one s-box at a time. The
middle layer ofF is the bottleneck.

One way to fix this problem is to reduce the num-
ber of s-boxes, but a better solution is to properly im-

2SOSEMANUK accepts a 128-bit key or a 256-bit key
but is vulnerable to guess and determine attacks with com-
plexity O(2176) (Feng et al., 2010), indicating it is only suit-
able for use with 128-bit keys

plement a sufficient number of s-boxes to provide a
good amount of security.

3.1.2 State Size

Dragon was originally designed for a 256-bit key. The
state size of 1,088 reflects this, being just a bit larger
than double the combined length of key and IV, to
protect against time-memory-data tradeoff attacks.

The 128-bit key initialization scheme was retroac-
tively fitted to the cipher in order to meet eSTREAM
requirements. The state size should have been re-
duced accordingly, but was not. So the state is very
large, and uses many gates in hardware unnecessarily.

The key agility of Dragon for a 128-bit key also
suffers, since the design principle states that every
stage of the NLFSR must be modified twice dur-
ing key initialization. Since there are twice as many
stages as necessary, the key agility of Dragon with a
128-bit key is unnecessarily halved.

3.2 Security

3.2.1 S-boxes and Linear Cryptanalysis

The s-boxes for Dragon were designed by experts in
with expertise in boolean functions and genetic algo-
rithms. They used genetic algorithms to optimize the
s-boxes, with respect to non-linearity (116), algebraic
degree (6 or 7), and a range of other properties. One
thing they did not optimize for was resistance to linear
cryptanalysis.

Cho (Cho, 2008) points out that for input mask 0
and output mask 0x61300000, the number of masked
inputs to s-boxS1 that have the same parity as the
masked outputs is only 92. In other words, the bias
of the s-box is 2−1.83. The same bias occurs forS2
with output mask 0x60020300. Compare this to the
maximum bias of the AES 8×8 s-box, which is 2−3.
The resistance of the Dragon s-boxes to linear crypt-
analysis, despite the sophisticated design techniques,
is terrible.

Englund and Maximov (Englund and Maximov,
2005) note thatG andH, although beingZ232 → Z232

functions, cannot be bijective because of the way that
they are constructed usingZ28 → Z232 sub-functions
(the S1 andS2 s-boxes). Our own experiments show
that only 37% of the possible outputs are reached
through eachG andH function.

The best attack on Dragon (Cho, 2008) utilizes
both of these points, along with newly developed
analysis of adjacent modular additions. Given 2133

words of keystream generated under a single key-IV
pair, the attacker can use the bias of about 2−36 in F

Two�Dragons�-�A�Family�of�Fast�Word-based�Stream�Ciphers

37

to distinguish the keystream from random. It is a the-
oretical attack. If the attacker adheres to the usage
model of Dragon, he can never obtain this amount of
keystream. If he abuses the usage model, he is able to
distinguish Dragon from random, but not to recover
the key or predict keystream. Such an attack is of lim-
ited usefulness, other than for highlighting the weak
points of Dragon, ie. the s-boxes.

The technique uses two types of approximations,
including applying ‘bypassing’ by approximating s-
boxes that are not influenced by other s-boxes, and
’cutting’ by setting the input masks of s-boxes influ-
enced by other s-boxes to zero. This means that the
contribution of the other s-boxes to the ‘cut’ s-boxes
can be ignored. If the s-boxes are bijective, cutting
does not work, since setting the input mask to zero
gives a bias of zero on any output mask

3.3 Elegance

3.3.1 Key Initialization Algorithm

The initial population of state using combinations of
key and initialization vector differs quite arbitrarily
according to the size of the master key. The design-
ers of Dragon (Chen et al., 2004) state that this is so
to avoid 256-bit key/IV pairs mapping to 128-bit key/
IV pairs, leading to a reduction of the key space. The
solution is inelegant. It is easy to achieve the same
ends more naturally by incorporating the length of the
key into the initial state. Having a unified key initial-
ization algorithm also allows simpler code, reduced
space in hardware, and scalability to other key sizes.

3.3.2 The Memory

Unlike ciphers based on LFSRs with primitive feed-
back polynomials,n-bit NFLSRs do not give guaran-
tees on lower bounds of period, but instead provide
expected periods of 2n/2.

The designers of Dragon indicate that the 64-bit
counterM used during keystream generation gives a
lower bound to Dragon’s period of 264. This is a
heuristic argument that holds limited usefulness, since
it doesn’t combine the properties of the counter suc-
cessfully with the properties of the remaining parts of
the cipher.

As Englund and Maximov indicate (Englund and
Maximov, 2005), the left half of the counter, which
changes very slowly with time, shifts the distribution
of samples made during linear cryptanalysis attacks,
but does not change the bias. It is better thatM retains
its use as an unpredictable counter during keystream
generation. Even without the counter, it is unlikely

that a 1024-bit NLFSR with a bijective feedback func-
tion has short cycles.

4 TWO DRAGONS

The term Dragon-2 encompasses the family of stream
ciphers that we are about to describe here. We present
six variants that vary in the size of the key and non-
linear function.

The Dragon-2 state comprises an NLFSRW and
a 128-bit memoryM. A series of algorithms operates
on the state. The key initialization algorithm uses a
key and initialization vector (IV) to populate and mix
the state. The key can be 80-, 128- or 256-bits. The
IV must be the same length as the key. We refer to
versions of Dragon-2 with 80-bit, 128-bit and 256-
bit keys respectively as Dragon-80, Dragon-128, and
Dragon-256.

The size of the NLFSR is proportional to the size
of the key. Respectively, for 80-bit, 128-bit and 256-
bit keys, the sizes of the NLFSR is three quadwords
(384 bits), four quadwords (512 bits) and eight quad-
words(1024 bits).

The keystream generation algorithms produce a
128-bit blocks of keystream. These algorithms in-
clude a feedback function, which modifies part of the
state, and an output filter which processes part of the
state in a non-invertible way to produce the block of
keystream. The feedback function and output filter
are more decoupled than in Dragon-1.

Both the key initialization and keystream genera-
tion algorithms make use of a 256×256-bit function
F , which is described in Section 4.3, along with its
sub-functionsF1 andF2.

4.1 Key Initialization Algorithm

Dragon-2 has a two-phase initialization process. The
first phase adds the key to the state, which it mixes.
The second phase adds the IV to the state, and again
mixes. Separating the addition of key and IV to the
state means that IV-only rekeying can be made much
more efficient.

To permit a single procedure irrespective of key
size, extended keys and IVs are created. Extended key
EK is generated from the supplied keyK as asEK =
K||K ≪ 32||K ≪ 64||K ≪ 96 (where≪ is bitwise
rotation) then truncated tos quadwords. Likewise,
the extended IV is generated asEIV = IV ||(IV ≪

32)⊞1||(IV ≪ 64)−1||(IV ≪ 96)⊞2127−1, then
truncated tos quadwords.

The key initialization algorithm, using keyK of
lengthlen, is shown in Table 2.

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

38

Table 2: Dragon-2 two-phase key initialization algorithm.

Input: EK,EIV
Phase 1: Key Injection

1. W0 = EK0⊕ len Wi = EKi,1≤ i ≤ s−1
2. M = 0

Perform steps 3-5 (s) times
3. OF = F1(W); OZ = F2(W,M)
4. W0 = OF ; Wi =Wi−1,1≤ i ≤ s−1
5. M = OZ

Phase 2: IV Injection
6. Wi =Wi ⊕EIVi 0≤ i ≤ s−1

Perform steps 3-5 (s) times
Output: W,M

Table 3: Dragon-2 keystream generation algorithm.

Input: W,M
1. OF = F1(W) z = F2(W,M)
2. M = M⊞Ws−1
3. W0 = OF ; Wi =Wi−1,1≤ i ≤ s−1

Output: W,M,z

4.2 Keystream Generation Algorithm

After the key initialization mode has finished, the
keystream generation algorithm can be invoked. Each
time it is invoked, it produces a 128-bit keystream
block z. The procedure for generating the keystream
is shown in Table 3.

Since the attacker uses keystreamz as a window
into the state, the client is free to mask out part ofz to
improve security at the expense of throughput.

Rekeying, using at least a fresh IV, must be carried

out after at mostmin(2
len
2 ,264) bits of input have been

generated for any key-IV pair.

4.3 The F function

The function F comprises two sub-functions, the
128× 128−bit feedback functionF1, and the 256×
128-bit output filterF2. In these function, as per
Dragon-1, diffusion is provided by a network of mod-
ular and binary additions, denoted by⊞ (mod 232)
and⊕ respectively; and confusion is provided byG.
In later sections, we specify two Dragons, Black and
Yellow, using two well-known functions forG.

The feedback functionF1 is shown in Table 4.
This function is independent of the feedback func-
tion F2. For Dragon-80, the inputIF is formulated
asW0⊕W2; for the other variants, it is formulated as
W0⊕W(s/2−1)⊕W(s−1). TheG function takes the all-
zero string as its second parameter.

The output filterF2 is shown in Table 5. This func-
tion uses the output of the feedback function,OF , as

Table 4: The feedback functionF1.

Input: IF = {a,b,c,d}

S-box Layer:
1. (g0,g1,g2,g3) = G(a||b||c||d,0);

Mixing Layer:
2. b = b⊕ a; d = d⊕ c;
3. c = c⊞ b; a = a⊞ d;
4. a = a⊕ g0; b = b⊕ g1;

c = c⊕ g2; d = d⊕ g3;

Output OF = {a′,b′,c′,d′}

Table 5: The output filterF2.

Input: IZ = {e, f ,g,h},M = {M0||M1||M2||M3},K

Mixing Layer:
1. e = e⊕M0; f = f ⊕M1;

g = g⊕M2; h = h⊕M3;
2. f = f ⊕ e; h = h⊕ g;
3. g = g⊞ f ; e = e⊞ h;
4. f = f ⊕ e; h = h⊕ g;
5. g = g⊞ f ; e = e⊞ h;

S-box Layer:
6. (e′, f ′,g′,h′) = (e, f ,g,h)⊕G(a||b||c||d,K);

Output: OZ = {e′, f ′,g′,h′}

input parameterK. Other inputs include memoryM,
andIZ, which is formulated asW⌊s/2⌋.

The combination of sub-functionsF1 andF2 into
F is shown in Figure 2.

4.4 黑黑黑龙龙龙 Black Dragon

Black Dragon is defined as a version of Dragon-2 that
uses the AES round function forG.

This round function consists of four opera-
tions: ByteSub, which applies sixteen 8× 8 s-boxes
to the 128-bit input, followed byShi f tRows and
MixColumn which diffuse bytes within four groups,
followed by AddKey, which exclusive-ors the result
with another 128-bit quantity (the key) to produce the
128-bit output.

Please refer to (Daemen and Rijmen, 2002) for de-
tails on how to implementG for Black Dragon.

4.5 黄黄黄龙龙龙 Yellow Dragon

Yellow Dragon is defined as a version of Dragon-2
that uses the SMS-4 round function withinG.

SMS-4 is the block cipher used in the Chinese
National Standard for Wireless Local Area Networks
(WLANs) Wired Authentication and Privacy Infras-

Two�Dragons�-�A�Family�of�Fast�Word-based�Stream�Ciphers

39

Figure 2: Schematic of Dragon-2’sF Function.

tructure (WAPI) as an alternative to the American rat-
ified AES.

In SMS-4, the round function comprises four lay-
ers. The first compresses the 96-bit source into a
32-bit word using exclusive-or. In the second, a 32-
bit round key is added. In the third layer, a row of
parallel 8× 8 s-boxes, different to the AES s-box,
but designed using a similar methodology, adds non-
linearity. The fourth is the linear 32× 32-bit sub-
function L(x) = x ⊕ (x ≪ 2)⊕ (x ≪ 10)⊕ (x ≪

18)⊕ (x ≪ 24).
In Yellow Dragon, the round function is iterated

four times within theG function, using the same un-
balanced Feistel sub-structure, with 96-bit source and
32-bit target, as does SMS-4. The 128-bit key is di-
vided naturally between the four invocations of the
round function.

Please refer to the SMS-4 specification document
(People’s Republic of China Office of State Commer-
cial Cryptography Administration, 2006) for details
on how to implementG for Yellow Dragon.

5 DESIGN PRINCIPLES

The design of Dragon-2 is strongly influenced by
what we perceive to be weak about Dragon-1, and
also for easy of implementation in software. The
guiding principle is that it can implemented on mod-
ern SIMD architectures, such as the Intel x86. The i7
we used for development has sixteen 128-bit XMM
registers, and hundreds of operations that apply to
them, including the AES-NI, which implement an
AES round instruction with latency of eight cycles,

and throughput of four cycles (Fog, 2011). This pro-
vides a safe and efficient way to use good s-boxes,
circumventing most of the problems with Dragon-1.

5.1 State

5.1.1 NLFSR

We don’t like that the state size of the NLFSR in
Dragon-1 remains the same for different sized keys,
but the algorithm changes. In hardware, a 1024-bit
state is very large, and is only justified by a large sized
key. There is no security reason for having a 1024-bit
state for a 128-bit key. Time-memory-data tradeoff
attacks suggest that 512-bits is the sweet spot. Con-
sequently, in Dragon-2, the size of the state varies ap-
propriately with the size of the key.

The size of the NLFSR is the lowest multiple of
128 bits that is equal to or greater than four times
the size of the key. This permits the cipher to resist
time-data-memory trade-off attacks, and to be imple-
mented easily in 128-bit registers.

All of the operations that apply to the NLFSR,
with the exception of theG function in Yellow
Dragon, are designed for implementation on the In-
tel x86-64 SIMD architectures. However, there are
no operations that cannot be implemented efficiently
using general purpose 32-bit registers.

When the NLFSR is divided into quadwords, the
choice of words to use as input into theF function be-
comes quite constrained. This is different to Dragon-
1, in which the choice of 32-bit words is according to
a full positive difference set, to maximize resistance
against guess and determine attacks. But in the latter

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

40

approach, many different words need to be marshalled
and prepared for input intoF . In the Dragon-2 ap-
proach, no such manipulation is required. The words
are present in XMM registers, or in hardware, to be
presented to theF function at no additional cost.

5.1.2 Memory

The behaviour of the memoryM is different in key
generation than it was in Dragon-1. In Dragon-1, the
memory behaved as a counter. As illustrated in Sec-
tion 3, it is better for it to behave pseudo-randomly.

One reason is that in Dragon-2, the attacker needs
to guess 128 bits (the contribution of the feedback
function to the output filter) in order to derive 256
bits of state. Of this, 128 bits is combined NLFSR-
memory material. If the memory acts as a counter,
then the attacker can repeat the guess at a known
time, in order to derive a further 256 bits of material,
then untangle the 512 bits of NLFSR material from
the 256 bits of counter material. Although he has
guessed equivalent amounts of material as the mas-
ter key, one of our principles is to limit the amount of
material gained in this way. ImplementingM as a un-
predictable memory rather than a counter means that,
using this method, the attacker has to guessx bits of
material in order to gainx bits of state, wherex is a
multiple of 128 bits.

5.2 The Key Initialization Algorithm

In Dragon-2, the key initialization algorithm is unified
across key sizes, rather than arbitrarily different, as in
Dragon-1. We use byte shuffling rather than comple-
mentation to pad the key, since this is easier to im-
plement in hardware. So long as the key and IV are
loaded across the state in subtly different ways, the
choice of operations is not very important. The aim
is to spread every bit of the key into every bit of the
state as quickly as possible.

We also changed the algorithm to be two phase to
enable quicker IV-refreshing. Quick diffusion in key
initialization is enabled by choosing multiple NLFSR
words, which are combined using exclusive-or, as in-
put into the feedback function.

5.3 The Keystream Generation
Algorithm

In Dragon-1, the key initialization algorithm and
keystream generation algorithm both use theF func-
tion, but otherwise they are both quite different. This
wastes space in hardware, and makes the cipher more
difficult to program. The division of the NLFSR into

Figure 3: Abstract view of Dragon-2’s F function.

different quantities - either 32-bit or 128-bit, depend-
ing on mode, is also awkward.

In Dragon-2, the key initialization algorithm and
keystream generation algorithm are almost but not ex-
actly the same, in order to save hardware space, but
avoid slide-like attacks.

5.4 The F Function

In Dragon-1, theF function separates parts of the out-
put of a monolithic 192× 192 function for feedback
and keystream. There is no separate output filter. A
192-bit block is unnatural to deal with. With advent
of SSE, it is easier to deal with 2x-bit blocks.

In Dragon-2, we made the decision to decouple
the feedback and output filter modules. An abstract
of the design is shown in abstract in Figure 3, The
feedback function is bijective. The output function
is deliberately non-invertible, due to the addition of
whitening material from the feedback function.

While the output filter is post-whitened using ma-
terial from the feedback function, the output filter has
no direct influence on the feedback function. This is
to reduce the ability of the attacker to guess parts of
the internal state.

During one clock of theF , thirty-two 8× 8 s-
boxes are invoked, compared to twenty-four invoca-
tions of 8×32 s-boxes in the original Dragon. In both
Black Dragon and Yellow Dragon, the s-boxes are bi-
jective, and of much better quality.

5.4.1 The F1 Function

The F1 function does not provide full diffusion. By
the time its material is exposed to an attacker, it has
been further processed byF2, which does provide full
diffusion. This enables the function to remain effi-
cient.

The feedback function must be a bijection in order
to avoid loss of entropy. Provided thatG is a bijection,
then the feedback function will also be a bijection.
For this reason,G is keyed with a null key.

Two�Dragons�-�A�Family�of�Fast�Word-based�Stream�Ciphers

41

There is no difference in choosing the contribution
to F2 from the start or end of the function, since the
material at the end of one function is the same as at
the start of another.

5.4.2 The F2 Function

By including two mix modules, and oneG module,
theF2 function provides full diffusion.

It is not possible to use a fixed key withG if it
is the last operation in the output filter, since the en-
tire sub-function could be inverted. By using pseudo-
random material from the feedback function as the
key, the attacker has to guess a large amount of mate-
rial from the state to invert the function.

For Black Dragon, which uses the AES round, this
material is exclusive-ored as the last operation. The
attacker is forced to guess the 128 bits of state used
as input into the feedback filter in order to utilize the
128 bits of output to unravel to the 128 bits of state
and 128 bits of memory used as input to the filter.

6 ANALYSIS

6.1 Time-Memory-Data Tradeoff
Attacks

Time-Memory-Data Tradeoff (TMDT) attacks use a
pre-computation to compute tables that, in an on-line
phase, reduce the time needed to identify the key
or contents of the cipher state, by using keystream
sequences as an index. Generally, a tradeoff can
be made by varying the parameters in the equation
N2 = T M2D2 whereT ≥ D2 (Biryukov and Shamir,
2000),N is the size of the combined key-IV or the size
of the state,T is the amount of time used to identify
the key/state,M is the amount of memory required,
andD is the number of data points. Clearly, increas-
ing the size ofN also increases the value of at least
one of the parameters.

The rules-of-thumb for defending against TMD
attacks is to use an IV equal in length to the key, and
a state at least twice the size of the combined key-IV.
As the NLFSR size of Dragon-2 was chosen specifi-
cally in relation to the size of the key, with the 128-bit
memory providing an additional margin, the cipher is
not vulnerable to this kind of attack.

6.2 Related-key Attacks

Dragon-2 uses the optimal branch number of the
diffusion components inG to resist related-key and

related-IV attacks. When analysing the effect of
related-keys and IVs, we can ignore the output filter
since it does not effect the NLFSR. When the NLFSR
is thoroughly mixed, the attacker loses control over
manipulating the keystream.

The simplest differential through F is
(0,0,0,0,∆,0,0,0), where ∆ = 0x8000. For a
difference in which only the most significant bit is
set, additions behave like exclusive-ors, and it is
easy to cancel like differences. The output difference
for this differential is (0,0,0,0,0,∆1,∆2,∆3), with
two s-boxes activated (ie. a maximum probability
of 2−12). This differential would permit a zero
difference to be maintained in the NLFSR throughout
key initialization. However, this high probability
differential cannot be used, because of the way in
which the initialization vector is set into state, and
the high diffusion of the NLFSR.

Assume that∆K = 0 and∆IV = ∆ << 96. Also
assume the simplification that no constants are added
to the IV during step 6 of Table 2. The state is set as
(∆IV,∆IV,∆IV,∆IV). The inputIF to sub-functionF1
is (∆,0,0,0). F1 provides incomplete diffusion, but its
output at timet forms part of its input at timet+1. So
the difference introduced has been modified by two
invocations of theG function by timet +2. Two ad-
jacent rounds ofG propagate a single byte difference
into all positions into the quadword. Subsequently all
sixteen s-boxes are likely to be activated, with a max-
imum probability 2−21×6. Four adjacent rounds ac-
tivate at least twenty-five s-boxes, which is sufficient
to defeat differential cryptanalysis for Dragon-80 and
Dragon-128. As Dragon-256 invokes sixteen rounds
during key mixing state, we would expect activation
of at least seventy-five boxes to influence all positions
in the NLFSR, meaning any differential would have
a maximum probability of 2−6×75, well below a suc-
cessful probability of 2−256.

The addition of constants during the IV-keying
phase, to disrupt the attacker’s ability to cancel parts
of the IV difference within the diffusion network, and
the weak non-linearity of the modular additions in the
F function are expected to further weaken the proba-
bility of any differential.

6.3 Linear Cryptanalysis

Linear cryptanalysis has been the most effective at-
tack on the Dragon structure, due in part to poor s-
boxes with a maximum bias of 2−1.83. In order to at-
tack Dragon with linear cryptanalysis using the same
techniques of Cho (Cho, 2008) under the correct us-
age model, theF function must have a bias of greater
than 2−16. As each s-box has a maximum bias of

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

42

2−3, no more than five s-boxes of the thirty-two s-
boxes can be activated in any successful approxima-
tion. The branch number of the linear components in
theG functions is five, meaning that the sum of active
input and output bytes for eachG is at least five. The
mandatory incorporation of twoG functions in theF
function means that a maximum bias of 2−16 is not
achievable.

6.4 Guess and Determine Attacks

Analysing Dragon-2 against guess-and-determine at-
tacks is uncomplicated because of its large word size,
and the diffusion network that means guessing bytes
or 32-bit words quickly involves guessing as much
material as in a quadword. For Dragon-80 or Dragon-
128, guessing quadwords is unproductive.

For Dragon-256, the best case for the attacker is
to guess the combination of input and memory to the
output filter at timet. As he does not know the value
of the memory, this does not immediately give in-
sight into the NLFSR state. But in conjunction with
the keystream, it allows him to calculate the input
and output to the feedback function, permitting him
to know the first word of the NLFSR at timet + 1.
As both the feedback function and output filter use
multiple words to construct inputs, he cannot use this
knowledge unless he guesses another word, by which
time his cumulative guessing is equal to the effort of
guessing the master key.

6.5 Algebraic Attacks

Both Black Dragon and Yellow Dragon use s-boxes
constructed algebraically, so they might seem to be
good candidates for algebraic analysis, by construct-
ing a system of equations that can be solved to recover
the internal state.

However, theG functions are embedded in a net-
work containing many 32-bit modular additions. As
shown in analysis of SNOW 2.0 (Billet and Gilbert,
2005), which like Black Dragon also uses the AES
round function, the prolific use of additions is an ef-
fective deterrent to algebraic attacks, since they cause
the degree of the collected equations to increase very
quickly. Coupled with the need to refresh the key-IV
pair every 264 bits, and the poor success rate of al-
gebraic analysis to word-based ciphers, it seems very
unlikely that Dragon-2 will be vulnerable.

6.6 Cache-timing Attacks

When implemented using AES-NI, Black Dragon
does not perform any memory lookups in conjunc-

Table 6: Speed of stream ciphers on the Intel i7 (cy-
cles/byte).

Cipher Long message 4,096 bit message
Black Dragon 3.6 3.8
Dragon 8.8 9.2
HC-128 2.2 7.2
Rabbit 4.8 5.1
Salsa-20 1.8 1.8
SNOW 2.0 3.7 3.8
Sosemanuk 2.5 3.2

tion with s-boxes so cache-timing attacks cannot ap-
ply. Yellow Dragon is intended to be used with sim-
ilar hardware support for the SMS-4 round function,
so similar reasoning applies.

Even without hardware support, theF network
provides some mitigation against cache-timing at-
tacks by ensuring that the output of theG function,
which is the only place that might contain s-boxes,
never overwrites any values, but is combined to them
using exclusive-or. If an attacker learns half the bits
in n-bit valueX , he will need to guess the equivalent
amount of bits in an-bit valueY to learn the corre-
sponding portion ofZ = X ⊕Y . He has obtained no
advantage over directly guessing the bits inZ.

7 IMPLEMENTATION

The current speeds of Dragon-2, eSTREAM soft-
ware portofolio members and benchmark cipher
SNOW 2.0 are shown in Table 6 for the Intel
i7. Figures for the ciphers, excluding Dragon and
Black Dragon, come from the Vampire benchmark-
ing site(VAMPIRE - Virtual Applications and Imple-
mentations Research Lab, 2012). We note that Black
Dragon is faster than the benchmark cipher SNOW
2.0, and significantly faster than Rabbit and Dragon.
It is also worth noting that much effort has gone into
optimizing the relatively mature eSTREAM ciphers,
compared to Dragon-2, and we would expect the most
improvement in future optimization to occur in our ci-
pher.

It is very likely that the core function of SMS-4
will be implemented in hardware and as native in-
structions on Chinese-built processors in the future.
This will provide similar advantages to the implemen-
tation of Yellow Dragon, as for Black Dragon.

It is interesting to note that of the ciphers listed
here, the AES-NI only provides benefits to SNOW 2.0
and Black Dragon. Where AES-NI is not available,
Black Dragon can be implemented in software using
the efficient tabular approach of the AES.

Two�Dragons�-�A�Family�of�Fast�Word-based�Stream�Ciphers

43

8 DISCUSSION

In this paper, we have documented improvements to
the Dragon cipher, and presented them as Dragon-
2. Users of Dragon-2 have a choice to use the AES
round function within the cipher, gaining the benefit
of the recent AES-NI set, which provides blisteringly
fast encryption support. This version of the cipher
is called Black Dragon. Alternatively, the user can
specify four iterations of the SMS-4 round function,
in which case the cipher is called Yellow Dragon.

Dragon-2 represents a relatively conservative de-
sign that benefits from good hardware support. In the
future, once more widespread analysis has been con-
ducted, it might be considered a viable alternative to
the eSTREAM software portfolio members.

For example, HC-128 is very fast for long mes-
sages, but its much larger state requires a long time
for rekeying, and so it is not as agile as Dragon-2. De-
pending on the application, Dragon-2 might be prefer-
able.

Salsa-20 relies on the iterated weak non-linearity
of addition, compared to the proven high non-linearity
of the AES and SMS-4 s-boxes. Relying on the prop-
erties of a single operation does not provide robust-
ness. Advances in differential cryptanalysis are likely
to weaken Salsa-20. Dragon-2 is a more conservative
and equally efficient choice.

Sosemanuk has been shown to be unable to pro-
vide 256 bits of security; it is not termed broken only
because its designers specified 128 bits of security
even for the larger key. Rabbit appears to be strong,
but only accepts a 128-bit key (Robshaw and Billet,
2008). In either case, if Dragon-2 withstands crypt-
analysis, it is a stronger choice.

There is still much work to do on Dragon-2. We
continue to cryptanalyse it, but it must be scrutinized
by impartial cryptographers. We have met the remark
made in the eSTREAM report, as presented in the first
section of this paper. Due to space limitations in this
paper, test vectors are available upon request.

REFERENCES

Berbain, C., Billet, O., Canteaut, A., Courtois, N., Gilbert,
H., Goubin, L., Gouget, A., Granboulan, L., Lau-
radoux, C., Minier, M., Pornin, T., and Sibert, H.
(2008). SOSEMANUK, a Fast Software-Oriented
Stream Cipher. In (Robshaw and Billet, 2008), pages
98–118.

Billet, O. and Gilbert, H. (2005). Resistance of SNOW 2.0
against algebraic attacks. In Menezes, A. J., editor,
Topics in Cryptology - CT-RSA 2005, The Cryptog-
raphers' Track at the RSA Conference 2005 , volume

3376 of Lecture Notes in Computer Science, pages
19–28. Springer.

Biryukov, A. and Shamir, A. (2000). Cryptanalytic
time/memory/data tradeoffs for stream ciphers. In
Okamoto, T., editor,Advances in Cryptology - Pro-
ceedings of Asiacrypt 2000, volume 1976 ofLecture
Notes in Computer Science, pages 1–13. Springer.

Chen, K., Henricksen, M., Millan, W., Fuller, J., Simpson,
L. R., Dawson, E., Lee, H., and Moon, S. (2004).
Dragon: A fast word based stream cipher. In Park, C.
and Chee, S., editors,ICISC, volume 3506 ofLecture
Notes in Computer Science, pages 33–50. Springer.

Cho, J. Y. (2008). An improved estimate of the correlation
of distinguisher for Dragon. InSASC2008, pages 11–
20, Lausanne, Switzerland. Special Workshop hosted
by the ECRYPT Network of Excellence. Proceedings
available at http://www.ecrypt.eu.org/stvl/sasc2008/.

Daemen, J. and Rijmen, V. (2002).The Design of Rijndael:
AES - The Advanced Encryption Standard. Springer.

Englund, H. and Maximov, A. (2005). Attack the dragon.
In Maitra, S., Madhavan, C. E. V., and Venkatesan, R.,
editors,INDOCRYPT, volume 3797 ofLecture Notes
in Computer Science, pages 130–142. Springer.

eSTREAM (2008). Third phase report. At
http://www.ecrypt.eu.org/stream/index.html.

Feng, X., Liu, J., Zhou, Z., Wu, C., and Feng, D. (2010).
A Byte-Based Guess and Determine Attack on SOSE-
MANUK. In ASIACRYPT'10 , pages 146–157.

Fog, A. (2011). Instruction tables. Lists of instruc-
tion latencies, throughputs and microoperation break-
downs for Intel, AMD and VIA CPUs. At
www.agner.org/assem/.

People’s Republic of China Office of State Com-
mercial Cryptography Administration (2006).
The SMS4 Block Cipher. Archive available at
http://www.oscca.gov.cn/UpFile/20062101642319799
0.pdf (in Chinese).

Robshaw, M. and Billet, O., editors (2008).New Stream
Cipher Designs: The eSTREAM Finalists. Number
4986 in Lecture Notes in Computer Science. Springer.

VAMPIRE - Virtual Applications and Implementa-
tions Research Lab (2012). eBACS: ECRYPT
Benchmarking of Cryptographic Systems.
http://bench.cr.yp.to/results-stream.html.

Wu, H. (2008). The stream cipher HC-128. In (Robshaw
and Billet, 2008), pages 39–47.

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

44

