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Abstract: Evolutionary algorithms are optimization methods and their basic idea lies in biological evolution. They suit 
well for large and complex optimization problems. In this study, differential evolution is applied for 
identifying the parameters of the nonlinear fuel cell model. Different versions of the algorithm are used to 
compare the genetic operators they use. One problem with the studied algorithms is also in defining the 
internal parameters that regulate the development of the population. In this paper, entropy is used for 
defining the population size and other parameters are tuned using recommendations from the literature and 
by trial-and-error. The results show that DE/rand-to-best/1/bin is the most suitable algorithm for the studied 
problem. Selection of the crossover operator has no considerable effect on the results. The results also show 
that the studied identification problem has a lot of local minima that are very close to each other that makes 
the optimization problem even more challenging. 

1 INTRODUCTION 

Parameter identification typically takes advantage of 
numerical methods, such as gradient algorithms. 
These methods usually search near the initial guess 
and therefore are prone to get trapped into local 
optima. In such a case, the optimal parameter values 
are not found and the model performance 
deteriorates. It is possible to try multiple initial 
guesses and then select the best solution or to use 
other methods such as evolutionary algorithms. 
(Ikonen and Najim, 2002). 

Evolutionary algorithms are an interesting 
subgroup of search and optimization methods which 
have become more popular with advanced computer 
technology. The basic idea of evolutionary 
algorithms lies in imitating biological evolution 
which has shown its competence during millions of 
years. Evolutionary algorithms suit particularly well 
for large and complex optimization problems. They 
are typically based on the population of possible 
solutions which is then evolved to better solutions to 
end up with the optimal one. The evolution of the 
population is regulated by operators derived from 
the nature: selection, crossover and mutation. The 
possible solutions are assessed through an objective 
function. The better solutions have a higher 
probability to reproduce and thus their properties are  

enriched in later generations (Sarker et al., 2003). 
Evolutionary algorithms are more likely to find 

the global optimum than the traditional algorithms. 
They search the optimum from multiple directions 
simultaneously and they also allow (in some cases) 
the search to proceed to a direction leading to worse 
solutions. Therefore evolutionary algorithms are 
likely to escape local optima. Another benefit of 
evolutionary algorithms is that they do not require 
prior knowledge about the optimization problem. 
(Storn and Price, 1997; Chipperdale, 1997). 

The disadvantage of evolutionary algorithms is 
that it is never certain that the search converges to 
the global optimum. One possibility is to use them in 
finding promising regions in the search space and 
then continue with traditional methods. For such 
tasks, different kinds of hybrid algorithms have been 
proposed. For example, genetic algorithms (GA) 
were used to find the initial guesses for a Nelder-
Mead optimization routine in (Wolf and Moros, 
1997. GA was used similarly in (Katare et al., 2004) 
except that a modified Levenberg-Marquardt 
optimization method was applied. A third type of 
hybrid algorithm is presented in (Mo et al., 2006) 
using the Nelder-Mead search as a part of the 
objective function. 

In this paper, Differential Evolution (DE) 
algorithms are used in identifying a nonlinear 
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process model for a proton exchange membrane 
(PEM) fuel cell (see also Sorsa et al., 2010, 
Chakraborty et al., 2012). In the PEM fuel cell, 
electrodes are separated by a solid polymer-
electrolyte-membrane structure through which only 
protons can permeate. The behaviour of the fuel cell 
is influenced by the prevailing conditions such as 
temperature and pressure so in addition to an 
electro-chemical model, mass and energy balances 
are needed. PEM fuel cells have been found suitable 
for both residential and mobile applications because 
of operation at relatively low temperatures, 
relatively high power density and easy maintenance. 

The paper proceeds as follows: Chapter 2 
introduces the PEM fuel cell and its model together 
with parameters to be identified. Chapter 3 presents 
the basics of Differential Evolution, specifies the DE 
algorithms tested in this study and tells about their 
tuning. Chapter 4 discusses on the results and 
compares the performance of chosen algorithms. 
Chapter 5 is a short conclusion concerning with the 
main results. 

2 PROCESS AND PARAMETER 
DESCRIPTION 

2.1 Pem Fuel Cell 

Clean energy production has become very topical 
due to environmental problems such as acid rains, 
CO2 emissions and reduction in air quality. Fuel 
cells are one of the most promising alternatives 
which convert chemical energy to electricity and 
overcome these problems. PEM fuel cells include an 
anode and a cathode together with a membrane 
separating them. The membrane allows only protons 
to permeate it. In its simplest form, the fuel cell uses 
only hydrogen and oxygen even though the latter 
one can also be substituted with air. Hydrogen gas is 
fed to the anode where it is oxidized according to the 
first reaction in Table 1. The released electrons are 
transported to the cathode through a conducting 
element. H+-ions migrate through the membrane and 
also end up in the cathode where they are reduced 
according to the second reaction. For the reduction 
reaction, oxygen is provided to the cathode. When 
hydrogen and oxygen react, only water is produced. 
The oxidation and reduction reactions together with 
the overall reaction are given in Table 1. (Mo et al., 
2006) 
 

Table 1: Chemical reactions occurring in a PEM fuel cell 
(Mo et al., 2006). 

Oxidation of H2 (anode) 2H2 → 4H+ + 4e- 
Reduction of H+ (cathode) O2 + 4H+ + 4e-→ 2H2O 

Overall reaction 2H2 + O2 → 2H2O 
 
The models proposed for PEM fuel cells 

typically include mass and energy balances 
combined with the electrochemical part describing 
the relation between the outlet voltage and current. 
Only the electrochemical part is studied here and the 
model given earlier in (Ohenoja and Leiviskä, 2010) 
is used 
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Above, ENernst is the internal potential, Vact, Vohm 
and Vconc describe different losses, T is the 
temperature, P refers to the partial pressure of the 
component in question, C is the concentration, i is 
the current, and imax is the maximum current value 
where fuel is used and applied at its maximum rate. 

Figure 1 presents a typical current-voltage curve 
(polarization curve) of a fuel cell operating at 70 °C 
and standard pressure. The figure shows that even 
with no external load the theoretical maximum 
voltage is not reached. Furthermore, very low 
current densities lead to the cell voltage 
experiencing a significant voltage drop which then 
settles to a gentler and almost linear drop with 
increasing current densities. The voltage drop then 
increases again with higher values of the current 
density. (Larminie and Dicks, 2003) 

For identifying the model parameters, 
experimental data is available in (Mo et al., 2006). 
That data is obtained from a 250 W PEM fuel cell.  
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Figure 1: A typical current-voltage curve for a fuel cell 
operating at low temperature and standard pressure. 
Redrawn based on (Larminie and Dicks, 2003). 
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The used data includes four sets of current and 
voltage measurements. Each set is obtained in 
different operating conditions and includes 15 data 
points. 

The data sets are visualized in Figure 2. Same 
data sets have been earlier used in (Mo et al., 2006, 
Ohenoja and Leiviskä, 2010). Two of the data sets (1 
and 2) are used for model identification while the 
remaining two sets (3 and 4) are used for model 
validation. The objective function is the sum of the 
squared error of prediction (SSEP). For one data set, 
the objective function is given by 

 

( )∑
=

−=
N

i
ŷyJ

1

2  (2)

where N is the number of data points in the set. The 
overall objective function is obtained by summing 
the SSEPs of the data sets in question 

2.2 Parameters to be Identified 

The parameters to be identified are the seven 
parameters in the PEM fuel cell model in (1). The 
parameters are the empirical coefficients ξ1, ξ2, ξ3 
and ξ4, B and λ and the overall resistance Rc. The 
model is simplified by assuming the maximum 
current density (imax) and the membrane resistance 
(RM) constant even though they are known to depend 
on the reaction conditions (Mo et al., 2006). Because 
of these assumptions, a small prediction error is 
introduced. Further simplifications are made by 
assuming ξ2 as an identified parameter even though 
it is stated in (Mann et al., 2000) that ξ2 should be 
considered as a function of the electrode effective 
area and the dissolved hydrogen concentration. 

The search space for the parameters used in this 
paper is given in Table 2. 

3 DIFFERENTIAL EVOLUTION 

3.1 Basics of DE Algorithms 

Differential Evolution was introduced in (Storn and 
Price, 1995). The algorithm is simple, easy to use 
and converges well (Zaharie, 2002). Among 
evolutionary algorithms, it is closest to GA. The

fundamental difference is the basic principle of the 
mutation operator. While random changes are 
produced in GA, the differences between 
chromosomes are arithmetically combined in DE 
(Feoktistov and Janaqi, 2004). When compared to 
GA, DE has fewer tuneable parameters. For 
example, the simplest form of DE has only three 
parameters: the mutation coefficient F, crossing 
coefficient CR and the population size NP (Storn 
and Price, 1995). 

In DE, simple arithmetic operators are combined 
to traditional genetic operations (crossover, mutation 
and selection). Because the size of the step to be 
taken towards the optimum changes as the algorithm 
proceeds, the mutation operator must be adaptive. 
The differences between the chromosomes indicate 
an appropriate step size. When the variance among 
the population members increases or decreases so 
does the step size in DE. (Bergey and Ragsdale, 
2005) To avoid premature convergence, there must 
be enough diversity in the population (Zaharie, 
2002) 

DE utilizes the differences between the 
population members. The mutant vector is created 
by selecting e.g. three chromosomes from the 
population. Two of these are used to create the 
difference vector which is then multiplied by the 
mutation coefficient F and added to the base vector 
of mutation (the third chromosome). The mutant 
vector is given by (Price et al., 2005) 

)XX(FXV G,rG,rG,rG,i 321
−+=  

(3)

Above, Vi,G is the mutant vector, G,rX
1

 is the 

base vector for mutation and G,rX
2

 and G,rX
3

 are 
the random vectors for creating the difference 
vector. The next step in DE is to produce the trial 
vector by the crossover of the mutant and target 
(Xi,G) vectors. In binomial crossover, the resulting 
element j in the trial vector is (Storn and Price, 
1997) 
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Above, randb(j) is a uniformly distributed 
random number between 0 and 1, rnbr(i) is a random 
integer between 1 and D, where D is the number of 
identified model parameters and thus the length of 

Table 2: The search space used in parameter identification. 

 ξ1 ξ2 [⋅10-3] ξ3 [⋅10-4] ξ4 [⋅10-5] B λ Rc [⋅10-3] 
Lower limit -1 0 -2 7 0.016 9 0 
Upper limit 0 5 -1 13 0.5 23 1 
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the chromosome. To guarantee the diversity, one of 
the elements in the trial vector must be taken from 
the mutant vector. Therefore, the mutation 
probability, pm, does not equal to CR. 

Through crossover, the trial vector (Ui,G) is 
obtained and compared to the target vector in the 
selection step. The selection method is the 
tournament selection with two candidates. In other 
words, the fitter vector is moved to the new 
population according to (Price et al., 2005) 

( ) ( )
⎩
⎨
⎧ ≤

=+ otherwise,X
XJUJif,UU

G,i

G,iG,iG,i
G,i 1  (5)

Above, J is the objective function. The selection 
given in (5) guarantees that all the chromosomes in 
the new population are equal or better compared to 
the previous population. Thus DE is an elitist 
algorithm (Pant et al., 2009). Note that all vectors 
(chromosomes) above consist of D elements as 
follows 

, , ,0, ,1, , , , 1., ,..., ,...,i j G i G i G i k G i D Gx x x x x −⎡ ⎤= ⎣ ⎦  (6) 

where i refers to the vector number in 
population, j to the element index, and G to the 
generation. 

The overall algorithm can be summarized in the 
following steps: 

1. Create the initial population and evaluate its 
fitness. 

2. Apply mutation, crossover and selection. Each 
chromosome acts as a target vector Xi,G at a time. 
For each target vector, 

2.1 Select the base vector for mutation and the 
vectors needed to calculate the difference vectors,  

2.2 Calculate the mutant vector, Vi,G, 
2.3 Create the trial vector Ui,G through crossover 

and 
2.4 Select Xi,G or Ui,G to be moved to the new 

population. 
3. Evaluate the fitness of the population 
4. If the termination criterion is satisfied, 

terminate, otherwise, go back to step 2. 
Different variants of DE have been developed. 

They differ in methods used for crossover, selection 
and mutation. Also the number of difference vectors 
may vary. Typically, different variations are denoted 
as (Feoktistov and Janaqi, 2004) 

c/b/a/DE  (7)

where a is the method for selecting the base 
vector for mutation, b is the number of difference 
vectors and c is the method used for crossover. The 

number of difference vectors is typically 1 or 2. 
Examples of different choices are shown in Table 3. 

Table 3: Different DE algorithms tested in this study. 

 
Base vector 
selection for 

mutation 

Number of 
difference 

vectors 

Crossover 
method 

DE/rand/1/bin Randomly 1 Binary 
DE/rand/2/bin Randomly 2 Binary 
DE/best/1/bin The best one 1 Binary 
DE/rand-to-
best/1/bin Compromise 1 Binary 

DE/rand/1/exp Randomly 1 Exponential

Five different DE algorithms are studied here in 
order to gain knowledge how different versions 
apply to the identification problem. The studied 
versions are DE/rand/1/bin, DE/rand/2/bin, 
DE/best/1/bin, DE/rand-to-best/1/bin and 
DE/rand/1/exp. Two first ones are used to determine 
if it is favourable to use more than one difference 
vectors. The effects of different base vectors for 
mutation are studied with DE/rand/1/bin, 
DE/best/1/bin and DE/rand-to-best/1/bin. Finally, 
binomial and exponential crossover operators are 
compared with DE/rand/1/bin and DE/rand/1/exp. 

3.2 Defining the Population Size 

There are some parameters regulating the evolution 
of the population in evolutionary algorithms. The 
population size is one of them and it is essential 
because it should be big enough so that the initial 
population has enough diversity (i.e. the initial 
population covers the whole search space) and as 
small as possible to decrease the computational load. 

In this study, entropy is used as the measure of 
diversity. The same has been earlier reported in 
(Sorsa and Leiviskä, 2010). The higher the entropy 
the more diverse the population is. The entropy of a 
random variable is given by (Cover and Thomas 
2005) 

( ) ( ) ( )∑−= xplogxpXH  (8)

where p(x) is the probability mass function of the 
random variable X. The probability mass function 
satisfies (Cover and Thomas, 2005) 

( )∑ =1xp  (9)
The base of the logarithm in (8) is 10 in this 

study. For the case that p(x) contains zero 
probability components, it is defined that (Cover and 
Thomas, 2005) 

000 =log  (10) 
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The entropy is at its maximum when the random 
variable is uniformly distributed (Cover and 
Thomas, 2005). Typically, and also in this study, the 
initial population is taken from the uniform 
distribution. When the initial population is too small 
it does not follow the uniform distribution leading to 
lower entropy. However, with increasing population 
size the initial population is more uniformly 
distributed and the entropy is closer to the 
maximum. In this study, the entropy is calculated for 
each parameter independently and those entropies 
are then summed. The probability mass functions 
use 10 bins in this study. 

Figure 2 shows the entropy as the function of the 
population size. For each population size, 10 
different initial populations are created and their 
entropies are calculated. The average of those is then 
plotted in Figure 3. With 7 parameters and using the 
10-based logarithm, the maximum entropy is 7. 
Table 4 shows entropies with selected population 
sizes. From Figure 3 and Table 4, it is clearly seen 
that the initial steep rise of the entropy reaches a 
plateau somewhere around the population size of 
160 where about 99 % of the maximum entropy is 
reached. With the population size of 100, almost 98 
% of the maximum entropy is reached while almost 
96 % is reached with the population size of 50. In 
this study, it is assumed that reaching 95 % of the 
maximum entropy is enough and thus the population 
size of 50 is used with all algorithms. 

 
Figure 2: Entropy as the function of the population size. 

Table 4: Entropies at some population sizes. 

Pop. Size 10 20 50 100 200 
Entropy 5.31 6.24 6.70 6.85 6.93 

3.3 Tuning Parameters 

There are only a few tuning parameters in DE and 
thus they should be defined carefully. DE is 

sensitive especially to the mutation coefficient F and 
the crossing coefficient CR (Tvrdik, 2009). The 
appropriate values of the parameters depend on the 
problem. The influence of all three parameters (F, 
CR and NP) is similar. Small values increase the rate 
of convergence but may lead to premature 
convergence to a local optimum. (Fan and 
Lampinen, 2003),  

Some suggestions for the tuning parameters can 
be found in the literature. As suggested in (Price et 
al., 2005), a good initial guess for separable 
functions are CR = 0.2 and F = 0.5. However, if the 
parameters to be solved depend on each other, it is 
stated in (Price et al., 2005) that efficient 
optimization is obtained with CR = 0.9 and F ≥ 0.8. 

To guarantee that the search is efficient and 
mutation produces big enough step sizes, the 
variance of the population compared to the state of 
the search should be high enough. Because selection 
favours the solutions near the optimum, it decreases 
the variance of the population. Therefore it is desired 
that mutation and crossover slightly increase the 
variance. On the other hand, too high variance may 
decrease the rate of convergence significantly.  
Table 5 shows the studied DE algorithms together 
with their tuning parameters. 

Table 5: The tuning parameters of the studied DE 
algorithms. 

 CR F 
DE/rand/1/bin 0.35 0.9 
DE/rand/2/bin 0.35 0.9 
DE/best/1/bin 0.39 0.7 

DE/rand-to-best/1/bin 0.56 0.9 
DE/rand/1/exp 0.35 0.9 

3.4 Selecting Base Vector for Mutation 

When applying mutation two things have to be 
considered: the direction and size of the change. In 
differential evolution, these depend on the difference 
vector and especially the vectors used to create the 
difference vector. Thus increasing the population 
size or the number of vectors used for building the 
difference vector leads to more alternative mutation 
directions. (Feoktistov and Janaqi, 2004) 

Almost exclusively one or two difference vectors 
are used. When one difference vector is used, the 
mutant vector is obtained with (3) and with two 
difference vectors, the mutant vector is (Storn and 
Price, 1996) 

, 1, 2, 3,

4, 5,

(
)

i G r G r G r G

r G r G

V X F X X
X X
= + −

+ −
 (11) 
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3.4.1 Rand 

The base vector for mutation can be selected 
randomly. Then each chromosome has equal 
probability to be chosen. The problem with purely 
random selection is that same chromosomes can be 
selected multiple times. Thus a better random 
approach is to use universal stochastic sampling 
where multiple chromosomes are selected at a same 
time. A method where each chromosome is selected 
only once is called permutation selection. An even 
simpler approach is to select a random starting point 
for the selection. 

When random mutation is applied, the mutant 
vector is given by (3). (Price et al. 2005) 

3.4.2 Best 

The best chromosome (Xbest,G) can be also used as 
the base vector for mutation. It increases the rate of 
convergence but may, however, lead to premature 
convergence (Price, 1996). In such a case, the found 
solution may be poor. Using the best chromosome as 
a base vector is useful when the global optimum is 
easy to find (Storn and Price, 1995). 

The mutant vector when the best chromosome is 
used as the base vector is 

, , 2, 3,( )i G best G r G r GV X F X X= + −  (12) 

3.4.3 Rand-to-Best 

Rand-to-best mutation is a combination of the 
previous two methods for selecting the base vector 
for mutation. The base vector is neither a random 
nor the best chromosome of the population but a 
combination of these. The base vector in rand-to-
best mutation is given by (Storn and Price, 1996). 

( )
, 1, 2, 3,

, 1.

( )i G r G r G r G

w best G r G

V X F X X

X Xλ

= + −

−
 (13) 

Above, λw is a weighting coefficient ranging 
from 0 to 1 determining how close the base vector is 
to the best chromosome. With high values of λw the 
mutant vector is close to the best chromosome and 
with small values the mutant vector is close to the 
random chromosome. To simplify the method, λw 
may be defined to equal F. 

3.5 Crossover 

After mutation, crossover is applied in differential 
evolution. In crossover, a trial vector is generated by 

combining the mutant and the target vectors. The used 
crossover method and the crossing coefficient CR 
both have influence on how close to the mutant vector 
the trial vector is. The closer the trial vector is to the 
mutant vector the bigger step size is applied and the 
algorithm proceeds faster. Typical crossover methods 
are binomial and exponential crossover but also 
arithmetic crossing is sometimes used (Zaharie, 
2009). 

3.5.1 Binomial Crossover 

In binomial crossover, the elements are selected to 
the trial vector from the mutant vector with the 
probability CR and otherwise they are taken from 
the target vector. The selection is made 
independently for each element. Because it is 
desired that the trial vector is not a duplicate of the 
target vector, one element is forced to be taken from 
the mutant vector. The trial vector according to the 
binomial crossing is (Storn and Price, 1997) 

, ,
, ,

, ,

, ( ) ( )
, ( ) ( )

i j G
i j G

i j G

v if randb j CR or j rnbr i
u

x if randb j CR or j rnbr i
≤ =⎧⎪= ⎨ ≤ ≠⎪⎩

  
(14) 

Above, randb(j) is a uniformly distributed 
random number between 0 and 1, rnbr(i) is a 
random integer between 1 and D, where D is the 
number of optimized parameters and thus the length 
of one chromosome. Because one of the elements is 
forced to betaken from the mutant vector, the 
probability that a parameter is taken from the mutant 
vector does not equal CR (pm≠CR). The probability 
pm depends on the population size. When crossing, 
the probability pm for D-1 elements is CR and for 
the rnbr(i):th element it is 1. Thus for one parameter 
the probability is (Zaharie, 2009) 

( )1 11 11m
CR D

p CR
D D D

− +⎛ ⎞= − + =⎜ ⎟
⎝ ⎠

  
(15) 

The expected number of parameters taken from the 
mutant vector is given by (Zaharie, 2009) 

( )( ) 1 1mE L NP p NP CR= = − +  (16) 

3.5.2 Exponential Crossover 

Exponential crossover is similar to the one-point- 
and two-point crossover operators in genetic 
algorithms. L elements starting from a random point 
are taken from the mutant vector and the rest of the 
trial vector is taken from the target vector. 
Exponential crossover is presented by (Storn and 
Price, 1995) 
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, ,

, , 1 ... 1
,

i j G D D D
i j G

i j G

v if j n n n L
u

x otherwise
= + + −⎧⎪= ⎨

⎪⎩
 (17) 

Above, n is a random integer between 1 and D and 
〈n〉D is the remainder of the division n/D. The 
elements are taken from the mutant vector as long as 
a generated random number is lower than CR. The 
probability of taking an element from the mutant 
vector and also the expectation for the overall 
number of elements taken from the mutant vector 
can be calculated. They are given, respectively, by 
(Zaharie, 2009). 

( )
1

1

D

m
CRp

D CR
−

=
−

 (18) 

1( )
1

NPCRE L
CR

−
=

−
 (19) 

Compared to binomial, exponential crossover 
requires a lot higher CR to obtain the same 
expectation E(L). Practically, only in cases where 
CR is close to 1, the majority of the elements in trial 
vector are taken from the mutant vector. Thus if the 
problem is such that mutation is critical in finding 
the optimum, binomial crossing is to be used. With 
exponential crossing, defining an appropriate CR is 
also harder because the correlation between CR and 
pm is nonlinear while in binomial crossing it is 
linear. Thus the majority of the applications 
nowadays uses binomial crossing (Zaharie, 2009). 

4 RESULTS AND DISCUSSION 

The optimizations are repeated 500 times for each 
studied version of the algorithms and statistical 
information about the performance of the algorithms 
is obtained from the repetitions. The best model 
during each optimisation is recognised and their 
accuracy is evaluated through the SSEP objective 
function given in (2). The mean value, standard 
deviation and minimum of the best objective 
function are calculated for each optimisation. 

Each repetition of the algorithm gives the 
possible best solution to the parameter identification 
problem. Thus a distribution of the parameters with 
500 observations is obtained through the repetitions. 
To convert the distributions into an informative 
index, entropy is used. Smaller entropy means less 
variance throughout the repetitions. Thus the smaller 
the entropy the better the algorithm has converged. 

 

4.1 The Performance of DE Algorithms 

The minimum and mean values and standard 
deviations of SSEP for DE algorithms are given in 
Table 6. It shows that no big differences exist at 
least when considering the minimum and average 
results. Table 7 gives the best parameter sets for 
different DE versions. This table shows more 
differences meaning that this problem has several 
local minima. Only ξ3 and B remain almost the same 
despite the algorithm. Also λ obtains similar values 
with the exception that DE/rand/2/bin gives a higher 
value than the other algorithms. The entropies of the 
parameters are given in Table 8. The table shows 
that ξ3 and B have low entropy which means that the 
same values are obtained throughout the repetitions. 
High entropies are noticed especially with ξ1, ξ2, ξ4 
and RC. The performance of the best models is 
presented in Tables 9 and 10. No significant 
differences can be noticed in the model performance 
for the training data sets (Table 9). However, the 
performance for the testing data sets (Table 10) 
shows that the best results are obtained when using 
the rand-to-best -strategy in base vector creation. In 
Table 11, information already given in earlier tables 
is collected and refined. It shows the SSEP values 
for the training and testing data sets and the overall 
entropy. In the following subsections, the results 
provided in Tables 6-11 are analyzed in more details 
in order to draw conclusions about the significance 
of the different operators used in DE. 

4.2 Influence of the Number of 
Difference Vectors 

The effect of the number of difference vectors can 
be analysed when comparing the performance of 
DE/rand/1/bin and DE/rand/2/bin algorithms. As 
mentioned before, the statistical values from the 500 
repetitions of both of the algorithms show no 
significant differences (Table 6). Also the 
performance of the best models for the training data 
sets is almost the same as shown in Table 9. 
However, the best parameter vectors differ as shown 
in Table 7. The entropies of the parameters in 500 
repetitions of the algorithms (Table 8) indicate that 
DE/rand/2/bin has achieved a bit higher rate of 
convergence. For both algorithms, only parameters 
ξ3 and B have low entropies which explains this 
behaviour. The performance of the best models for 
the testing data sets (Tables 10 and 11) shows that 
DE/rand/2/bin gives better results because the SSEP 
values are lower compared to the DE/rand/1/bin. 
The exception is data set 1 for which DE/rand/1/bin  
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Table 6: Statistical values of the SSEPs in 500 repetitions of the DEs. 

Algorithm Minimum Mean Standard deviation 
DE/rand/1/bin 5.070 5.152 0.075 
DE/rand/2/bin 5.076 5.165 0.044 
DE/best/1/bin 5.066 5.117 0.070 

DE/rand-to-best/1/bin 5.066 5.080 0.033 
DE/rand/1/exp 5.069 5.146 0.064 

Table 7: The best parameter values found by the DE algorithms. 

 ξ1 ξ2 [⋅10-3] ξ3 [⋅10-4] ξ4 [⋅10-5] B λ Rc [⋅10-3] 
DE/rand/1/bin -0.117 1.108 -1.148 10.936 0.033 11.858 0.002 
DE/rand/2/bin -0.419 1.781 -1.159 9.621 0.034 12.113 0.020 
DE/best/1/bin -0.765 2.542 -1.157 8.076 0.033 11.887 0.000 

DE/rand-to-best/1/bin -0.700 2.400 -1.158 8.367 0.033 11.891 0.000 
DE/rand/1/exp -0.191 1.277 -1.146 10.631 0.033 11.858 0.002 

Table 8: The entropies of the parameters in 500 repetitions. 

 H(ξ1) H(ξ2)  H(ξ3) H(ξ4)  H(B) H(λ) H(Rc)  
DE/rand/1/bin 0.93 0.63 0.16 0.84 0 0.51 0.78 
DE/rand/2/bin 0.92 0.61 0.20 0.82 0 0.42 0.79 
DE/best/1/bin 0.95 0.68 0.06 0.89 0 0.46 0.66 

DE/rand-to-best/1/bin 0.95 0.68 0.01 0.86 0 0.27 0.29 
DE/rand/1/exp 0.92 0.61 0.16 0.81 0 0.51 0.75 

Table 9: The performance of the best models for the training data sets (Data set 1 / Data set 2). 

 Error mean Error st.dev. SSEP 
DE/rand/1/bin 0.00 / -0.01 0.39 / 0.46 2.10 / 2.97 
DE/rand/2/bin -0.01 / -0.02 0.40 / 0.45 2.19 / 2.89 
DE/best/1/bin 0.00 / 0.00 0.39 / 0.45 2.17 / 2.90 

DE/rand-to-best/1/bin 0.00 / 0.00 0.39 / 0.46 2.16 / 2.91 
DE/rand/1/exp 0.00 / -0.01 0.40 / 0.45 2.24 / 2.83 

Table 10: The performance of the best models for the testing data sets (Data set 3 / Data set 4). 

 Error mean Error st.dev. SSEP 
DE/rand/1/bin -0.22 / -0.11 0.25 / 0.31 1.66 / 1.51 
DE/rand/2/bin -0.08 / -0.06 0.26 / 0.30 1.04 / 1.31 
DE/best/1/bin 0.10 / 0.02 0.26 / 0.30 1.10 / 1.27 

DE/rand-to-best/1/bin 0.07/ 0.01 0.26 / 0.30 1.00 / 1.27 
DE/rand/1/exp -0.19 / -0.10 0.27 / 0.30 1.52 / 1.39 

Table 11: The performance of the DE algorithms. Note that the SSEP values here are sums of values given for two data sets 
in Tables 9 and 10. 

 rand/1/bin rand/2/bin best/1/bin rand-to-best/1/bin rand/1/exp GA 
SSEP train 5.07 5.08 5.07 5.07 5.07 5.07 
SSEP test 3.18 2.35 2.37 2.27 2.91 2.48 
Entropy 3.85 3.76 3.69 3.06 3.76 4.92 

gives a lower SSEP value. From the results, it can be 
concluded that higher rate of convergence is 
achieved when using 2 difference vectors instead of 
1. This higher  rate  of  convergence  leads  to  better  

solutions when the number of generations is limited 
to some predefined value. Thus the use of 2 
difference vectors is beneficial in this case. 
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4.3 Influence of the Base Vector for 
Mutation 

The influence of the base vector for mutation is 
evaluated by comparing DE/rand/1/bin, 
DE/best/1/bin and DE/rand-to-best/1/bin 
algorithms. Table 6 already indicates that DE/rand-
to-best/1/bin performs best on average even though 
the best models show almost the same prediction 
accuracy for the testing data sets (Table 10). When 
studying the entropies of the solutions (Tables 8), it 
is noticed that the lowest entropy is obtained with 
DE/rand-to-best/1/bin indicating that the highest 
rate of convergence is achieved with this algorithm. 
This leads to clearly better prediction accuracy for 
the testing data sets as shown in Tables 10 and 11. 
The results provided show that it is advantageous 
to use rand-to-best -strategy for selecting the base 
vector for mutation. 

4.4 Influence of the Crossover 
Operator 

The influence of the crossover operator can be 
evaluated by studying DE/rand/1/bin and 
DE/rand/1/exp algorithms. The results obtained with 
the algorithms are almost equal. A slight difference 
can be noticed from Table 8 and 11, which shows that 
DE/rand/1/exp achieves a bit lower entropy and also a 
bit lower SSEP for the testing data sets. However, the 
difference is quite small and thus no suggestion about 
the preferred algorithm can be given. 

4.5 Comparison of the DE Algorithms 

The DE algorithms are compared based on the 
results given in Table 11. From the table, it is seen 
that all the algorithms are able to reach almost equal 
value for the training data SSEP. When the SSEP of 
the testing data sets is investigated, it is seen that 
DE/rand-to-best/1/bin gives the best results. Also 
the overall entropy shows that the solutions found by 
DE/rand-to-best/1/bin are close to each other 
throughout the 500 repetitions. Thus DE/rand-to-
best/1/bin is the most suitable algorithm for the 
studied problem. DE/best/1/bin and DE/rand/2/bin 
show almost equal results and perform quite well 
also. DE/rand/1/bin and DE/rand/1/exp exhibit the 
poorest prediction accuracy and performance. 

5 CONCLUSIONS 

In this study, evolutionary  algorithms  were  studied  

and used for identifying the parameters of a fuel cell 
model. The fuel cell model was nonlinear having 7 
parameters. Five different DE algorithms were tested 
and compared. DE varied in the number of 
difference vectors, the selection of the base vector 
for mutation and the crossover operator. The studied 
DE algorithms were DE/rand/1/bin, DE/rand/2/bin, 
DE/best/1/bin, DE/rand-to-best/1/bin and 
DE/rand/1/exp. An appropriate population size for 
all the algorithms was defined based on the plot of 
the entropy of the initial population as the function 
of the population size. 

DE/rand-to-best/1/bin showed to be the most 
suitable algorithm for the studied problem. Selection 
of the crossover operator has no considerable effect 
on the results. 
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