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Abstract: A seismic isolator has the main function to be extremely deformable for horizontal forces, but at same time 
sufficiently stiff when loaded with vertical actions. These properties may be strongly influenced by both the 
isolator geometry (i.e. overall dimensions, number and thickness of rubber pads and steel laminas) and the 
mechanical properties of rubber pads. Mechanical properties of the pads, especially Young modulus, may be 
evaluated as a function of hardness, by means of consolidated empirical formulas. In this work, the 
influence of rubber pads thickness and hardness on both vertical and horizontal stiffness of realistic seismic 
isolators is discussed. Three full 3D Finite Element models referred to three different seismic isolators 
having different slenderness are analysed in detail in both vertical compression (elastic analysis) and simple 
shear in large deformations. Uniaxial and shear response of the seismic devices obtained numerically are 
finally critically compared, with the aim of evaluating the best compound to be used in practice. 

1 INTRODUCTION 

In the recent past, seismic isolation technology has 
been applied almost entirely to large buildings in 
high seismicity countries, where seismic events are 
expected to be relevant. One of the most diffused 
technology for seismic isolation is the utilization of 
elastomeric multilayer bearings. Until now, the high 
cost of production reduces the use of seismic 
isolation mainly for important buildings. Their cost 
is due to the preparation of the steel plates, which 
are used to provide vertical stiffness, and the 
assembly of the rubber sheets. From a technical 
point of view, the rubber has the main function to be 
extremely deformable for horizontal forces, but at 
the same time sufficiently stiff when loaded with 
vertical actions. Each individual elastomeric layer in 
the bearing deforms according to two kinematic 
assumptions, i.e. that (1) horizontal planes remain 
planar and (2) points on vertical lines lie on a 
parabola after loading. 

This is obtained thanks to the incompressibility 
of the rubber sheets (Amin et al., 2002; 2006, Gracia 
et al., 2010) and the introduction of the thin 
reinforcing steel plates, interspersed between 10-30 
mm thick rubber pads (Moon et al., 2002; 2003). 
Kelly and co-workers (e.g. Tsai and Kelly, 2002) 

have demonstrated that theoretically it is possible to 
substitute reinforcing elements of multilayer 
elastomeric isolation bearings, which are normally 
steel plates, by fiber reinforcement. This solution 
goes to a drastically reduction in the weight and 
probably in the reduction of the cost in the assembly 
of the items. Milani & Milani (2012) have described 
a numerical approach to predict the macroscopic 
behavior of parallelepiped elastomeric isolators 
undergoing large deformations. In that work, the 
actual behaviour of elastomeric sheets as a function 
of the typology of rubber used and their compounds 
were discussed. Following the original approach 
proposed in Milani & Milani (2012), in the present 
work, with the aim of reducing the production cost, 
we have theoretically considered the opportunity to 
increase the thickness of the rubber sheets and 
decrease the steel plates. This geometrical 
rearrangement provides a decrease of the vertical 
stiffness but at the same time a good performance 
under horizontal loads. When the rubber pad 
thickness is increased up to 3.5 cm, it would be 
necessary to consider the kinetic of vulcanization of 
the rubbers sheets, in order to obtain mechanical-
elastomeric characteristics as homogeneous as 
possible in any point of the rubber pad. This would 
allow to obtain responses for horizontal forces of the 
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isolator similar to those obtained with thin sheets. As 
it is known, the mechanical elastic behavior can be 
correlated to the density of the cross-link, that is 
function of the thickness, the dimensions, the type of 
rubber and the compound. For these reasons, it is 
necessary to optimize the vulcanization in terms of 
time/temperature in such a way that in all points of 
the items there are similar mechanical-elastomeric 
characteristics and in order to obtain pads with a 
hardness directly proportional to pad thickness. As a 
matter of fact, mechanical properties of the pads, 
especially Young modulus, at a first attempt and 
without the possibility to perform expensive 
mechanical simulations, may be evaluated as a 
function of hardness, by means of consolidated 
empirical formulas. In this work, the influence of 
rubber pads thickness and hardness on both vertical 
and horizontal stiffness of realistic seismic isolators 
is discussed. Three full 3D Finite Element models 
referred to three different seismic isolators having 
different slenderness (and hence thickness of the 
rubber pads) are analysed in detail in both vertical 
compression (elastic analysis) and simple shear in 
large deformations. Uniaxial and shear response of 
the seismic devices obtained numerically are finally 
critically compared, with the aim of evaluating the 
best compound to be used in practice. 

2 CURED RUBBER 
MECHANICAL PROPERTIES 
AS A FUNCTION OF 
HARDNESS 

At present, the influence of pads thickness in the 
seismic isolation performance of rubber bearings is 
not completely understood in terms of types of 
elastomers, optimal recipe, ingredients of 
vulcanization to be used to increase both the 
mechanical performance and reduce costs. In this 
paper, three different thicknesses of rubber pads are 
considered and the vertical stiffness of the isolators 
so obtained is evaluated in conjunction with the 
shear behavior. 

As a matter of fact, the utilization of thick pads 
provides a decrease of the vertical stiffness, which 
obviously depends on the elastic modulus of the 
rubber used.  

In general, the so-called static modulus of a 
rubber compound is obtained in standard stress-
strain tests in which the samples are extended at the 
rate of 20 in/min. The dynamic modulus is measured 
while the sample is oscillated about some given 

strain or stress, usually under some fixed 
superimposed load. Hardness is a modulus measured 
at very small deformations, commonly obtained by 
means of the use of indenter devices.  

The static moduli at 300% extension, the 
dynamic moduli and the hardness data have been 
extensively studied by Studebaker & Beatty (1978). 
Usually modulus and hardness of a stock are 
increased through the use of fillers. As a 
consequence, both modulus and hardness depend on 
the so called filler “structure” (or more specifically 
on carbon black structure) and cross-linking density. 
Dealing with commercial compounds, which are 
rather random and heterogeneous, it is difficult to 
collect data regarding Young modulus and hardness 
and draw any generalization.  

The standard test method to have an idea of 
rubber mechanical properties still remains 
ASTMD2240, which deals with the penetration of a 
specified indentor forced into the material under 
specified conditions. The test is called “durometer 
test”. 

Durometer, like many other hardness tests, 
measures the depth of an indentation in the material 
created by a given force on a standardized presser 
foot. This depth is dependent on the hardness of the 
material, its viscoelastic properties, the shape of the 
presser foot, and the duration of the test. ASTM 
D2240 durometers allows for a measurement of the 
initial hardness, or the indentation hardness after a 
given period of time. The basic test requires 
applying the force in a consistent manner, without 
shock, and measuring the hardness (depth of the 
indentation). If a timed hardness is desired, force is 
applied for the required time and then read. The 
material under test should be a minimum of 6.4 mm 
(.25 inch) thick.  

There are some empirical formulas that correlate 
indentation hardness to penetration, elastic modulus 
and viscoelastic behavior of the material. 

For instance, the following external force-
hardness empirical law holds for a so called type A 
durometer: 

AHN 075.0550.0:Force +=  (1)

where HA is the hardness read on a type A 
durometer. 

Conversely, for a so called type B durometer the 
following formula may be used: 

DHN 4445.0:Force =  (2)

where HD is the hardness reading on a type D. 
The difference between type A and type D 

durometers stands exclusively  on  the  geometry  of  
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the device. 
Type A durometer is a hardened steel rod with 

diameter 1.1- 1.4 mm, with a truncated 35° cone of 
diameter 0.79 mm. Type D durometer is a hardened 
steel rod having a diameter of 1.1- 1.4 mm, with a 
30° conical point and 0.1 mm radius tip. 

Under small deformations rubbers are linearly 
elastic solids. Because of the high modulus of bulk 
compression, about 2000MN/m2, compared to the 
shear modulus G, about 0,2-5MN/m2 (Tobolsky and 
Mark, 1971), they may be regarded as relatively 
incompressible. The elastic behavior under small 
strains can thus be described by a single elastic 
constant G, being Poisson’s ratio very near to ½ and 
Young’s modulus E equal to 3G with very good 
approximation. 

In order to have the possibility to evaluated the 
relation between hardness and Young’s modulus, 
first of all we have taken into consideration a semi 
empirical relation between the shore hardness and 
Young’s modulus for elastomers that has been 
derived by Gent (1958; 1978). This relation has the 
following form: 

( )
( )S54.2254137505.0

S62336.7560981.0
−

+=E  (3)

where E is the Young’s modulus in MPa and S is the 
shore hardness. This relation gives a value of E 
equal to infinite at S=100, but departs from 
experimental data for S lower than 40. 

 
Figure 1: Empirical dependence of the rubber elastic 
modulus in terms of international hardness (formula (6). 
Circle, square and triangle denote elastic moduli used in 
the numerical simulations. 

Another relation that fits experimental data 
slightly better is the following and is reported into 
British standards (BS 1950, BS 1957): 

( )Eerf 410186.3100S −×=  (4)

where erf is the error function and E is in units of 
Pa. A first order estimate of the relation between 
shore D hardness and the elastic modulus for a 
conical indenter with a 15 degree cone is: 

( )
E

E
D

88.78136.6113188.7820100S ++−−=  (5)

where SD is the shore D hardness and E is in MPa. 
Another linear relation between the shore 

hardness and the natural logarithm of Young’s 
modulus is applicable over a large range of shore A 
and shore D hardness (Qi et al., 2003). This relation 
has the form: 

6403.0S0235.0)ln( −=E  (6)

Where S= SA for SA between 20 and 80 and S= 
SD +50 for SD between 30 and 85, being SA the shore 
A hardness, SD the shore D hardness and E the 
Young’s modulus in MPa. 

In our theoretical work, we have considered an 
ideal rubber item with different hardness and have 
calculated the corresponding Young’s modulus. 
From that value, we have deduced the influence of 
the thickness of the compounding rubber materials 
for the optimal stiffness vertical resistance. 
However, hardness is a superficial determination and 
for this reason it is necessary to optimize also the 
density of cross-linking at same recipe. While this 
latter issue is extremely important, our work focuses 
on the possibility to increase the thickness of rubber 
pads to optimize the elastic properties of the items, 
such as initial compression modulus and shear 
behavior under large deformation.  

The typical dependence of rubber Young 
modulus E with respect to hardness S, obtained by 
means of the empirical formulas discussed above is 
schematically represented in Figure 1. 

As it is possible to notice and as expected, there 
is a quite large scatter of the results for rubbers with 
big hardness. However, formulas suggested by 
ASTM 1415 and BS 903 provide very similar results 
in a wide range, also for S near 80. Despite the fact 
that Qi et al., (2003) formula seems less 
conservative for hard rubbers, authors adopted such 
approach to evaluate Young modulus to use in the 
numerical simulations, being Qi et al., (2003) 
approach based on a convincing experimental and 
theoretical framework. 
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Figure 2: FE discretization of the seismic isolators studied. 

3 NUMERICAL FINITE 
ELEMENT SIMULATIONS ON 
ELASTOMERIC ISOLATORS  

One of the key parameters having a fundamental 
role in the determination of overall isolator 
compression elastic modulus Ec is the so called 
shape factor SF (or primary shape factor), defined as 
the ratio between the loaded area and the lateral 
surface free to bulge. Since the shape factor refers to 
the single rubber layer, it represents a measure of the 
local slenderness of the elastomeric bearing. 
Experimental tests have shown that low shape factor 
bearings, characterized by values of SF greater than 
5 and less than 20 (in the present case SF=7), provide 
an isolation effect in both the horizontal and vertical 
directions whereas high shape factor bearings, 
characterized by values of SF greater than 20, only 
provide a good isolation in the horizontal direction. 
It is even obvious that low values of the shape factor 
define thick rubber layers and, hence, provide 

bearings characterized by high deformability. As a 
rule, in seismic isolation applications the need to 
have a device with a high vertical stiffness and low 
shear stiffness requires that S assumes values greater 
than 5 and less than 30. 

 
Figure 3: Isolator vertical elastic modulus varying shape 
factor and rubber hardness. 

Three geometric cases corresponding to shape 
factors SF equal to 7, 15 and 30 are hereafter 
considered. In these cases, the thicknesses of the 
single pad are approximately respectively equal to 5, 
8.5 and 18 mm, assuming a width of the isolator 
equal to 500 mm (square isolators) and a total 
thickness equal to 250 mm. Assuming in the first 
case a thickness of steel laminas equal to 1 mm, in 
the second 2 mm and in the third 3 mm, the number 
of steel plates to be used on such devices is 
respectively equal to 38, 19 and 9. 

Three refined discretizations are adopted in the 
numerical simulations discussed in this Section, as 
depicted in Figure 2. For rubber, eight-noded bricks 
elements are used, whereas for steel laminas four-
noded plate and shell elements are adopted, to 
properly take into account both the in-plane and the 
out-of-plane effect induced by steel bending. 
Obviously, the isolator with shape factor S=30 
requires several elements, due to the reduced 
thickness of the pads, namely 12224 bricks, 5328 
plates and 14501 nodes.  

Elastic analyses under small deformations are 
performed to characterize the vertical elastic 
modulus in compression, which is represented in  

Figure 3, at different values of the shape factor 
and for the three blends represented in Figure 1 with 
squares. 
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Consequently, the strain invariants are expressed 
as 1/1 22

21 ++== λλII  and the expression for 
Cauchy stress becomes: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −−−=− 11212 22

2
13311 λ

λσσ CC  

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −+−−=− 11212 21

2
23322 λ

λσσ CC  

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −+=− 2

2
212211

12
λ

λσσ CC  

(14) 

The normal behaviour under large deformations 
of the single pad is shown in   

Figure 5. Such a response under large 
deformations is fully determined once known the 
two Mooney-Rivlin constants 1C  and 2C . However, 
the initial Young Modulus gives only one 
information on such constants (G=2( 1C + 2C )). In 
what follows we therefore assume 1C =G/2 and 2C
=0, in absence of experimental data on constituent 
materials, which corresponds to a Neo-Hookean 
material. 

  
Figure 5: Stretch-stress behaviour of a single rubber pad 
(top) and pure shear behaviour under large deformations 
(bottom). 

Having at disposal 1C  and 2C  constants, a 
standard large deformation software is utilized to 
plot the response of the whole isolator in shear, as 
sketched in Figure 6. 

Figure 6 is particularly important for practical 
purposes, because the curves may be implemented at 
a structural level to study entire base-isolated 
buildings in the dynamic range. 

 

 
Figure 6: Force-displacement curves in shear under large 
deformations and corresponding deformed shape (S=7). 

As it is possible to notice, the utilization of 
different hardness rubber pads in conjunction with 
slender or less slender isolators may considerably 
change the macroscopic response of the isolator and, 
hence, the effectiveness of the device inserted in a 
large case structure may be variable. 

4 CONCLUSIONS 

The important matter of the role played by the 
thickness of rubber pads within seismic isolators is 
not well covered in the literature. From our 
theoretical investigation, it is shown that a proper 
calculation is needed when the item involves a high 
thickness and a large volume of the elastomer 
compounds. Hardness is a very important parameter 
to define rubber initial Young’s modulus, that is the 
main parameter to define the possibility that a 
predetermined thickness of the rubber pad is able to 
suitably support the vertical load. As it is known, the 
hardness determination, in general, is done on the 
surface of the items and this is function, at same 
recipe and rubber type, of the cross-link density. For 
this reason it will be required to deepen such 
preliminary results considering a particular rubber 
type, an experimental recipe and a mathematical 
approach to define the optimal vulcanization 
time/temperature and subsequently link these 
parameters with the hardness, to evaluate an optimal 
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cross-link density in any point of the items, 
especially for isolators with big dimensions.  

Another important parameter that will be 
investigate is the hysteresis loss and thermo-
mechanical behavior that, as known, can be 
correlated to the dynamic behavior based on cross-
link structures. Finally, it will be considered the 
aging or the stability of the rubber items, that in 
general depends on the structure of the elastomer 
used. In our theoretical work it is shown that a 
proper calculation is needed when a product 
involves a large volume of the rubber items in the 
seismic isolators. It is suggested to consider the 
following steps for a choice of the optimal thickness 
of the pads as a function of predetermined hardness, 
which also allows to increase the volume of rubber 
and decrease the number of the steel plates: 

1) Calculation of the Young’s modulus from 
hardness. 

2) Calculation of the maximum vertical stiffness 
supported. 

3) Determination of the stretch-stress behaviour 
of the single rubber pad. 

4) Determination of the shear behaviour of the 
whole isolator under large deformations. 

5) Utilization of the stretch-stress and the shear 
behaviour in order to define the best solution for a 
single building. 

6) Combination of the technical characteristics 
of the rubber pads and the steel laminas to minimize 
the cost, in order to introduce the seismic isolation 
technology in large buildings in high seismicity 
countries. The authors are convinced that this 
approach could be in the future the normal routine to 
design new buildings. 
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