
Flexible Information Management, Exploration and Analysis in 
SAP HANA 

Christof Bornhoevd, Robert Kubis, Wolfgang Lehner, Hannes Voigt and Horst Werner 
SAP Labs, LLC, 3412 Hillview Ave, Palo Alto, CA 94304, U.S.A. 

 

 

 

 

 

 

Keywords: Schema-flexible Database Management System, Graph Database, Flexible Information Management. 

Abstract: Data management is not limited anymore to towering data silos full of perfectly structured, well integrated 
data. Today, we need to process and make sense of data from diverse sources (public and on-premise), in 
different application contexts, with different schemas, and with varying degrees of structure and quality. 
Because of the necessity to define a rigid data schema upfront, fixed-schema database systems are not a 
good fit for these new scenarios. However, schema is still essential to give data meaning and to process data 
purposefully. In this paper, we describe a schema-flexible database system that combines a flexible data 
model with a powerful data query, analysis, and manipulation language that provides both required schema 
information and the flexibility required for modern information processing and decision support. 

1 INTRODUCTION 

The monolithic databases of the past, representing 
self-contained fully integrated information univer-
ses, are giving way to much more fragmented 
ecosystems of data sources. This trend is culmi-
nating in the form of today’s Web, which offers a 
breathtaking amount of structured, irregularly 
structured, and unstructured information.  

To make use of multiple diverse data sources, the 
traditional data integration approach is to integrate 
those sources into a single context so as to get a 
comprehensive and consolidated view on the data.  

As the schema of data must be known in advance 
and then coded explicitly in the database, the efforts 
for data source connection, data integration, and data 
cleansing, severely limit the viable number and 
complexity of information sources. As a conse-
quence, many needs for data analysis remain 
unfulfilled, since required data is not available in an 
integrated and consolidated form. 

SAP is developing a comprehensive solution to 
better support data exploration and analysis in highly 
dynamic and heterogeneous business contexts, based 
on the HANA main-memory centric data mana-
gement system. The need to tap into a mostly 
unpredictable set of heterogeneous data sources in 
short time frames is necessary for agile business 
analysis and decision support (Cohen et al., 2009). 

In contrast to conventional approaches, the 
solution outlined in this paper follows an “integrate 
as you go” paradigm to support transformation and 
consolidation steps on demand. By handling data 
together with soft-coded metadata, it is relatively 
easy to consolidate data from different sources with 
similar meaning and overlapping attribute sets. 

Firstly, object types are imported together with 
the data without requiring upfront modeling. 
Secondly, it is easier to identify gaps and 
inconsistencies in a model where data and metadata 
are treated similarly, because the existence or 
nonexistence of a property type in a set of data 
objects can be treated in the same way as the 
occurrence of a property value. As a consequence, a 
stepwise integration allows a more agile use of a 
broader range of data sources with different schemas 
and with varying degrees of structure and quality 
(Franklin et al., 2005); (Das Sarma et al., 2008); 
(XML Query Language, 2007).  

While the data foundation of applications gets 
more diverse, there is also a shift to new end user 
devices, such as smart phones, tablets, and electronic 
whiteboards, which dramatically change how people 
interact with data. The traditional form-based 
interfaces are commonly based on a three-step 
interaction pattern of posting a search request, 
picking a data object from the result list and 
manipulating that object. This decade-old interaction 
pattern limits the amount of data a user is able to 
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review without getting lost, and is insufficient for 
mass manipulation of data objects. The search step 
does not allow real exploration but merely helps to 
shrink the result list; hence, it still requires the user 
to know what he is looking for.  

Modern and future devices allow a more intuitive 
tactile- and gesture-based interaction, and provide 
various kinds of context information (e.g. location, 
orientation and acceleration). Based on the capabi-
lities of these devices, new user interfaces offer a 
freely interactive and explorative way to work with 
data. With the ability to present data at instantly and 
easily changeable levels of detail and to dynamically 
create context-sensitive views or filters, these new 
interfaces supply the user with exactly the 
information that is relevant for his current situation. 
This flexible and intelligent way of data presentation 
and interaction lets users search, view, handle, and 
manipulate very large datasets of varying kinds and 
structure (Perlin et al., 1993); (Morris et al., 2010); 
(Werner et al., 2011).  

Putting the large variety of available data and the 
new UI capabilities together, a wide range of new 
applications that leverage potentially large weakly 
structured and only partially integrated data becomes 
possible. For instance, in the area of competitive 
market intelligence future applications can analyze 
customer sentiment, but can also be used to discover 
market trends, competitor moves, regulatory 
constraints, and so on, early, and handle these 
proactively. Such applications will be able to crawl 
the Web and combine information extracted from 
unstructured content (typically blogs, news pages, 
press releases) with publicly available structured 
information (e.g., from Freebase) and private 
structured information (contained mostly in business 
applications). 

In contrast to the established transactional 
applications, the content of these collaborative 
applications - a shared and incrementally composed 
work context - is less predictable. Hence, it does not 
fit well with a predefined rigid schema, which is the 
key design concept of relational database systems.  

More flexibility in the data model is provided by 
key-value stores or document-oriented database 
management solutions. However, abandoning a rigid 
up-front defined database schema also implies that 
the intended meaning of data, which so far has been 
contained in the schema, must be made explicit and 
completely handled within the application coding.  

Semantic Web technology is one attempt to 
create a more explicit representation of the meaning 
of data. But representing meaning by complete and 
consistent sets of computer-processable rules requi-

res a rigid standardization of metadata vocabularies, 
and does not provide a concept for dealing with 
different context-specific views on identical entities, 
with incompleteness and inconsistencies.  

In summary, we see this kind of heterogeneity 
and the strong scalability demand resulting from the 
fast growing amount of available and potentially 
relevant data as one of the main challenges for 
database technology. Future data repositories need to 
support the coexistence of heterogeneous content 
and its incremental integration to the degree needed, 
based on specific application knowledge and 
requirements. We therefore see the need for data 
management systems that do not require the upfront 
definition of rigid database schemas and that support 
the efficient representation and processing of large 
volumes of irregularly structured, not necessarily 
fully integrated data.  

In this paper, we describe an extension to SAP’s 
HANA data management and analytics engine. 
(Färber et al., 2011); (Gupta et al., 2012). HANA is 
a main-memory centric database system that 
leverages new technologies such as multi-core, SSD, 
and large main-memory capacities to significantly 
increase performance of analytical and transactional 
applications. HANA is based on a fundamentally 
new system architecture that allows storing data 
either column- or row-oriented. We leverage HANA 
as the foundation of a new schema-flexible data 
management system that we call Active Information 
Store (AIS). AIS capabilities are realized directly on 
top of the HANA database engine to guarantee good 
query performance and scalability. 

2 REQUIREMENTS 

We studied a broad range of uses cases, such as ad-
hoc data integration and analysis, competitive 
market intelligence, social network analysis, idea 
management business user enablement, and next-
generation collaboration tools. Based on these use 
cases, we identified common requirements for an 
optimal underlying data store. A data store 
developed specifically for such applications has to 
be able to efficiently manage schema-flexible, 
irregularly structured and partially integrated data 
with a soft-coded or system generated schema.  

With such a data store, schema information does 
not need to be defined upfront. Instead, the data is 
self-describing (a soft-coded schema). Data objects 
of similar structure, or representing similar kinds of 
entities, do not need to have the same semantic type 
(are not fully integrated), and data objects of the 
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same semantic type do not need to exhibit the same 
structure (are irregularly structured). Once the data 
is in the data store, changing the schema of data 
objects has to be possible at any point in time, and 
must be processed as efficiently as any other first-
class data operation (schema-flexible). In short, the 
data store needs to support the coexistence of 
heterogeneous content and its incremental integra-
tion to the degree needed by the specific application 
at hand.  

In addition, the provided data model must 
provide strong support for links between data 
instances of different types to support information 
correlation and re-organization. Functionally, the 
data store has to provide the following mass data 
operations:  
 Load, insert, update, and delete objects with 

possibly irregular structure and without a predefined 
fixed schema.  
 Efficiently add and remove attributes and 

links/associations to and from data objects.  
 Efficiently filter and classify data objects.  
 Efficiently traverse links between data objects.  
 Calculate the union, difference, and intersection 

of large sets of objects.  
 Group, aggregate, and consolidate possibly 

heterogeneous data objects.  
All operations are mass-data oriented, i.e., they 
process large sets of data objects at once. 
Additionally, these operations have to treat data 
objects as a whole and preserve a data object’s 
integrity as a logical unit.  

3 SYSTEM OVERVIEW 

We have developed the Active Information Store 
(AIS) as an extension to the existing HANA engine 
to provide a powerful schema-flexible data store to 
address the posed data management challenges. In 
this section, we will summarize the design principles 
that guided the development of AIS: 
(1) In AIS, a data object consists of a group of 
semantically and technically typed values that form 
a semantic unit, e.g. to describe a person or a 
product. Semantic types, e.g. person, describe the 
intended meaning of a data object, whereas technical 
types like Integer or String describe the 
representation of data in the system. Semantically 
typed associations represent links between these data 
objects. For efficient value processing, such as 
aggregation, all attributes of the same semantic type 

have the same technical representation type. To 
remain structurally flexible, semantic types do not 
impose restrictions on other semantic types related 
to a data object, e.g. the type person does not 
determine the attributes a person instance can have.  
(2) AIS strengthens the integrity and identity of a 
data object as a logical unit of storage and retrieval. 
Each data object instance has a single identifier that 
is immutable during regular query processing. Only 
consolidation or aggregation of data objects will 
result in new data object instances.  
(3) AIS provides light-weight support for semantic 
data processing. AIS is primarily a data store that 
incorporates a number of helpful semantic features: 
(a) Semantic types, which are modeled 
(conceptually) through the means of the AIS data 
model; (b) Taxonomies, to organize semantic types; 
(c) basic semantic operations, such as subsumption 
and transitivity, which can be used in queries. 
(4) AIS uses URIs as the primary mechanism for all 
identifiers exposed outside of AIS. URIs are a well-
established standard for identifiers, and the XML 
namespace mechanism is adopted.  
(5) AIS generally processes data objects in sets, with 
good support for mass data processing through built-
in mass operations in the query language. 
(6) To allow for complex operations, all elementary 
operations of AIS must have minimal side-effects, 
so that they can be freely combined. This implies 
that all operations should be as general as possible, 
and closed in regards to the AIS data model, i.e. 
produce output that can be used directly as input for 
other operations. By this principle AIS tries to 
provide a set of operations that combine 
compactness with expressiveness.  
(7) With AIS, a statement can encompass many 
complex operations. Multiple insert, update, delete, 
and query operations can be combined within a 
single statement. This helps to reduce the number of 
round trips between client and server, and provides a 
context for cross-operation optimizations.  
(8) AIS leverages the highly efficient in-memory 
storage layer of SAP HANA. AIS capabilities are 
implemented directly on top of the HANA engine to 
guarantee good performance and scalability.  
(9) AIS provides a stateless, RESTful client API. The use 
of complex statements allows the definition of client 
actions that involve larger units of work that need to be 
processed as one atomic unit. 
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4 DATA MODEL 

The AIS offers a very flexible data representation 
model that allows the uniform handling and combi-
nation of structured, irregularly structured, and un-
structured text data. All data managed and processed 
by AIS is converted to this common data model.  

In this model, data objects are represented as Info 
Items. Info Items are organized and persisted in 
Workspaces, which establish a scope for visibility 
and access control.  

An Info Item provides a single uniquely 
identifiable data instance, holding a set of 
Properties, which describe the Info Item. A property 
can be either an Attribute or an Association. Info 
Items and their properties have an attached semantic 
type label that indicates the assumed item class (e.g. 
person), attribute type (e.g. age), and relationship 
type (e.g. is-parent-of or works-for), respectively. 
We call these type labels Terms. 

Formally, an Info Item ܫ is a quadruple (ݑ, ܶ, ,ݒ  represents the item’s URI, ܶ is ݑ ூ), whereݐ
a set of ݊ property Terms {ݐଵ, … ,  is the value ݒ ,{௡ݐ
function and ݐூ is the item’s Term. The value 
function ݒ: ܶ → ଵܶା × …× ௡ܶା maps every property 
Term ݐ௜ to a list of all values of the Info Item’s 
property of Term ݐ௜.  

An Attribute associates a value with an Info Item, 
and is labeled with a Term. A multi-valued attribute 
can be represented by multiple attributes of the same 
Term. An Association describes a unidirectional 
typed relationship between a pair of Info Items. An 
Association is labeled with a Term indicating the 
semantic type of the Association. The same pair of 
Info Items can be related via multiple Associations 
of different types, and Info Item instances of the 
same semantic type can be related through different 
types of Associations.  

 
Figure 1: Example of info items and associations. 

Figure 1 shows an example of Info Items taken 
from a data integration and analysis example. The 

two Info Items on the left side represent entities 
from a developer community (DC). The two Info 
Items on the right side originate from an ERP 
database. The work-as and the posted Associations 
link Info Items as their corresponding entities are 
associated in the respective source databases. The 
same-as Association has been added later as the 
result of integrating the datasets for analysis. By this 
means, the data is integrated to the level sufficient to 
analyze how actively employees participate in the 
developer community, for example.  

As mentioned earlier, a Term represents the 
semantic type of an Info Item or Property. In 
addition to its semantic meaning, a Term also has an 
assigned Technical Type that determines the 
physical representation of the corresponding data 
element. In the case that a Term describes an Info 
Item or an Association, the technical type is Info 
Item or Association, respectively. For Attributes, the 
technical type can be Integer, String, Date, etc.  

The AIS data model is strict and consistent in its 
semantic and technical typing of data. All Info Items 
and all Properties have a semantic type. All Property 
values of the same semantic type have the same 
Technical Type. To gain flexibility, the AIS data 
model loosens consistency regarding the structural 
implication between semantic Info Item types and 
semantic Property types. Info Items that have 
assigned the same semantic type may, and in general 
do, have different sets of properties. However, the 
structural information about which Info Item types 
expose which Property types is not lost; it can be 
captured with Templates. A template is associated 
with a specific Term and provides information about 
the structure, i.e., the Properties of the Info Items 
currently in the store of the corresponding Term. A 
Template describes the set of frequent Properties 
that are available for most (e.g. 95%) of the 
currently available Info Items, and the optional 
Properties that are only given for some of the Info 
Items of the corresponding type.  

Terms are represented as Info Items. This allows 
their retrieval and manipulation either as Terms, i.e., 
as metadata, or (possibly together with other Info 
Items) as Info Items, i.e., as data. By allowing Terms 
to be treated and used as regular Info Items, we give 
up a strict, and in some applications artificial, 
separation of data from metadata.  

Terms can be taken from domain-specific 
Taxonomies that can be provided to AIS as semantic 
metadata. Terms from a specific taxonomy are 
assigned to Info Items and their Associations when 
they are loaded into AIS, but can be changed later. 
In this way, Terms can provide a first hook to make 
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the intended meaning of an Info Item, its Attributes, 
and Associations, more explicit, by putting it into 
the context of a taxonomy of type denominators.  

Figure 2 illustrates the use of Terms. Terms form 
a subsumption tree. If a knowledge worker, for 
example, wants to analyze all Info Items represent-
ting a person, i.e., employees from the ERP system 
and members of the developer community, she could 
easily introduce a new common Super Term, e.g., 
person for employee and member, as shown in the 
figure. Additionally, she might let AIS create a 
Template based on all Info Items that the Term 
person subsumes. 

 
Figure 2: Example of info items and terms. 

In summary, AIS provides a very generic and 
flexible graph-oriented data model, where Info Items 
form the nodes and Associations the edges of a 
graph. The data model does not enforce a tight 
integration of and structural consistency among data 
items, which typically come from different hetero-
geneous sources into one common data schema. 
Rather, it supports the coexistence of data items 
from different sources and their stepwise integration. 
While providing rich schema information, AIS does 
not require defining the schema of the data upfront 
in a rigid way. Rather, the schema evolves as new 
Info Items are imported or created, new attributes 
are added, new Associations between Info Items are 
established, and new Terms are introduced.  

5 QUERY LANGUAGE 

AIS offers a powerful data query and manipulation 
language called WIPE. In this section, we outline the 
basic structure of an AIS statement, and describe the 
set of operations supported in WIPE. 

In the case of AIS, a statement can be composed 
of multiple data manipulation operations and may 
return multiple result sets. The data operations of a 

given statement are executed in their order of 
declaration as one logical unit of work. More 
formally, an AIS statement is defined as a triple (ݓ,ܰ, ܱ), where ݓ is the workspace the statement is 
operating in, ܰ is a set of namespace definitions and ܱ = ,ଵ݌݋ … ,   .௡ is a list of data operations݌݋
 

 
Figure 3: Example of an AIS statement. 

During execution, every statement has a 
statement context ܥ, to keep track of all execution-
related information. Primarily, a statement context 
encom-passes a set of local identifiers, which can be 
used to structure a statement. In that sense, a 
statement context ܥ is a function defined by a set ܮ = {݈ଵ, … , ݈௡} of local names and a set ܧ ={݁ଵ,… , ݁௡} of expressions so that ܥ(݈௜) = 	 ݁௜.  

Figure 3 shows a statement to find employees 
contributing to the development community. First, 
the statement specifies the workspace it will be exe-
cuted in. Second, it establishes associations between 
employee items and member items having the same 
email address. Third, it defines two Info Item sets, 
one containing all employees that have contributed 
to the community and one containing employees that 
have recently contributed. Forth, it retrieves some 
basic counts, to give an overview of what the data 
looks like. Fifth, the statement retrieves the recently 
contributing employees. The example illustrates the 
use of the update, assign, and retrieval operations 
within a single statement.  

AIS offers Load, Insert, Update, and Delete as 
manipulation operations, Retrieval to retrieve data, 
and Assign for structuring complex statements. In 
the next two sections, we describe these data 
operations in more detail. 

Load and insert operations allow to bulk load and 
to create new Info Items in a workspace. Update 
operations allow changing the values of properties 
well as adding new properties or removing 
properties from Info Items. The example statement 
shown in Figure 3 adds an association same-as to all 
employees (line 2). The target of an association can 
be specified by any valid AIS expression that 
represents a set of Info Items.  

Flexible�Information�Management,�Exploration�and�Analysis�in�SAP�HANA

19



 

The retrieval operation allows fetching data and 
is defined as a triple (݁, ,ݑ ܶ), where ݁ is an expres-
sion, ݑ is an optional URI, and ܶ is an optional set 
of ݊ property Terms {ݐଵ, … ,  ݁ ௡}. Expressionݐ
defines the set of Info Items to retrieve. Any valid 
AIS expression that results in a set of Info Items 
may be used here. In case of multiple retrieval 
operations within a single statement, the name (i.e. 
URI) of a result set can be used to distinguish the 
result sets on the client side. The example statement 
retrieves two result sets (line 4 and 5), called 
overview and recentContributers, respectively.  

When an Info Item is shipped to the client, only a 
subset of the item’s properties might be of interest to 
the client. If ܶ is provided, the retrieval operation 
will select only properties of the Terms in ܶ to the 
result set (projection). Formally, for every Info Item I = ,ݑ) ூܶ, ,ݒ ூ) an Info Item Iᇱݐ = ,ݑ) ܶ′, ,ᇱݒ  ூ) isݐ
shipped so that T′ = ܶ ∩ ூܶ and ݒ′ is only defined 
for ݐ ∈ ܶ′. In the example, the second retrieval 
operation projects only the properties uri, name and 
email.  

Finally, the assign operation allows the client to 
structure a complex statement by naming and re-
using sub-expressions. In particular, an assign 
operation is defined as a pair (݈, ݁), with ݈ being the 
local name and ݁ being the expression that ݈ will be 
bound to. The binding is stored in the statement 
context ܥ, so that ܥ will be defined by ܮ = ܮ ∪ {݈} 
and ܧ = ܧ ∪ {݁} after the assignment. The example 
statement illustrates that in line 3.  

Expressions form the core of the AIS query 
language. In particular, an AIS expression is defined 
to be a literal, a reference (e.g. a URI), a local name 
or an operation applied to one or more sub-
expressions. As a starting point, AIS provides the 
built-in local name $ALL, which represents the set of 
all Info Items persisted in the current workspace. A 
set of all Info Items of a specific Term can simply be 
referenced by the URI of the Term. For example 
uri:member references the set of all members of the 
developer community.  

Based on these initial sets of Info Items, 
expressions allow the refinement of the requested 
Info Item set in a retrieval operation. Besides 
standard numeric algebra, Boolean algebra, string 
operations, and other value-type specific operations, 
set operations are most crucial for mass data 
processing. AIS offers six essential kinds of set 
operations: (1) Set Algebra, (2) Graph Traversal, (3) 
Filtering, (4) Quantification, (5) Aggregation 
Functions, and (6) Grouping. We will describe these 
categories in the following. 
Set Algebra. Set Algebra operations encompass the 

three basic operations Union ∪, Intersection ∩ and 
Difference \ (asymmetric difference). Given two 
sets ܣ and ܤ of Info Items the three operations are 
defined as follows: ܣ ∪ ܤ = 	 :ݔ} ݔ ∈ ܣ ∨ ݔ ∈ ܣ				 {ܤ ∩ ܤ = 	 :ݔ} ݔ ∈ ܣ ∧ ݔ ∈ ܤ\ܣ				 {ܤ = 	 :ݔ} ݔ ∈ ܣ ∧ ݔ ∉  			{ܤ
For example, the set of all developer community 
posts and blog articles can be expressed as:  

uri:post UNION uri:blog-article 

Graph Traversal. The traversal operation allows 
resolving properties, i.e., associations and attributes. 
It is defined as a pair (ܵ, ܶ), where ܵ is the set of 
Info Items to start the traversal from and ܶ is the set 
of property Terms to traverse over. The resulting set 
contains all values that the properties of any Term ݐ ∈ ܶ have on all Info Items ܫ ∈ ܵ: (ܵ, ܶ) =ራ ௝൯௜,௝ݐ௜൫ݒ with ௜ݒ ∈ ௜ܫ ∈ ܵ ∧ ௝ݐ ∈ ܶ 

In the case of Associations, the result is a set of Info 
Items. In the case of attributes, the result is a set of 
primitive values. Terms for Attributes and Terms for 
Associations cannot be mixed in a single traversal 
step to avoid a result set consisting of both Info 
Items and primitive values.  

For association traversals, the operation can be 
marked with the Reverse flag (<-) or the Transitive 
flag (*). In the first case, the associations will be 
traversed in the opposite direction. In the second 
case, the traversal results in all items reachable from ܵ by any association path in ܶା. In our example, all 
emails of the employees can be retrieved with the 
expression: 

uri:employee->uri:email 

while the expression 
{uri:com.sap.std.erp.ui}<-uri:works-for 

retrieves all employees of the ERP UI team. Note 
that the traversal operation strictly works on sets and 
we have to create a set containing the specific team 
Info Item, referenced by its URI. Assuming that 
teams have sub-teams, we can get all emails of all 
team members and sub-team members with:  
{uri:erp.ui}->uri:subteam*<-uri:works-for 

Filter. With the filter operation, Info Item sets can 
be filtered according to a given condition. Formally, 
a filter operation is defined as a pair (ܵ, ܾ: ܵ →{false,	true}), where ܵ is the Info Item set to filter 
on, and ܾ is a condition function that maps every 
Info Item of ܵ to a Boolean value. The resulting set 
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contains only Info Items of ܵ mapped to true: (ܵ, ܾ) = :ݏ} ݏ ∈ ܵ ∧  .			{(ݏ)ܾ
The condition function ܾ is a logical expression tree 
which can consist of Boolean operations, relational 
conditions and quantification. A relational condition 
represents a basic value comparison. It has a left 
value expression, a comparator, and a right value 
expression, and returns true if the comparison holds 
for the two values. For example, we can filter all 
employees by their salary: 

$e: uri:employee  
WITH $e->uri:salary > 100k 

Quantification. Quantification conditions check 
whether a given quantity of elements of an Info Item 
set or a value set satisfy a condition function. A 
quantification operation is defined as a triple 	(ܳ, ܵ, ܿ), where ܳ is a quantifier, ܵ is the set, and ܿ 
is the condition function. The quantifier specifies the 
required quantity for a quantification to yield true. 
AIS supports the existential quantifier ∃ and the 
universal quantifier ∀: (∃, ܵ, ܿ) = ݏ∃ ∈ ܵ, ,∀)					(ݏ)ܿ ܵ, ܿ) = ݏ∀ ∈ ܵ,  			(ݏ)ܿ
In the example, the quantification condition allows 
us to filter all teams with at least one high-income 
earner:  

$t : uri:team  
WITH ONE $e : $t<-uri:works-for 
         WITH $e->uri:salary > 100k 

Aggregation Functions. Aggregation functions map 
a set or a list of Info Items to a single value. AIS 
supports the basic aggregation functions COUNT 
(number of element), SUM (summation), AVG 
(average), MIN (minimum), and MAX (maximum). 
For instance, the following expression filters 
development community members according to the 
number of posts they made:  

$m : uri:dc-member  
WITH COUNT($m->posted) > 500 

Grouping. AIS offers a very general grouping 
operation, where we understand grouping as the 
creation of a new Info Item from a group of existing 
Info Items. A grouping operation is defined as a 
triple (ܵ, ,ீܧ  is a set of ீܧ ,where ܵ is the base set ,(ܫ
grouping expressions, and ܫ is an Info Item 
constructor function. All Info Items ݏ in S with 
equivalent results on all expressions in ீܧ form a 
group ݃. The resulting set of a grouping operation 
contains new Info Items created by applying ܫ to 
every ݃: (ܵ, ,ீܧ (ܫ = {݃: ݃ = (݃)ܫ ∧ ݃ ∈  .{~/(ܵ)ீܧ

Assuming that ܦ is the domain of all Info Items, an 
Info Item constructor function ܫ: (ܦ)࣪ →  maps a ܦ
subset of Info Items to a new Info Item. An Info 
Item constructor can be defined (similar to an Info 
Item) as a quadruple (ݑ, ܶ, ,௏ܧ  is the new ݑ where ,(ݐ
item’s URI, ܶ is a set of ݊ property Terms {ݐଵ, … ,  is the ݐ ௏ is a set of ݊ expressions, andܧ ,{௡ݐ
item’s Term. When applied to a group ݃, ܫ(݃) 
results in a new Info Item of Term ݐ with ݊ 
properties, so that the ݅-th property is of Term ݐ௜ ∈ ܶ 
and is assigned with the evaluation of expression ݁௜ ∈ ,ݑ) .݃ ௏, where ݁௜ is evaluated against groupܧ ܶ, ,ܧ (ݐ = ,ݑ) ܶ, :ݒ (௜ݐ)ݒ = ݁௜(݃),  (ݐ
For instance, to query the average number of posts 
of DC members, we would define the grouping as: ൫uri:post, ,௏ܧ ,ݑ) ܶ, ,௏ܧ ௏ܧ :൯ with(ݐ = ቄݏ uri:postedርۛ ۛۛ ۛۛ ሲቅ	ܶ = {uri:email,uri:numberOfPosts}	ܧ௏ = ቄቀ݃ uri:postedርۛ ۛۛ ۛۛ ሲቁ uri:emailሱۛ ۛۛ ሮۛ ,	COUNT(݃)ቅ			. 
In statement syntax that is:  

GROUP $s : uri:posts AS $g BY $s<-
uri:posted  
TO ITEM { 
 uri:email = $g<-uri:posted->uri:email, 
 uri:numberOfPosts = COUNT($g) 
} 

Grouping can also group Info Items based on 
aggregates. For example, listing for each team size 
the ratio of heavy posters can be done with the 
expression:  
GROUP $e : uri:employees AS $g BY  
COUNT($e->uri:works-for<-uri:works-for) 
TO ITEM { 
 uri:sizeOfTeam =  
  COUNT($e->uri:works-for<-uri:works-for), 
 uri:heavyPosterRatio =  
  COUNT($e : $g WITH  
       COUNT($e->same-as->posted) > 500) /  
  COUNT($e : $g WITH  
       COUNT($e->same-as->posted) < 500) 
} 

A. Term Operations. Most of the described AIS 
operations rely on Terms. AIS organizes Terms in 
taxonomies to allow an explicit description of 
subsumption relationships between Terms. 
Formally, subsumption is a function τ(t) that results 
in a set ܶ	 = 	 :௦௨௕ݐ} {௦௨௕ݐ	of	super-type	is	ݐ ∪  {ݐ}
with respect to the underlying taxonomy. Obviously, 
other operations have to deal with this resulting set 
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of types so that their result reflects the meaning of 
subsumption. For AIS, we allow subsumption for 
Term URIs representing Info Item sets, association 
traversal, and for the filtering on the type property of 
Info Items.  
B. Life Cycle. As mentioned before, single Info 
Items are the granularity of data storage, but sets of 
Info Items reflect the granularity of processing data. 
Therefore, Info Items and Info Item sets are subject 
to different life cycles when being processed via 
query language statements. 

Every Info Item, as the primary unit of storage, is 
generally considered to be persistent and can be 
identified among all Info Items in a workspace by its 
URI. Operations, except Info Item constructor 
functions, do not create new Info Items. 

Info Item constructor functions are the only 
operations to create new Info Items. These newly 
created items are transient, i.e., they are not 
persistent by default, and will live only as long as 
the statement in which the transient items were 
created is processed. Transient Info Items do not 
necessarily have a unique identity. For that reason, 
transient Info Items cannot be mixed with persistent 
items in operations and sets. However, AIS can 
return transient Info Items to the client or persist 
transient Info Items with an Insert operation within 
the same statement.  

A set of Info Items, as the primary unit of 
processing, is generally transient. Every operation 
that results in a set of Info Items conceptually 
creates a new set. However, sets can be explicitly 
persisted for later retrieval, or re-use in other 
statements. 

6 ARCHITECTURE 

AIS provides an extension of the SAP HANA in-
memory database engine. The existing HANA 
storage and query processing layer fits well the 
needs for scalability, speed, and built-in analytical 
processing capabilities. 

Figure 4 outlines the conceptual architecture of 
AIS. At the front-end AIS exposes a RESTful client 
API. A client sends its statements as requests to this 
service. Inside AIS, a REST server receives this 
request, extracts the statement, and hands it over to 
the parser. The parser transforms the statement into 
an internal representation and a rule-based statement 
simplification procedure prepares it for execution. A 
complex AIS statement, which can be divided into 
an operational processing step and a result fetch 
step, usually involves multiple storage layer 

interactions before shipping the result sets back to 
the client.  
 

 
Figure 4: System architecture overview. 

AIS does not preserve any state with regard to 
the client. For scalability over the number of 
concurrent clients, the processing of client requests 
can be easily distributed over multiple worker 
threads within a single machine and over multiple 
machines. The HANA storage layer already provides 
excellent scalability by being able to distribute data 
across multiple machines.  

In the following subsections, we describe (1) the 
capability of the storage layer, (2) how we map the 
AIS data model to a fixed schema as required by the 
storage layer, and (3) how we process AIS 
statements on top, while utilizing as much of the 
existing storage layer capabilities as possible. 
A. Storage Layer Capabilities. In the storage layer, 
data is stored in fixed-schema tables. Data can easily 
and highly efficiently be inserted, removed, 
modified, and queried. To retrieve data, the storage 
layer supports “Select Group Order Project” 
(SGOP) queries and join views to join tables on 
predefined join conditions over an arbitrary set of 
tables with potentially different join semantics.  
A SGOP query (ݐ, ,݌ ,ܩ ,ܣ ܱ) selects all rows that 
match the predicate ݌ from table or join view ݐ, 
groups the rows by all columns ܿ ∈  creates ,ܩ
aggregation columns ܿ ∈  sorts the result by all ,ܣ
columns ܿ ∈ ܱ, and finally projects to all columns ܿ ∈ ܩ ∪  will be a regular ܩ ,is empty ܣ If .ܣ
projection. If ܩ is empty, the query will return all 
available columns. An aggregation column ܽ(ܿ) 
aggregates a column ܿ of ݐ with the aggregation 
function ܽ (sum, minimum, etc.). Predicate ݌ is a 
logical expression of arbitrarily nested conjunctions 
and disjunctions of conditions of the form ܴ(ܿ,  ,(ݒ
where ܴ is a relation (equal, less, greater, in, etc.), ܿ	is a column of ݐ, and ݒ is a value literal.  
B. Mapping to the Storage Layer. We need to 
provide the required flexibility in the AIS data 
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processing engine of AIS remains lean and does not 
replicate any of the capabilities of the storage layer. 
Thus, our processing model tries to delegate as much 
of the query processing to the powerful storage layer 
as possible, and the process-sing model is designed 
to leave the payload data in the storage layer until 
Info Items have to be shipped to the client. Since the 
processing of Load, Insert, Update, and Delete 
operations is straight-forward, we focus here on the 
Retrieval operation.  
Since the AIS query language is more expressive 
than the query language of the underlying storage 
layer an AIS statement, in general, results in 
multiple storage layer interactions (Figure 6). After 
parsing, AIS represents a Retrieval operation as a 
statement tree. Every node in this statement tree 
presents one of the operations of the AIS query 
language as used in the specific Retrieval operation. 
Assuming that its sub-expressions have been 
processed, an operation can be processed either 
without, with one, or with multiple storage layer 
interactions. 

In order to optimize the number of storage layer 
interactions, the AIS statement simplifier removes 
all idempotent operations, e.g., multiple negations, 
and processes all operations that can be executed 
without any storage layer interaction. Also, the sim-
plifier integrates all traversal operations on attributes 
into their parent operation in the statement tree. 

 
Figure 6: Statement processing model. 

The AIS statement simplifier is based on an 
extensible rule set. The simplification algorithm 
traverses the statement tree top-down and then 
bottom-up again. At each node of the tree, it rewrites 
the tree according to the matching rules. Each rule 
itself defines whether it is applied during the top-
down or bottom-up run, and whether the simplifier 
should try to apply the rule repeatedly to the same 
node. After the simplification step, the statement tree 
is ready for the actual operation processing.  
D. Operation Processing. After parsing and 
simplification, AIS processes all operations of the 
statement tree bottom-up, as illustrated in Figure 6. 

The result of each operation is a Retrieval Reference 
Table (RRT). An RRT is a set or list of Info Item 
identifiers or values, respectively. Additionally, an 
RRT can contain a set of Info Item identifiers as 
back references for each of its entries. After an 
operation has been processed, it is replaced with its 
resulting RRT in the statement tree. The RRT then 
forms the input to the operations higher up in the 
tree. Eventually, the statement tree collapses into a 
single RRT, which will be handed over to the result 
fetch step.  
Back references in RRTs are an important 
mechanism for mass data processing. Many of the 
AIS operations comprise Foreach semantics. If these 
operations contain sub-operations that require 
separate processing, the sub-operation would have to 
be processed iteratively. With back references, an 
operation keeps track of which elements of its output 
resulted from which elements of its input. By this, 
the iteration can be avoided and the sub-operation 
can be processed in a single step. Nevertheless, this 
approach trades space for time, and is therefore 
bound by the available resources. 

A Retrieval operation processes results in the 
form of an RRT and may involve a number of 
interactions with the storage layer, depending on the 
operation being processed.  
Set Algebra. Set Algebra operations are processed in 
AIS without any storage layer interaction. Two input 
RRTs are directly united, intersected or subtracted.  
Traversal. Traversal operations require querying the 
association table. The traversal (ܵ, ܶ) will result in a 
storage layer query (Association, ,݌ ܱ, ∅, ܱ), with ݌ = (sourceItemID ∈ ܵ ∧ termID ∈ 	ܶ) and	ܱ = {targetItemID,sourceItemID}			 
Transitive traversal is realized iteratively. In every 
iteration, we set S to the Info Item identifiers fetched 
in the previous iteration and execute the storage 
layer query again. More specifically, the predicate ݌ 
is adjusted for each iteration to avoid traversing the 
same associations multiple times. Assume S as the 
set of Info Item identifiers fetched in the previous 
step, and R as the set of Info Item identifiers 
retrieved in all iterations before the previous one, 
then ݌ is set to (sourceItemID ∈ ܵ ∧ targetItemID∉ ܴ ∧ termID ∈ 	ܶ) 
If the storage layer query has an empty result, we 
have reached the fixed point. Theoretically, a 
transitive traversal can result in a very large set of 
Info Items, in an extreme case encompassing the 
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complete workspace. Hence, processing a traversal 
operation can become very time and space 
consuming. Practically, however, we have not 
encountered this problem for our use cases so far.  

The traversal operation is also defined for attri-
butes. However, we always integrate the processing 
of an attribute traversal in its nesting operation.  
Filter. The processing of a filter operation depends 
on its condition function, and we distinguish two 
cases: (1) the condition function consists only of 
logical operators and property-value comparisons, or 
(2) it is a more complex expression.  
In the first case, the statement simplifier has 
transformed the condition function into disjunctive 
normal form. The atoms are property-value 
comparisons ܴ(ݐ,  each stating that a property of ,(ݒ
Term ݐ has to be in relation ܴ with value ݒ, e.g., the 
property salary has to be greater than 50k. Although 
the storage layer is able to process predicates of this 
class directly, the processing is more complex 
because of the vertical schema. Therefore, we 
directly push down disjunctions, but resolve 
conjunctions by executing them as disjunctions on 
the storage layer and post-processing the 
conjunction within the AIS context. For instance, the 
predicate uri:a>5 AND uri:b=2 is executed as (termID = ݅݀௔ ∧ value > 5) ∨ (termID = ݅݀௕ ∧			value = 2)  
We partition attributes in the storage layer by their 
technical type, and therefore have to execute 
comparisons of attributes of different technical types 
in separate storage layer queries. Assuming a 
condition function involves ܰ conjunctions and ܯ 
technical types, we have to execute ܰ ∙  storage ܯ
layer queries. In practice, ܰ and ܯ appear to be 
rather small, so that this approach is feasible.  

All queries order their results by Info Item 
identifiers. AIS then merges the result sets using 
interleaved scans. The merge results in a stream of (݅, ܶ) pairs, where ݅ is an Info Item identifier, and ܶ 
a set of Term identifiers. After that the stream is 
filtered to check whether every Info Item has 
matches for every property Term of one conjunction. 
In our example, we would check that every Info 
Item had matches for uri:a and uri:b.  

In the second case, if a condition function is 
more complex and involves other operations, e.g., a 
traversal operation, all nested operations will be 
child nodes of the filter operation in the statement 
tree. The sub-operations can be seen as a function ݂: ܵ → ܵ஽, where ܵ is the set that needs to be filtered 
and ܵ஽ is the set the property-value comparisons are 
defined on. For example, in the filter operation: 

$e : uri:employee  
WITH COUNT($e->same-as->posted) > 0 ܵ is the set of employees and ܵ஽ is the set of count 

values. The sub-operations are two traversals and an 
aggregation function. The processing of these sub-
operations results in an RRT with back references to 
the Info Items in ܵ (employees in our example). 
Then, we regularly process the actual filter (in our 
example: count value greater zero) on this RRT as 
described in the first case, and unite all remaining 
back references to get the final result.  
Quantification. Quantification relies on filter 
processing. The existential quantifier is weaved into 
the filter processing to exploit early-out opportu-
nities. Here, we return true as soon as we see an item 
successfully passing the post filter predicate ݍ. For 
the universal quantifier, we use an interleaved scan 
of ܵ and the filter result ܵ′, both already ordered by 
item id, and return false as soon as we have an item 
in ܵ that is not in ܵ′.  
Aggregation Functions. A group of aggregation 
functions ଵ݂, … , ௡݂ applied to attribute traversal ope-
rations (ܵ, ଵܶ), … , (ܵ, ௡ܶ) can be executed directly in 
the storage layer. Assuming all attribute Terms ݐ ∈ ܶ = ⋃ ௜ܶ௡௜ୀଵ  have value type ݐݒ, AIS executes 
the query (tablevt, ,݌ {termID}, ,ܣ {termID}) with  ݌ = (itemID ∈ ܵ ∧ termID ∈ 	ܶ)	and	ܣ = { ଵ݂ᇱ(value), … , ௡݂ᇱ(value)} 
where ௜݂ᇱ is the corresponding aggregation function 
at the storage layer for ௜݂. If all attribute Terms ݐ ∈ ܶ 
are not of the same value type, then one storage 
layer query per involved value type is executed. 
Grouping. The grouping operation consists of the 
grouping expressions (the set ீܧ) and the creation of 
new Info Items. Each grouping expression results in 
an RRT of the grouping values that have resulted 
from the expression and back references to the Info 
Items to be grouped. Each RRT is sorted by the Info 
Item identifiers. With interleaved scans, AIS merges 
all RRTs into a single RRT, which now consists of 
the grouping values of all grouping expressions plus 
the back references. Now, AIS determines the actual 
groups of Info Item identifiers. All back references 
that belong to equal grouping values form one 
group. 
The item constructor creates a new Info Item for 
each group of Info Item identifiers. Each group is 
processed separately. Given an item constructor 
function (ݑ, ܶ, ,௏ܧ -we process each value expres ,(ݐ
sion in ܧ௏ on the Info Item identifiers in the group, 
and assign the resulting value to the corresponding 
property of the new item. 
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All grouping expressions ீܧ, and likewise all 
value expressions ܧ௏, have to be executed on the 
same set, the set of Info Items to group, and a group 
of Info Items, respectively. For that, we leverage a 
number of shortcuts and optimizations. First, we 
group traversals on the same source set for 
execution. Second, we similarly group aggregation 
functions on traversals. Third, for expressions with 
identical sub-operations on the same source set, we 
execute the sub-operation only once and re-use the 
resulting RRT. Fourth, if a value expression is 
identical to a grouping expression, we take the result 
directly from the RRT used to determine the groups.  
E. Result Fetch. Finally the result fetch retrieves the 
actual payload data of the retrieval. Assuming a 
Retrieval operation (e, u, T) whose query expression e has been processed to an RRT S (a set of Info Item 
identifiers), AIS now fetches all rows from the 
property table whose item id is in S and whose Term 
id is in T, by executing for every value type vt of the 
property Terms in T the query (tablevt, p, {itemID,termID}, ∅, {itemID}) with ݌ = (itemID	 ∈ ܵ ∧ termID ∈ 	ܶ)			. 
Two more storage layer queries are necessary: (1) 
the Info Item table is queried for the header data of 
the items, and (2) a join view over the association 
table and the Info Items table is queried for 
associations. All of these queries order their result 
by Info Item id. With interleaved scans, AIS finally 
merges the values into Info Items. 

7 RELATED WORK 

AIS clearly falls into the category of NoSQL 
databases. The term NoSQL covers a wide range of 
data stores, which vary considerably in the data 
model used and the query and interaction 
capabilities offered. 

In terms of data models used in NoSQL 
databases, key-value based, hierarchical, and graph-
based data models can be distinguished. The group 
of key-value stores includes document stores (for 
instance CouchDB (CouchDB, 2012)), pure key-
value stores (for instance Amazon S3 (Amazon S3, 
2012)), and wide column stores (such as Bigtable 
(Chang et al., 2008), or Cassandra (Lakshman et al., 
2009)). Generally, a key-value based data model 
associates one to three hierarchical keys with non-
typed byte arrays. Although very general and 
extremely flexible, the key-value concept does not 
offer any inherent higher means to type and 

associate entities. Approaches to work around these 
conceptual shortcomings rely on interpretation by 
the client application and are transparent to the data 
store, including its query mechanisms. 

Document stores typically follow a hybrid 
approach nesting two data models. Being primarily 
key-value stores, document stores additionally 
structure values using a hierarchical data model such 
as XML (Extensible Markup Language, 2008) or 
JSON (Crockford, 2006). A tree of flat objects 
allows modeling an entity’s structure and preserving 
its integrity as a unit. Furthermore, it is possible to 
hierarchically associate entities by nesting them. 

Graph-based data models are more general and 
allow arbitrary associations. Probably the most 
general graph-based data model is RDF (RDF/XML 
Syntax Specification, 2004). RDF stores statements 
about entities as subject-predicate-object triples, 
which form a labeled graph. Consequently, when 
stored in RDF, entities are decomposed into 
statements. The entity’s integrity as a unit is lost and 
must be reassembled during retrieval. RDF is 
probably the most general data model. However, 
RDF is too general if the representation and 
management of composite data objects is required.  

The AIS data model resembles a graph of plain 
objects. Plain objects graphs are a very flexible 
representation of data, where values and links can be 
easily added and removed, and the entity integrity is 
preserved at the same time. Comparable to AIS, 
Neo4J (Neo4J, 2012) is a graph database with a data 
model incorporating only a very weak type system. 
Besides missing support for taxonomy and 
subsumption, semantic attribute types in Neo4J do 
not imply any technical value type. Weak technical 
typing allows more flexibility at the price of 
required type casts. AIS avoids type casting for 
better aggregation performance. Freebase (Bollacker 
et al., 2008) is a public graph database operated by 
Google. Freebase offers an advanced type system 
without hard-coded schema but type-specific 
metadata defined (at runtime) before data can be 
stored. The Freebase concept lacks taxonomy and 
subsumption support. 

Regarding query and interaction capabilities, 
everything from simple APIs to proper query 
languages can be found in the zoo of NoSQL 
databases. APIs are offered by the majority of the 
key-value stores. These APIs are typically very 
limited in their expressiveness – comparable to the 
internal record access methods of a standard 
relational database system. 

Query languages usually come with the more 
advanced hierarchical and graph-based data models. 
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XQuery (XML Query Language, 2007), SPARQL 
(SPARQL, 2008), Gremlin (Gremlin, 2012), MQL, 
and Cypher (Cypher Query Language, 2012) are the 
most important ones to mention here. XQuery is a 
powerful language to work with XML. It strictly 
builds on the hierarchical nature of XML, which 
makes it not a good fit for graph-structured data. 

SPARQL is designed to query RDF data sets. A 
SPARQL query matches a graph pattern to a labeled 
graph. Like RDF, SPARQL has no notion of an 
entity as a unit. To query an entity, all properties of 
this entity have to be known in advance. Further, 
SPARQL lacks means to aggregate values or 
objects, which makes it inappropriate for most graph 
analytics tasks. 

Gremlin is a language for graph querying, 
analysis, and manipulation. Since Gremlin heavily 
builds on graph traversals it is a powerful language 
to operate with graphs. However, Gremlin is a 
programming language rather than a query language. 
There is no inherent language support for set 
operations, aggregation, or consolidation. 

MQL is the query language of Freebase. It 
strictly follows the query-by-example paradigm. 
Thereby, it allows a relatively simple composition of 
powerful queries. Nevertheless, by that simplicity it 
narrows the granularity of client interaction to single 
queries per roundtrip. 

Cypher is the query language of Neo4j. With an 
SQL-like syntax, Cypher offers filtered traversal 
from a given node set and projects out the value of 
interest found along the traversal. It supports 
ordering an aggregation. Cypher is the graph query 
language closest to WIPE. However, it lacks WIPE’s 
support for complex retrieval and manipulation 
statements. 

8 CONCLUSIONS 

We presented the challenges faced by existing and 
emerging applications that require a schema-flexible 
DBMS that: (1) needs to handle data of different 
schemas and with different degrees of structure 
without upfront expensive data integration, (2) has 
to support changes in the data schema during data 
query and processing efficiently, but (3) still needs 
to incorporate the notion of data schemas and a 
proper type system, so that types can be used to 
manipulate and retrieve data.  

We described AIS as SAP’s answer to the 
challenges of these new kinds of business applica-
tions. In this paper we provided a system overview, 
and described our data model and data query and 

manipulation language. We sketched the system’s 
architecture and how its statement processing is 
implemented. A description of experimental results, 
in particular performance experiments, are planned 
for upcoming publications. 

Finally, we discussed existing approaches related 
to our data model and data query language. We 
pointed out that existing data models either are 
structurally too weak or lack an adequate type 
system. For query languages, we argued that the 
discussed approaches are either not expressive 
enough or too specialized in data models or 
operations to be suitable for our target applications. 

We are currently using AIS in Semantic Business 
Applications where we represent user and 
application context in the form of semantic 
networks, our Business Network Services platform, 
where we use AIS to efficiently represent and 
analyze company relationship networks, and in 
Sentiment Analysis applications, where we combine 
and analyze internal structured business data with 
external irregularly structured social media data. 

Ongoing work includes the implementation of 
dedicated physical storage structures and graph 
specific operations, e.g., graph traversal operators, 
directly inside the HANA database engine to further 
optimize query performance. 
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