
Flexible Information Management, Exploration and Analysis in
SAP HANA

Christof Bornhoevd, Robert Kubis, Wolfgang Lehner, Hannes Voigt and Horst Werner
SAP Labs, LLC, 3412 Hillview Ave, Palo Alto, CA 94304, U.S.A.

Keywords: Schema-flexible Database Management System, Graph Database, Flexible Information Management.

Abstract: Data management is not limited anymore to towering data silos full of perfectly structured, well integrated
data. Today, we need to process and make sense of data from diverse sources (public and on-premise), in
different application contexts, with different schemas, and with varying degrees of structure and quality.
Because of the necessity to define a rigid data schema upfront, fixed-schema database systems are not a
good fit for these new scenarios. However, schema is still essential to give data meaning and to process data
purposefully. In this paper, we describe a schema-flexible database system that combines a flexible data
model with a powerful data query, analysis, and manipulation language that provides both required schema
information and the flexibility required for modern information processing and decision support.

1 INTRODUCTION

The monolithic databases of the past, representing
self-contained fully integrated information univer-
ses, are giving way to much more fragmented
ecosystems of data sources. This trend is culmi-
nating in the form of today’s Web, which offers a
breathtaking amount of structured, irregularly
structured, and unstructured information.

To make use of multiple diverse data sources, the
traditional data integration approach is to integrate
those sources into a single context so as to get a
comprehensive and consolidated view on the data.

As the schema of data must be known in advance
and then coded explicitly in the database, the efforts
for data source connection, data integration, and data
cleansing, severely limit the viable number and
complexity of information sources. As a conse-
quence, many needs for data analysis remain
unfulfilled, since required data is not available in an
integrated and consolidated form.

SAP is developing a comprehensive solution to
better support data exploration and analysis in highly
dynamic and heterogeneous business contexts, based
on the HANA main-memory centric data mana-
gement system. The need to tap into a mostly
unpredictable set of heterogeneous data sources in
short time frames is necessary for agile business
analysis and decision support (Cohen et al., 2009).

In contrast to conventional approaches, the
solution outlined in this paper follows an “integrate
as you go” paradigm to support transformation and
consolidation steps on demand. By handling data
together with soft-coded metadata, it is relatively
easy to consolidate data from different sources with
similar meaning and overlapping attribute sets.

Firstly, object types are imported together with
the data without requiring upfront modeling.
Secondly, it is easier to identify gaps and
inconsistencies in a model where data and metadata
are treated similarly, because the existence or
nonexistence of a property type in a set of data
objects can be treated in the same way as the
occurrence of a property value. As a consequence, a
stepwise integration allows a more agile use of a
broader range of data sources with different schemas
and with varying degrees of structure and quality
(Franklin et al., 2005); (Das Sarma et al., 2008);
(XML Query Language, 2007).

While the data foundation of applications gets
more diverse, there is also a shift to new end user
devices, such as smart phones, tablets, and electronic
whiteboards, which dramatically change how people
interact with data. The traditional form-based
interfaces are commonly based on a three-step
interaction pattern of posting a search request,
picking a data object from the result list and
manipulating that object. This decade-old interaction
pattern limits the amount of data a user is able to

15Bornhoevd C., Kubis R., Lehner W., Voigt H. and Werner H..
Flexible Information Management, Exploration and Analysis in SAP HANA.
DOI: 10.5220/0004011500150028
In Proceedings of the International Conference on Data Technologies and Applications (DATA-2012), pages 15-28
ISBN: 978-989-8565-18-1
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

review without getting lost, and is insufficient for
mass manipulation of data objects. The search step
does not allow real exploration but merely helps to
shrink the result list; hence, it still requires the user
to know what he is looking for.

Modern and future devices allow a more intuitive
tactile- and gesture-based interaction, and provide
various kinds of context information (e.g. location,
orientation and acceleration). Based on the capabi-
lities of these devices, new user interfaces offer a
freely interactive and explorative way to work with
data. With the ability to present data at instantly and
easily changeable levels of detail and to dynamically
create context-sensitive views or filters, these new
interfaces supply the user with exactly the
information that is relevant for his current situation.
This flexible and intelligent way of data presentation
and interaction lets users search, view, handle, and
manipulate very large datasets of varying kinds and
structure (Perlin et al., 1993); (Morris et al., 2010);
(Werner et al., 2011).

Putting the large variety of available data and the
new UI capabilities together, a wide range of new
applications that leverage potentially large weakly
structured and only partially integrated data becomes
possible. For instance, in the area of competitive
market intelligence future applications can analyze
customer sentiment, but can also be used to discover
market trends, competitor moves, regulatory
constraints, and so on, early, and handle these
proactively. Such applications will be able to crawl
the Web and combine information extracted from
unstructured content (typically blogs, news pages,
press releases) with publicly available structured
information (e.g., from Freebase) and private
structured information (contained mostly in business
applications).

In contrast to the established transactional
applications, the content of these collaborative
applications - a shared and incrementally composed
work context - is less predictable. Hence, it does not
fit well with a predefined rigid schema, which is the
key design concept of relational database systems.

More flexibility in the data model is provided by
key-value stores or document-oriented database
management solutions. However, abandoning a rigid
up-front defined database schema also implies that
the intended meaning of data, which so far has been
contained in the schema, must be made explicit and
completely handled within the application coding.

Semantic Web technology is one attempt to
create a more explicit representation of the meaning
of data. But representing meaning by complete and
consistent sets of computer-processable rules requi-

res a rigid standardization of metadata vocabularies,
and does not provide a concept for dealing with
different context-specific views on identical entities,
with incompleteness and inconsistencies.

In summary, we see this kind of heterogeneity
and the strong scalability demand resulting from the
fast growing amount of available and potentially
relevant data as one of the main challenges for
database technology. Future data repositories need to
support the coexistence of heterogeneous content
and its incremental integration to the degree needed,
based on specific application knowledge and
requirements. We therefore see the need for data
management systems that do not require the upfront
definition of rigid database schemas and that support
the efficient representation and processing of large
volumes of irregularly structured, not necessarily
fully integrated data.

In this paper, we describe an extension to SAP’s
HANA data management and analytics engine.
(Färber et al., 2011); (Gupta et al., 2012). HANA is
a main-memory centric database system that
leverages new technologies such as multi-core, SSD,
and large main-memory capacities to significantly
increase performance of analytical and transactional
applications. HANA is based on a fundamentally
new system architecture that allows storing data
either column- or row-oriented. We leverage HANA
as the foundation of a new schema-flexible data
management system that we call Active Information
Store (AIS). AIS capabilities are realized directly on
top of the HANA database engine to guarantee good
query performance and scalability.

2 REQUIREMENTS

We studied a broad range of uses cases, such as ad-
hoc data integration and analysis, competitive
market intelligence, social network analysis, idea
management business user enablement, and next-
generation collaboration tools. Based on these use
cases, we identified common requirements for an
optimal underlying data store. A data store
developed specifically for such applications has to
be able to efficiently manage schema-flexible,
irregularly structured and partially integrated data
with a soft-coded or system generated schema.

With such a data store, schema information does
not need to be defined upfront. Instead, the data is
self-describing (a soft-coded schema). Data objects
of similar structure, or representing similar kinds of
entities, do not need to have the same semantic type
(are not fully integrated), and data objects of the

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

16

same semantic type do not need to exhibit the same
structure (are irregularly structured). Once the data
is in the data store, changing the schema of data
objects has to be possible at any point in time, and
must be processed as efficiently as any other first-
class data operation (schema-flexible). In short, the
data store needs to support the coexistence of
heterogeneous content and its incremental integra-
tion to the degree needed by the specific application
at hand.

In addition, the provided data model must
provide strong support for links between data
instances of different types to support information
correlation and re-organization. Functionally, the
data store has to provide the following mass data
operations:
 Load, insert, update, and delete objects with

possibly irregular structure and without a predefined
fixed schema.
 Efficiently add and remove attributes and

links/associations to and from data objects.
 Efficiently filter and classify data objects.
 Efficiently traverse links between data objects.
 Calculate the union, difference, and intersection

of large sets of objects.
 Group, aggregate, and consolidate possibly

heterogeneous data objects.
All operations are mass-data oriented, i.e., they
process large sets of data objects at once.
Additionally, these operations have to treat data
objects as a whole and preserve a data object’s
integrity as a logical unit.

3 SYSTEM OVERVIEW

We have developed the Active Information Store
(AIS) as an extension to the existing HANA engine
to provide a powerful schema-flexible data store to
address the posed data management challenges. In
this section, we will summarize the design principles
that guided the development of AIS:
(1) In AIS, a data object consists of a group of
semantically and technically typed values that form
a semantic unit, e.g. to describe a person or a
product. Semantic types, e.g. person, describe the
intended meaning of a data object, whereas technical
types like Integer or String describe the
representation of data in the system. Semantically
typed associations represent links between these data
objects. For efficient value processing, such as
aggregation, all attributes of the same semantic type

have the same technical representation type. To
remain structurally flexible, semantic types do not
impose restrictions on other semantic types related
to a data object, e.g. the type person does not
determine the attributes a person instance can have.
(2) AIS strengthens the integrity and identity of a
data object as a logical unit of storage and retrieval.
Each data object instance has a single identifier that
is immutable during regular query processing. Only
consolidation or aggregation of data objects will
result in new data object instances.
(3) AIS provides light-weight support for semantic
data processing. AIS is primarily a data store that
incorporates a number of helpful semantic features:
(a) Semantic types, which are modeled
(conceptually) through the means of the AIS data
model; (b) Taxonomies, to organize semantic types;
(c) basic semantic operations, such as subsumption
and transitivity, which can be used in queries.
(4) AIS uses URIs as the primary mechanism for all
identifiers exposed outside of AIS. URIs are a well-
established standard for identifiers, and the XML
namespace mechanism is adopted.
(5) AIS generally processes data objects in sets, with
good support for mass data processing through built-
in mass operations in the query language.
(6) To allow for complex operations, all elementary
operations of AIS must have minimal side-effects,
so that they can be freely combined. This implies
that all operations should be as general as possible,
and closed in regards to the AIS data model, i.e.
produce output that can be used directly as input for
other operations. By this principle AIS tries to
provide a set of operations that combine
compactness with expressiveness.
(7) With AIS, a statement can encompass many
complex operations. Multiple insert, update, delete,
and query operations can be combined within a
single statement. This helps to reduce the number of
round trips between client and server, and provides a
context for cross-operation optimizations.
(8) AIS leverages the highly efficient in-memory
storage layer of SAP HANA. AIS capabilities are
implemented directly on top of the HANA engine to
guarantee good performance and scalability.
(9) AIS provides a stateless, RESTful client API. The use
of complex statements allows the definition of client
actions that involve larger units of work that need to be
processed as one atomic unit.

Flexible�Information�Management,�Exploration�and�Analysis�in�SAP�HANA

17

4 DATA MODEL

The AIS offers a very flexible data representation
model that allows the uniform handling and combi-
nation of structured, irregularly structured, and un-
structured text data. All data managed and processed
by AIS is converted to this common data model.

In this model, data objects are represented as Info
Items. Info Items are organized and persisted in
Workspaces, which establish a scope for visibility
and access control.

An Info Item provides a single uniquely
identifiable data instance, holding a set of
Properties, which describe the Info Item. A property
can be either an Attribute or an Association. Info
Items and their properties have an attached semantic
type label that indicates the assumed item class (e.g.
person), attribute type (e.g. age), and relationship
type (e.g. is-parent-of or works-for), respectively.
We call these type labels Terms.

Formally, an Info Item ܫ is a quadruple (ݑ, ܶ, ,ݒ represents the item’s URI, ܶ is ݑ ூ), whereݐ
a set of ݊ property Terms {ݐଵ, … , is the value ݒ ,{௡ݐ
function and ݐூ is the item’s Term. The value
function ݒ: ܶ → ଵܶା × …× ௡ܶା maps every property
Term ݐ௜ to a list of all values of the Info Item’s
property of Term ݐ௜.

An Attribute associates a value with an Info Item,
and is labeled with a Term. A multi-valued attribute
can be represented by multiple attributes of the same
Term. An Association describes a unidirectional
typed relationship between a pair of Info Items. An
Association is labeled with a Term indicating the
semantic type of the Association. The same pair of
Info Items can be related via multiple Associations
of different types, and Info Item instances of the
same semantic type can be related through different
types of Associations.

Figure 1: Example of info items and associations.

Figure 1 shows an example of Info Items taken
from a data integration and analysis example. The

two Info Items on the left side represent entities
from a developer community (DC). The two Info
Items on the right side originate from an ERP
database. The work-as and the posted Associations
link Info Items as their corresponding entities are
associated in the respective source databases. The
same-as Association has been added later as the
result of integrating the datasets for analysis. By this
means, the data is integrated to the level sufficient to
analyze how actively employees participate in the
developer community, for example.

As mentioned earlier, a Term represents the
semantic type of an Info Item or Property. In
addition to its semantic meaning, a Term also has an
assigned Technical Type that determines the
physical representation of the corresponding data
element. In the case that a Term describes an Info
Item or an Association, the technical type is Info
Item or Association, respectively. For Attributes, the
technical type can be Integer, String, Date, etc.

The AIS data model is strict and consistent in its
semantic and technical typing of data. All Info Items
and all Properties have a semantic type. All Property
values of the same semantic type have the same
Technical Type. To gain flexibility, the AIS data
model loosens consistency regarding the structural
implication between semantic Info Item types and
semantic Property types. Info Items that have
assigned the same semantic type may, and in general
do, have different sets of properties. However, the
structural information about which Info Item types
expose which Property types is not lost; it can be
captured with Templates. A template is associated
with a specific Term and provides information about
the structure, i.e., the Properties of the Info Items
currently in the store of the corresponding Term. A
Template describes the set of frequent Properties
that are available for most (e.g. 95%) of the
currently available Info Items, and the optional
Properties that are only given for some of the Info
Items of the corresponding type.

Terms are represented as Info Items. This allows
their retrieval and manipulation either as Terms, i.e.,
as metadata, or (possibly together with other Info
Items) as Info Items, i.e., as data. By allowing Terms
to be treated and used as regular Info Items, we give
up a strict, and in some applications artificial,
separation of data from metadata.

Terms can be taken from domain-specific
Taxonomies that can be provided to AIS as semantic
metadata. Terms from a specific taxonomy are
assigned to Info Items and their Associations when
they are loaded into AIS, but can be changed later.
In this way, Terms can provide a first hook to make

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

18

the intended meaning of an Info Item, its Attributes,
and Associations, more explicit, by putting it into
the context of a taxonomy of type denominators.

Figure 2 illustrates the use of Terms. Terms form
a subsumption tree. If a knowledge worker, for
example, wants to analyze all Info Items represent-
ting a person, i.e., employees from the ERP system
and members of the developer community, she could
easily introduce a new common Super Term, e.g.,
person for employee and member, as shown in the
figure. Additionally, she might let AIS create a
Template based on all Info Items that the Term
person subsumes.

Figure 2: Example of info items and terms.

In summary, AIS provides a very generic and
flexible graph-oriented data model, where Info Items
form the nodes and Associations the edges of a
graph. The data model does not enforce a tight
integration of and structural consistency among data
items, which typically come from different hetero-
geneous sources into one common data schema.
Rather, it supports the coexistence of data items
from different sources and their stepwise integration.
While providing rich schema information, AIS does
not require defining the schema of the data upfront
in a rigid way. Rather, the schema evolves as new
Info Items are imported or created, new attributes
are added, new Associations between Info Items are
established, and new Terms are introduced.

5 QUERY LANGUAGE

AIS offers a powerful data query and manipulation
language called WIPE. In this section, we outline the
basic structure of an AIS statement, and describe the
set of operations supported in WIPE.

In the case of AIS, a statement can be composed
of multiple data manipulation operations and may
return multiple result sets. The data operations of a

given statement are executed in their order of
declaration as one logical unit of work. More
formally, an AIS statement is defined as a triple (ݓ,ܰ, ܱ), where ݓ is the workspace the statement is
operating in, ܰ is a set of namespace definitions and ܱ = ,ଵ݌݋ … , .௡ is a list of data operations݌݋

Figure 3: Example of an AIS statement.

During execution, every statement has a
statement context ܥ, to keep track of all execution-
related information. Primarily, a statement context
encom-passes a set of local identifiers, which can be
used to structure a statement. In that sense, a
statement context ܥ is a function defined by a set ܮ = {݈ଵ, … , ݈௡} of local names and a set ܧ ={݁ଵ,… , ݁௡} of expressions so that ܥ(݈௜) = 	 ݁௜.

Figure 3 shows a statement to find employees
contributing to the development community. First,
the statement specifies the workspace it will be exe-
cuted in. Second, it establishes associations between
employee items and member items having the same
email address. Third, it defines two Info Item sets,
one containing all employees that have contributed
to the community and one containing employees that
have recently contributed. Forth, it retrieves some
basic counts, to give an overview of what the data
looks like. Fifth, the statement retrieves the recently
contributing employees. The example illustrates the
use of the update, assign, and retrieval operations
within a single statement.

AIS offers Load, Insert, Update, and Delete as
manipulation operations, Retrieval to retrieve data,
and Assign for structuring complex statements. In
the next two sections, we describe these data
operations in more detail.

Load and insert operations allow to bulk load and
to create new Info Items in a workspace. Update
operations allow changing the values of properties
well as adding new properties or removing
properties from Info Items. The example statement
shown in Figure 3 adds an association same-as to all
employees (line 2). The target of an association can
be specified by any valid AIS expression that
represents a set of Info Items.

Flexible�Information�Management,�Exploration�and�Analysis�in�SAP�HANA

19

The retrieval operation allows fetching data and
is defined as a triple (݁, ,ݑ ܶ), where ݁ is an expres-
sion, ݑ is an optional URI, and ܶ is an optional set
of ݊ property Terms {ݐଵ, … , ݁ ௡}. Expressionݐ
defines the set of Info Items to retrieve. Any valid
AIS expression that results in a set of Info Items
may be used here. In case of multiple retrieval
operations within a single statement, the name (i.e.
URI) of a result set can be used to distinguish the
result sets on the client side. The example statement
retrieves two result sets (line 4 and 5), called
overview and recentContributers, respectively.

When an Info Item is shipped to the client, only a
subset of the item’s properties might be of interest to
the client. If ܶ is provided, the retrieval operation
will select only properties of the Terms in ܶ to the
result set (projection). Formally, for every Info Item I = ,ݑ) ூܶ, ,ݒ ூ) an Info Item Iᇱݐ = ,ݑ) ܶ′, ,ᇱݒ ூ) isݐ
shipped so that T′ = ܶ ∩ ூܶ and ݒ′ is only defined
for ݐ ∈ ܶ′. In the example, the second retrieval
operation projects only the properties uri, name and
email.

Finally, the assign operation allows the client to
structure a complex statement by naming and re-
using sub-expressions. In particular, an assign
operation is defined as a pair (݈, ݁), with ݈ being the
local name and ݁ being the expression that ݈ will be
bound to. The binding is stored in the statement
context ܥ, so that ܥ will be defined by ܮ = ܮ ∪ {݈}
and ܧ = ܧ ∪ {݁} after the assignment. The example
statement illustrates that in line 3.

Expressions form the core of the AIS query
language. In particular, an AIS expression is defined
to be a literal, a reference (e.g. a URI), a local name
or an operation applied to one or more sub-
expressions. As a starting point, AIS provides the
built-in local name $ALL, which represents the set of
all Info Items persisted in the current workspace. A
set of all Info Items of a specific Term can simply be
referenced by the URI of the Term. For example
uri:member references the set of all members of the
developer community.

Based on these initial sets of Info Items,
expressions allow the refinement of the requested
Info Item set in a retrieval operation. Besides
standard numeric algebra, Boolean algebra, string
operations, and other value-type specific operations,
set operations are most crucial for mass data
processing. AIS offers six essential kinds of set
operations: (1) Set Algebra, (2) Graph Traversal, (3)
Filtering, (4) Quantification, (5) Aggregation
Functions, and (6) Grouping. We will describe these
categories in the following.
Set Algebra. Set Algebra operations encompass the

three basic operations Union ∪, Intersection ∩ and
Difference \ (asymmetric difference). Given two
sets ܣ and ܤ of Info Items the three operations are
defined as follows: ܣ ∪ ܤ = 	 :ݔ} ݔ ∈ ܣ ∨ ݔ ∈ ܣ				 {ܤ ∩ ܤ = 	 :ݔ} ݔ ∈ ܣ ∧ ݔ ∈ ܤ\ܣ				 {ܤ = 	 :ݔ} ݔ ∈ ܣ ∧ ݔ ∉ 			{ܤ
For example, the set of all developer community
posts and blog articles can be expressed as:

uri:post UNION uri:blog-article

Graph Traversal. The traversal operation allows
resolving properties, i.e., associations and attributes.
It is defined as a pair (ܵ, ܶ), where ܵ is the set of
Info Items to start the traversal from and ܶ is the set
of property Terms to traverse over. The resulting set
contains all values that the properties of any Term ݐ ∈ ܶ have on all Info Items ܫ ∈ ܵ: (ܵ, ܶ) =ራ ௝൯௜,௝ݐ௜൫ݒ with ௜ݒ ∈ ௜ܫ ∈ ܵ ∧ ௝ݐ ∈ ܶ

In the case of Associations, the result is a set of Info
Items. In the case of attributes, the result is a set of
primitive values. Terms for Attributes and Terms for
Associations cannot be mixed in a single traversal
step to avoid a result set consisting of both Info
Items and primitive values.

For association traversals, the operation can be
marked with the Reverse flag (<-) or the Transitive
flag (*). In the first case, the associations will be
traversed in the opposite direction. In the second
case, the traversal results in all items reachable from ܵ by any association path in ܶା. In our example, all
emails of the employees can be retrieved with the
expression:

uri:employee->uri:email

while the expression
{uri:com.sap.std.erp.ui}<-uri:works-for

retrieves all employees of the ERP UI team. Note
that the traversal operation strictly works on sets and
we have to create a set containing the specific team
Info Item, referenced by its URI. Assuming that
teams have sub-teams, we can get all emails of all
team members and sub-team members with:
{uri:erp.ui}->uri:subteam*<-uri:works-for

Filter. With the filter operation, Info Item sets can
be filtered according to a given condition. Formally,
a filter operation is defined as a pair (ܵ, ܾ: ܵ →{false,	true}), where ܵ is the Info Item set to filter
on, and ܾ is a condition function that maps every
Info Item of ܵ to a Boolean value. The resulting set

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

20

contains only Info Items of ܵ mapped to true: (ܵ, ܾ) = :ݏ} ݏ ∈ ܵ ∧ .			{(ݏ)ܾ
The condition function ܾ is a logical expression tree
which can consist of Boolean operations, relational
conditions and quantification. A relational condition
represents a basic value comparison. It has a left
value expression, a comparator, and a right value
expression, and returns true if the comparison holds
for the two values. For example, we can filter all
employees by their salary:

$e: uri:employee
WITH $e->uri:salary > 100k

Quantification. Quantification conditions check
whether a given quantity of elements of an Info Item
set or a value set satisfy a condition function. A
quantification operation is defined as a triple 	(ܳ, ܵ, ܿ), where ܳ is a quantifier, ܵ is the set, and ܿ
is the condition function. The quantifier specifies the
required quantity for a quantification to yield true.
AIS supports the existential quantifier ∃ and the
universal quantifier ∀: (∃, ܵ, ܿ) = ݏ∃ ∈ ܵ, ,∀)					(ݏ)ܿ ܵ, ܿ) = ݏ∀ ∈ ܵ, 			(ݏ)ܿ
In the example, the quantification condition allows
us to filter all teams with at least one high-income
earner:

$t : uri:team
WITH ONE $e : $t<-uri:works-for
 WITH $e->uri:salary > 100k

Aggregation Functions. Aggregation functions map
a set or a list of Info Items to a single value. AIS
supports the basic aggregation functions COUNT
(number of element), SUM (summation), AVG
(average), MIN (minimum), and MAX (maximum).
For instance, the following expression filters
development community members according to the
number of posts they made:

$m : uri:dc-member
WITH COUNT($m->posted) > 500

Grouping. AIS offers a very general grouping
operation, where we understand grouping as the
creation of a new Info Item from a group of existing
Info Items. A grouping operation is defined as a
triple (ܵ, ,ீܧ is a set of ீܧ ,where ܵ is the base set ,(ܫ
grouping expressions, and ܫ is an Info Item
constructor function. All Info Items ݏ in S with
equivalent results on all expressions in ீܧ form a
group ݃. The resulting set of a grouping operation
contains new Info Items created by applying ܫ to
every ݃: (ܵ, ,ீܧ (ܫ = {݃: ݃ = (݃)ܫ ∧ ݃ ∈ .{~/(ܵ)ீܧ

Assuming that ܦ is the domain of all Info Items, an
Info Item constructor function ܫ: (ܦ)࣪ → maps a ܦ
subset of Info Items to a new Info Item. An Info
Item constructor can be defined (similar to an Info
Item) as a quadruple (ݑ, ܶ, ,௏ܧ is the new ݑ where ,(ݐ
item’s URI, ܶ is a set of ݊ property Terms {ݐଵ, … , is the ݐ ௏ is a set of ݊ expressions, andܧ ,{௡ݐ
item’s Term. When applied to a group ݃, ܫ(݃)
results in a new Info Item of Term ݐ with ݊
properties, so that the ݅-th property is of Term ݐ௜ ∈ ܶ
and is assigned with the evaluation of expression ݁௜ ∈ ,ݑ) .݃ ௏, where ݁௜ is evaluated against groupܧ ܶ, ,ܧ (ݐ = ,ݑ) ܶ, :ݒ (௜ݐ)ݒ = ݁௜(݃), (ݐ
For instance, to query the average number of posts
of DC members, we would define the grouping as: ൫uri:post, ,௏ܧ ,ݑ) ܶ, ,௏ܧ ௏ܧ :൯ with(ݐ = ቄݏ uri:postedርۛ ۛۛ ۛۛ ሲቅ	ܶ = {uri:email,uri:numberOfPosts}	ܧ௏ = ቄቀ݃ uri:postedርۛ ۛۛ ۛۛ ሲቁ uri:emailሱۛ ۛۛ ሮۛ ,	COUNT(݃)ቅ			.
In statement syntax that is:

GROUP $s : uri:posts AS $g BY $s<-
uri:posted
TO ITEM {
 uri:email = $g<-uri:posted->uri:email,
 uri:numberOfPosts = COUNT($g)
}

Grouping can also group Info Items based on
aggregates. For example, listing for each team size
the ratio of heavy posters can be done with the
expression:
GROUP $e : uri:employees AS $g BY
COUNT($e->uri:works-for<-uri:works-for)
TO ITEM {
 uri:sizeOfTeam =
 COUNT($e->uri:works-for<-uri:works-for),
 uri:heavyPosterRatio =
 COUNT($e : $g WITH
 COUNT($e->same-as->posted) > 500) /
 COUNT($e : $g WITH
 COUNT($e->same-as->posted) < 500)
}

A. Term Operations. Most of the described AIS
operations rely on Terms. AIS organizes Terms in
taxonomies to allow an explicit description of
subsumption relationships between Terms.
Formally, subsumption is a function τ(t) that results
in a set ܶ	 = 	 :௦௨௕ݐ} {௦௨௕ݐ	of	super-type	is	ݐ ∪ {ݐ}
with respect to the underlying taxonomy. Obviously,
other operations have to deal with this resulting set

Flexible�Information�Management,�Exploration�and�Analysis�in�SAP�HANA

21

of types so that their result reflects the meaning of
subsumption. For AIS, we allow subsumption for
Term URIs representing Info Item sets, association
traversal, and for the filtering on the type property of
Info Items.
B. Life Cycle. As mentioned before, single Info
Items are the granularity of data storage, but sets of
Info Items reflect the granularity of processing data.
Therefore, Info Items and Info Item sets are subject
to different life cycles when being processed via
query language statements.

Every Info Item, as the primary unit of storage, is
generally considered to be persistent and can be
identified among all Info Items in a workspace by its
URI. Operations, except Info Item constructor
functions, do not create new Info Items.

Info Item constructor functions are the only
operations to create new Info Items. These newly
created items are transient, i.e., they are not
persistent by default, and will live only as long as
the statement in which the transient items were
created is processed. Transient Info Items do not
necessarily have a unique identity. For that reason,
transient Info Items cannot be mixed with persistent
items in operations and sets. However, AIS can
return transient Info Items to the client or persist
transient Info Items with an Insert operation within
the same statement.

A set of Info Items, as the primary unit of
processing, is generally transient. Every operation
that results in a set of Info Items conceptually
creates a new set. However, sets can be explicitly
persisted for later retrieval, or re-use in other
statements.

6 ARCHITECTURE

AIS provides an extension of the SAP HANA in-
memory database engine. The existing HANA
storage and query processing layer fits well the
needs for scalability, speed, and built-in analytical
processing capabilities.

Figure 4 outlines the conceptual architecture of
AIS. At the front-end AIS exposes a RESTful client
API. A client sends its statements as requests to this
service. Inside AIS, a REST server receives this
request, extracts the statement, and hands it over to
the parser. The parser transforms the statement into
an internal representation and a rule-based statement
simplification procedure prepares it for execution. A
complex AIS statement, which can be divided into
an operational processing step and a result fetch
step, usually involves multiple storage layer

interactions before shipping the result sets back to
the client.

Figure 4: System architecture overview.

AIS does not preserve any state with regard to
the client. For scalability over the number of
concurrent clients, the processing of client requests
can be easily distributed over multiple worker
threads within a single machine and over multiple
machines. The HANA storage layer already provides
excellent scalability by being able to distribute data
across multiple machines.

In the following subsections, we describe (1) the
capability of the storage layer, (2) how we map the
AIS data model to a fixed schema as required by the
storage layer, and (3) how we process AIS
statements on top, while utilizing as much of the
existing storage layer capabilities as possible.
A. Storage Layer Capabilities. In the storage layer,
data is stored in fixed-schema tables. Data can easily
and highly efficiently be inserted, removed,
modified, and queried. To retrieve data, the storage
layer supports “Select Group Order Project”
(SGOP) queries and join views to join tables on
predefined join conditions over an arbitrary set of
tables with potentially different join semantics.
A SGOP query (ݐ, ,݌ ,ܩ ,ܣ ܱ) selects all rows that
match the predicate ݌ from table or join view ݐ,
groups the rows by all columns ܿ ∈ creates ,ܩ
aggregation columns ܿ ∈ sorts the result by all ,ܣ
columns ܿ ∈ ܱ, and finally projects to all columns ܿ ∈ ܩ ∪ will be a regular ܩ ,is empty ܣ If .ܣ
projection. If ܩ is empty, the query will return all
available columns. An aggregation column ܽ(ܿ)
aggregates a column ܿ of ݐ with the aggregation
function ܽ (sum, minimum, etc.). Predicate ݌ is a
logical expression of arbitrarily nested conjunctions
and disjunctions of conditions of the form ܴ(ܿ, ,(ݒ
where ܴ is a relation (equal, less, greater, in, etc.), ܿ	is a column of ݐ, and ݒ is a value literal.
B. Mapping to the Storage Layer. We need to
provide the required flexibility in the AIS data

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

22

model w
storage l
fixed sch
determin
and the s
Logical
and cha
efficientl
data is u
has to “
logical
storage l
Technica
efficientl
storage
aggregat
technical
the exec
cast on e
Existenc
space-eff
The map
for non-e
not a so
stored m
existing
The bas
entity or
level of
as data o
entity ab
are gene
storage l
followin
for AIS d
(1) Irregu
and unp
the expli
we chose
(2) The r
type pre
coding. H
and sto
correspo
partition
Null va
property
(3) Entity
means t
more fle
be tailor
workload

while relying o
layer, i.e. we
hema. The po
ned by the AIS
storage layer c
Type Flexibil

ange logical t
ly. In addition
unknown at d
“soft-code”

type informa
layer.
al Type P
ly utilize the
layer, such

tions. The m
l value types

cution of such
every value it
ce Representa
fficiently and
pping has to a
existing value
lution for non

more efficient
values should

sic dimension
rientation, i.e.
soft coding, i
or is mapped
bstraction and
eralized and d
layer. Regard

ng consideratio
data.
ularly structu

predictable nu
icit representa
e a vertical ov
required logic
eservation alr
Hence, we rep
ore all valu
onding techn
n the value tab
alues for n

y and technical
y abstraction
to make an
exible. For an
red based on
d. AIS is an a

on an underly
e need to map
ssible mappin
S requirement
capabilities on
lity. We want
types at any
n, the set of lo
deployment tim

all logical typ
ation as regu

Preservation.
type-specific

h as value
mapping has

of property v
h an operation
operates on.
ation. We w
not waste m

avoid an expli
es. In particula
n-existence, s
tly than regu

d be explicitly
ns for a map
, horizontal o
.e., how much
to storage la

d decompositio
decomposed in
ding these bui
ons justify the

ured Info Item
umber of prop
ation of non-ex
ver a horizonta
cal type flexibi
ready define
present all log
ues in colum
ical type. A
ble by techni
on-existing
l type.

and decomp
existing well
application, e
the applicati

application-inv

ying schema-f
p Info Items
ng alternatives
ts on the one h
n the other han
to create, rem
time easily

ogical types in
me. The mapp
pes, i.e., treat
ular data in

We want
operations of
comparisons
to preserve

values. Otherw
n would inclu

ant to store
memory resour

icit representa
ar, Null values
since they are
ular values. O

stored.
pping are (1)
or vertical, (2)
h typing is tre
ayer elements,
on, i.e., if ent
nto chunks on
ilding blocks,
e mapping we

ms have a vary
perties. To av
xisting proper
al orientation.
ility and techn
the level of

gical types as
mns with t
Additionally,
cal type to av
combinations

position are g
l-defined sch
entity chunks
ion’s schema
variant reposit

fixed
to a

s are
hand
nd:

move
and

n the
ping
t the

the

to
f the
s or

the
wise,
ude a

data
rces.
ation
s are
e not
Only

 the
) the
eated
, (3)
tities
n the
, the
e use

rying
void
rties,

nical
soft
data
their

we
void
 of

good
hema
s can

and
tory,

whe
adv
abs
map
To
part
enc
Info
info
UR
refe
kee
the
the
Ter
bas
sem
The
rela
tech
term
Ter
unu
indi
repr

Ass
rela
betw
sou
sem
Attr
of t
tech
colu
full
cap
actu
attr
Wit
requ
util
pos
C.
pow

ere schema
vance. Hence,
traction and d
pping.
summarize, w
titioned value

compasses the
fo Item. This
ormation of ev

RI, its Term,
erence the item
eps the basic

Term’s uniqu
Term’s super

rm’s instance
ed on basic I

mantic type, be
e Term rela
ationship are
hnical types a
m column to
rms. The colu
used for Info I
icate the tec
resenting a Te

Figur

sociation. Th
ational schema
ween Info Ite

urce item, the
mantic type) of
ribute. Finally
the Info Item
hnical type pr
umns and en
ly utilize
pabilities of th
ual value, th
ibute’s Term
th this mapp
uired for the
ize as much o

ssible.
Statement P

werful storag

and workloa
 we do not i

decomposition

we selected a
e tables. The
tables shown

s central tab
very Info Item

and a uniq
m in the other
attributes of
ue identifier,
r term, and th
s. This table
nfo Item attri
efore accessin
ationship an
semantically
are hard-code

store the su
umn for the t
Items but, if n
chnical type
erm.

re 5: Storage lay

e second ma
a records unid
ems, including
e target item
f the associatio
y, the third tab

ms. Using a se
reserves the t
ables the AIS
the selectio

he HANA sto
he table stor
and of the Inf
ping, we ma

AIS data m
of the storage

Processing O
ge layer at

ad are not k
incorporate a

n into our stor

a vertical sche
storage laye

n in Figure 5.
ble keeps th
m including t

que identifier
r tables. This t
each Term,
URI, the ide

he technical ty
e is used for
ibutes, in part

ng the value ta
nd the Supe
different, but
ed, we can r
uper term re
technical type
needed, is lev

if the Info

yer schema.

ajor table of
directional ass
g the identifie

m, and the T
ion.
ble stores the
eparate table
types of the i
S execution e

on and ag
orage layer. B
res identifier
fo Item it belo
aintain the f

model, and are
e layer’s capab

Overview. H
hand, the

known in
any entity
rage layer

ema with
r schema

e header
he item’s

used to
table also
including

entifier of
ype of the
r filtering
ticular its

ables.
er Term
since all

e-use the
elation of
e remains
veraged to

Item is

the AIS
sociations
ers of the

Term (i.e.

attributes
for each

ndividual
engine to
gregation

Beside the
s of the
ngs to.
flexibility
e able to
bilities as

Having a
statement

Flexible�Information�Management,�Exploration�and�Analysis�in�SAP�HANA

23

processing engine of AIS remains lean and does not
replicate any of the capabilities of the storage layer.
Thus, our processing model tries to delegate as much
of the query processing to the powerful storage layer
as possible, and the process-sing model is designed
to leave the payload data in the storage layer until
Info Items have to be shipped to the client. Since the
processing of Load, Insert, Update, and Delete
operations is straight-forward, we focus here on the
Retrieval operation.
Since the AIS query language is more expressive
than the query language of the underlying storage
layer an AIS statement, in general, results in
multiple storage layer interactions (Figure 6). After
parsing, AIS represents a Retrieval operation as a
statement tree. Every node in this statement tree
presents one of the operations of the AIS query
language as used in the specific Retrieval operation.
Assuming that its sub-expressions have been
processed, an operation can be processed either
without, with one, or with multiple storage layer
interactions.

In order to optimize the number of storage layer
interactions, the AIS statement simplifier removes
all idempotent operations, e.g., multiple negations,
and processes all operations that can be executed
without any storage layer interaction. Also, the sim-
plifier integrates all traversal operations on attributes
into their parent operation in the statement tree.

Figure 6: Statement processing model.

The AIS statement simplifier is based on an
extensible rule set. The simplification algorithm
traverses the statement tree top-down and then
bottom-up again. At each node of the tree, it rewrites
the tree according to the matching rules. Each rule
itself defines whether it is applied during the top-
down or bottom-up run, and whether the simplifier
should try to apply the rule repeatedly to the same
node. After the simplification step, the statement tree
is ready for the actual operation processing.
D. Operation Processing. After parsing and
simplification, AIS processes all operations of the
statement tree bottom-up, as illustrated in Figure 6.

The result of each operation is a Retrieval Reference
Table (RRT). An RRT is a set or list of Info Item
identifiers or values, respectively. Additionally, an
RRT can contain a set of Info Item identifiers as
back references for each of its entries. After an
operation has been processed, it is replaced with its
resulting RRT in the statement tree. The RRT then
forms the input to the operations higher up in the
tree. Eventually, the statement tree collapses into a
single RRT, which will be handed over to the result
fetch step.
Back references in RRTs are an important
mechanism for mass data processing. Many of the
AIS operations comprise Foreach semantics. If these
operations contain sub-operations that require
separate processing, the sub-operation would have to
be processed iteratively. With back references, an
operation keeps track of which elements of its output
resulted from which elements of its input. By this,
the iteration can be avoided and the sub-operation
can be processed in a single step. Nevertheless, this
approach trades space for time, and is therefore
bound by the available resources.

A Retrieval operation processes results in the
form of an RRT and may involve a number of
interactions with the storage layer, depending on the
operation being processed.
Set Algebra. Set Algebra operations are processed in
AIS without any storage layer interaction. Two input
RRTs are directly united, intersected or subtracted.
Traversal. Traversal operations require querying the
association table. The traversal (ܵ, ܶ) will result in a
storage layer query (Association, ,݌ ܱ, ∅, ܱ), with ݌ = (sourceItemID ∈ ܵ ∧ termID ∈ 	ܶ) and	ܱ = {targetItemID,sourceItemID}			
Transitive traversal is realized iteratively. In every
iteration, we set S to the Info Item identifiers fetched
in the previous iteration and execute the storage
layer query again. More specifically, the predicate ݌
is adjusted for each iteration to avoid traversing the
same associations multiple times. Assume S as the
set of Info Item identifiers fetched in the previous
step, and R as the set of Info Item identifiers
retrieved in all iterations before the previous one,
then ݌ is set to (sourceItemID ∈ ܵ ∧ targetItemID∉ ܴ ∧ termID ∈ 	ܶ)
If the storage layer query has an empty result, we
have reached the fixed point. Theoretically, a
transitive traversal can result in a very large set of
Info Items, in an extreme case encompassing the

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

24

complete workspace. Hence, processing a traversal
operation can become very time and space
consuming. Practically, however, we have not
encountered this problem for our use cases so far.

The traversal operation is also defined for attri-
butes. However, we always integrate the processing
of an attribute traversal in its nesting operation.
Filter. The processing of a filter operation depends
on its condition function, and we distinguish two
cases: (1) the condition function consists only of
logical operators and property-value comparisons, or
(2) it is a more complex expression.
In the first case, the statement simplifier has
transformed the condition function into disjunctive
normal form. The atoms are property-value
comparisons ܴ(ݐ, each stating that a property of ,(ݒ
Term ݐ has to be in relation ܴ with value ݒ, e.g., the
property salary has to be greater than 50k. Although
the storage layer is able to process predicates of this
class directly, the processing is more complex
because of the vertical schema. Therefore, we
directly push down disjunctions, but resolve
conjunctions by executing them as disjunctions on
the storage layer and post-processing the
conjunction within the AIS context. For instance, the
predicate uri:a>5 AND uri:b=2 is executed as (termID = ݅݀௔ ∧ value > 5) ∨ (termID = ݅݀௕ ∧			value = 2)
We partition attributes in the storage layer by their
technical type, and therefore have to execute
comparisons of attributes of different technical types
in separate storage layer queries. Assuming a
condition function involves ܰ conjunctions and ܯ
technical types, we have to execute ܰ ∙ storage ܯ
layer queries. In practice, ܰ and ܯ appear to be
rather small, so that this approach is feasible.

All queries order their results by Info Item
identifiers. AIS then merges the result sets using
interleaved scans. The merge results in a stream of (݅, ܶ) pairs, where ݅ is an Info Item identifier, and ܶ
a set of Term identifiers. After that the stream is
filtered to check whether every Info Item has
matches for every property Term of one conjunction.
In our example, we would check that every Info
Item had matches for uri:a and uri:b.

In the second case, if a condition function is
more complex and involves other operations, e.g., a
traversal operation, all nested operations will be
child nodes of the filter operation in the statement
tree. The sub-operations can be seen as a function ݂: ܵ → ܵ஽, where ܵ is the set that needs to be filtered
and ܵ஽ is the set the property-value comparisons are
defined on. For example, in the filter operation:

$e : uri:employee
WITH COUNT($e->same-as->posted) > 0 ܵ is the set of employees and ܵ஽ is the set of count

values. The sub-operations are two traversals and an
aggregation function. The processing of these sub-
operations results in an RRT with back references to
the Info Items in ܵ (employees in our example).
Then, we regularly process the actual filter (in our
example: count value greater zero) on this RRT as
described in the first case, and unite all remaining
back references to get the final result.
Quantification. Quantification relies on filter
processing. The existential quantifier is weaved into
the filter processing to exploit early-out opportu-
nities. Here, we return true as soon as we see an item
successfully passing the post filter predicate ݍ. For
the universal quantifier, we use an interleaved scan
of ܵ and the filter result ܵ′, both already ordered by
item id, and return false as soon as we have an item
in ܵ that is not in ܵ′.
Aggregation Functions. A group of aggregation
functions ଵ݂, … , ௡݂ applied to attribute traversal ope-
rations (ܵ, ଵܶ), … , (ܵ, ௡ܶ) can be executed directly in
the storage layer. Assuming all attribute Terms ݐ ∈ ܶ = ⋃ ௜ܶ௡௜ୀଵ have value type ݐݒ, AIS executes
the query (tablevt, ,݌ {termID}, ,ܣ {termID}) with ݌ = (itemID ∈ ܵ ∧ termID ∈ 	ܶ)	and	ܣ = { ଵ݂ᇱ(value), … , ௡݂ᇱ(value)}
where ௜݂ᇱ is the corresponding aggregation function
at the storage layer for ௜݂. If all attribute Terms ݐ ∈ ܶ
are not of the same value type, then one storage
layer query per involved value type is executed.
Grouping. The grouping operation consists of the
grouping expressions (the set ீܧ) and the creation of
new Info Items. Each grouping expression results in
an RRT of the grouping values that have resulted
from the expression and back references to the Info
Items to be grouped. Each RRT is sorted by the Info
Item identifiers. With interleaved scans, AIS merges
all RRTs into a single RRT, which now consists of
the grouping values of all grouping expressions plus
the back references. Now, AIS determines the actual
groups of Info Item identifiers. All back references
that belong to equal grouping values form one
group.
The item constructor creates a new Info Item for
each group of Info Item identifiers. Each group is
processed separately. Given an item constructor
function (ݑ, ܶ, ,௏ܧ -we process each value expres ,(ݐ
sion in ܧ௏ on the Info Item identifiers in the group,
and assign the resulting value to the corresponding
property of the new item.

Flexible�Information�Management,�Exploration�and�Analysis�in�SAP�HANA

25

All grouping expressions ீܧ, and likewise all
value expressions ܧ௏, have to be executed on the
same set, the set of Info Items to group, and a group
of Info Items, respectively. For that, we leverage a
number of shortcuts and optimizations. First, we
group traversals on the same source set for
execution. Second, we similarly group aggregation
functions on traversals. Third, for expressions with
identical sub-operations on the same source set, we
execute the sub-operation only once and re-use the
resulting RRT. Fourth, if a value expression is
identical to a grouping expression, we take the result
directly from the RRT used to determine the groups.
E. Result Fetch. Finally the result fetch retrieves the
actual payload data of the retrieval. Assuming a
Retrieval operation (e, u, T) whose query expression e has been processed to an RRT S (a set of Info Item
identifiers), AIS now fetches all rows from the
property table whose item id is in S and whose Term
id is in T, by executing for every value type vt of the
property Terms in T the query (tablevt, p, {itemID,termID}, ∅, {itemID}) with ݌ = (itemID	 ∈ ܵ ∧ termID ∈ 	ܶ)			.
Two more storage layer queries are necessary: (1)
the Info Item table is queried for the header data of
the items, and (2) a join view over the association
table and the Info Items table is queried for
associations. All of these queries order their result
by Info Item id. With interleaved scans, AIS finally
merges the values into Info Items.

7 RELATED WORK

AIS clearly falls into the category of NoSQL
databases. The term NoSQL covers a wide range of
data stores, which vary considerably in the data
model used and the query and interaction
capabilities offered.

In terms of data models used in NoSQL
databases, key-value based, hierarchical, and graph-
based data models can be distinguished. The group
of key-value stores includes document stores (for
instance CouchDB (CouchDB, 2012)), pure key-
value stores (for instance Amazon S3 (Amazon S3,
2012)), and wide column stores (such as Bigtable
(Chang et al., 2008), or Cassandra (Lakshman et al.,
2009)). Generally, a key-value based data model
associates one to three hierarchical keys with non-
typed byte arrays. Although very general and
extremely flexible, the key-value concept does not
offer any inherent higher means to type and

associate entities. Approaches to work around these
conceptual shortcomings rely on interpretation by
the client application and are transparent to the data
store, including its query mechanisms.

Document stores typically follow a hybrid
approach nesting two data models. Being primarily
key-value stores, document stores additionally
structure values using a hierarchical data model such
as XML (Extensible Markup Language, 2008) or
JSON (Crockford, 2006). A tree of flat objects
allows modeling an entity’s structure and preserving
its integrity as a unit. Furthermore, it is possible to
hierarchically associate entities by nesting them.

Graph-based data models are more general and
allow arbitrary associations. Probably the most
general graph-based data model is RDF (RDF/XML
Syntax Specification, 2004). RDF stores statements
about entities as subject-predicate-object triples,
which form a labeled graph. Consequently, when
stored in RDF, entities are decomposed into
statements. The entity’s integrity as a unit is lost and
must be reassembled during retrieval. RDF is
probably the most general data model. However,
RDF is too general if the representation and
management of composite data objects is required.

The AIS data model resembles a graph of plain
objects. Plain objects graphs are a very flexible
representation of data, where values and links can be
easily added and removed, and the entity integrity is
preserved at the same time. Comparable to AIS,
Neo4J (Neo4J, 2012) is a graph database with a data
model incorporating only a very weak type system.
Besides missing support for taxonomy and
subsumption, semantic attribute types in Neo4J do
not imply any technical value type. Weak technical
typing allows more flexibility at the price of
required type casts. AIS avoids type casting for
better aggregation performance. Freebase (Bollacker
et al., 2008) is a public graph database operated by
Google. Freebase offers an advanced type system
without hard-coded schema but type-specific
metadata defined (at runtime) before data can be
stored. The Freebase concept lacks taxonomy and
subsumption support.

Regarding query and interaction capabilities,
everything from simple APIs to proper query
languages can be found in the zoo of NoSQL
databases. APIs are offered by the majority of the
key-value stores. These APIs are typically very
limited in their expressiveness – comparable to the
internal record access methods of a standard
relational database system.

Query languages usually come with the more
advanced hierarchical and graph-based data models.

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

26

XQuery (XML Query Language, 2007), SPARQL
(SPARQL, 2008), Gremlin (Gremlin, 2012), MQL,
and Cypher (Cypher Query Language, 2012) are the
most important ones to mention here. XQuery is a
powerful language to work with XML. It strictly
builds on the hierarchical nature of XML, which
makes it not a good fit for graph-structured data.

SPARQL is designed to query RDF data sets. A
SPARQL query matches a graph pattern to a labeled
graph. Like RDF, SPARQL has no notion of an
entity as a unit. To query an entity, all properties of
this entity have to be known in advance. Further,
SPARQL lacks means to aggregate values or
objects, which makes it inappropriate for most graph
analytics tasks.

Gremlin is a language for graph querying,
analysis, and manipulation. Since Gremlin heavily
builds on graph traversals it is a powerful language
to operate with graphs. However, Gremlin is a
programming language rather than a query language.
There is no inherent language support for set
operations, aggregation, or consolidation.

MQL is the query language of Freebase. It
strictly follows the query-by-example paradigm.
Thereby, it allows a relatively simple composition of
powerful queries. Nevertheless, by that simplicity it
narrows the granularity of client interaction to single
queries per roundtrip.

Cypher is the query language of Neo4j. With an
SQL-like syntax, Cypher offers filtered traversal
from a given node set and projects out the value of
interest found along the traversal. It supports
ordering an aggregation. Cypher is the graph query
language closest to WIPE. However, it lacks WIPE’s
support for complex retrieval and manipulation
statements.

8 CONCLUSIONS

We presented the challenges faced by existing and
emerging applications that require a schema-flexible
DBMS that: (1) needs to handle data of different
schemas and with different degrees of structure
without upfront expensive data integration, (2) has
to support changes in the data schema during data
query and processing efficiently, but (3) still needs
to incorporate the notion of data schemas and a
proper type system, so that types can be used to
manipulate and retrieve data.

We described AIS as SAP’s answer to the
challenges of these new kinds of business applica-
tions. In this paper we provided a system overview,
and described our data model and data query and

manipulation language. We sketched the system’s
architecture and how its statement processing is
implemented. A description of experimental results,
in particular performance experiments, are planned
for upcoming publications.

Finally, we discussed existing approaches related
to our data model and data query language. We
pointed out that existing data models either are
structurally too weak or lack an adequate type
system. For query languages, we argued that the
discussed approaches are either not expressive
enough or too specialized in data models or
operations to be suitable for our target applications.

We are currently using AIS in Semantic Business
Applications where we represent user and
application context in the form of semantic
networks, our Business Network Services platform,
where we use AIS to efficiently represent and
analyze company relationship networks, and in
Sentiment Analysis applications, where we combine
and analyze internal structured business data with
external irregularly structured social media data.

Ongoing work includes the implementation of
dedicated physical storage structures and graph
specific operations, e.g., graph traversal operators,
directly inside the HANA database engine to further
optimize query performance.

REFERENCES

Amazon S3. 2012. http://aws.amazon.com/de/s3/.
Apache CouchDB. 2012. http://couchdb.apache.org/.
Aulbach, S. et al., 2008. Multi-tenant Databases for

Software as a Service: Schema-mapping Techniques.
In SIGMOD.

Bollacker, K. et al., 2008. Freebase: A Collaboratively
Created Graph Database for Structuring Human
Knowledge. In SIGMOD.

Chang F. et al., 2008. Bigtable: A Distributed Storage
System for Structured Data. In ACM Transactions on
Computer Systems, 26(2).

Cohen, J. et al., 2009. MAD Skills: New Analysis
Practices for Big Data. In VLDB Endowment, 2(2).

Crockford, D., 2006. The Application/JSON Media Type
for JavaScript Object Notation (JSON). RFC 4627,
http://tools.ietf.org/pdf/rfc4627.

Cypher Query Language for Neo4j. 2012. http://docs.-
neo4j.org/chunked/stable/cypher-query-lang.html.

Das Sarma, A., at al., 2008. Bootstrapping pay-as-you-go
data integration systems. In SIGMOD.

Färber, F. et al., 2011. SAP HANA Database – Data
Management for Modern Business Applications.
SIGMOD Record, 40(4).

Franklin, M. J. et al., 2005. From Databases to
Dataspaces: A New Abstraction for Information

Flexible�Information�Management,�Exploration�and�Analysis�in�SAP�HANA

27

Management. In SIGMOD Record, 34(4).
Gremlin – A Graph-based Programming Language

http://github.com/-tinkerpop/gremlin/wiki.
Gupta, U. et al., 2012. SAP HANA Overview and

Roadmap. SAP Community Network,
http://www.sdn.sap.com/irj/scn/index?rid=/library/uui
d/6015ec1d-7f7d-2e10-06b8-edfa52a4c981.

Lakshman, A., Malik, P., 2009. Cassandra: Structured
Storage System on a P2P Network. In PODC.

Morris, M. R. et al., 2010. Search on Surfaces: Exploring
the Potential of Interactive Tabletops for Collaborative
Search Tasks. In IPM, 46(6)

Neo4J. http://neo4j.org/. 2012.
Perlin, K., et al., 1993. Pad: An Alternative Approach to

the Computer Interface. In SIGGRAPH.
Shen, W. et al., 2008. Toward Best-effort Information

Extraction. In SIGMOD.
An XML Query Language. W3C, January 23rd, 2007.

http://www.w3.org/TR/xquery/ .
Extensible Markup Language (XML). W3C, Nov 26th,

2008. http://www.w3.org/TR/xml/.
RDF/XML Syntax Specification (Revised). W3C, Feb

10th, 2004. http://www.w3.org/TR/REC-rdf-syntax/.
SPARQL Query Language for RDF. W3C, Jan 15th, 2008.

http://www.w3.org/TR/rdf-sparql-query/.
Werner, H. et al., 2011. MOAW: An Agile Visual

Modeling and Exploration Tool for Irregularly
Structured Data. In BTW.

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

28

