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Abstract: In crisp contexts taxonomies are used in different steps of the mining process. When the objective is the 
generalization they are used, manly, in the pre-processing or post-processing stages.  On the other hand, in 
fuzzy contexts, fuzzy taxonomies are used, mainly, in the pre-processing step, during the generation of 
extended transactions. A great problem of such transactions is related to the generation of huge amount of 
candidates and rules. Beyond that, the inclusion of ancestors in the same ends up generating problems of 
redundancy. Besides, it is possible to see that many works have directed efforts for the question of mining 
fuzzy rules, exploring linguistic terms, but few approaches have proposed new steps of the mining process. 
In this sense, this paper propose the Context FOntGAR algorithm, a new algorithm for mining generalized 
association rules under all levels of fuzzy ontologies composed by specialization/generalization degrees 
varying in the interval [0,1]. In order to obtain more semantic enrichment, the rules may be composed by 
similarity relations, which are represented at the fuzzy ontologies in different contexts. In this work the 
generalization is done during the post-processing step. Other relevant points are the specification of a 
generalization approach; including a grouping rules treatment, and an efficient way of calculating both 
support and confidence of generalized rules during this step. 

1 INTRODUCTION 

An important task in data mining is the mining 
association rules, introduced in (Agrawal et al., 
1993). In traditional algorithms of association, like 
Apriori, the rules are generated based only on 
existing items in the database. This characteristic 
makes an excessive amount of rules be produced. In 
this sense, the domain knowledge, represented via 
taxonomies, can be used in order to obtain more 
general patterns, facilitating the user’s 
comprehension. The association task using 
taxonomic structures is called mining generalized 
association rules, and was introduced by (Srikant 
and Agrawal, 1995) and (Jiawei Han and Fu, 1995).  

According to the authors, ancestors of taxonomy 
are inserted into database transactions, which are 
called extended transactions. Then, from these 
extended transactions, it is applied an algorithm for 
extract the final set of rules, which can be composed 
by traditional rules and generalized ones. However, 
the inclusion of ancestors in the database 
transactions results the generation of many candidate 
itemsets, in addition, algorithms using such 

transactions ends up generating redundant patterns, 
making it extremely necessary the use of interest 
measures for eliminate redundancies. On the other 
hand, some works, like (Carvalho et al., 2007) for 
example, show that the post-processing stage can be 
more advantageous, because few candidates and 
rules are generated. Moreover, it is eliminated the 
need of measures used for prune redundant rules, 
since the process is made based on the traditional 
patterns generated. 

However, in many applications of the real world 
ontologies and taxonomies may not be crisp, but 
fuzzy (Wei and Chen, 1999), because some 
applications do not have classes of objects with 
pertinence criteria precisely defined (Zadeh, 1965). 
In this context, Wei and Chen (Wei and Chen, 1999) 
introduced the use of fuzzy taxonomies. They 
considered the partial relationships possibly existing 
in taxonomies, where an item may partially belong 
to more than one parent. For instance, tomato may 
partially belong to both fruit and vegetable with 
different degrees. Wei and Chen thus defined a 
fuzzy taxonomic structure and considered the 
extended degrees of support, confidence and interest 
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measures for mining generalized association rules. 
However, most of the works are focused in to 
improve methods of to obtain generalized fuzzy 
association rules, which are the ones composed by 
linguistic terms, but few works have directed efforts 
for improve the exploring of generalized rules under 
fuzzy concept hierarchies, mainly in relation to the 
stage that they are used. 

Besides, some works, like (Miani et al., 2009) 
and (Escovar et al., 2006), explore the semantic 
enrichment through similarity relations. However, 
these works do not consider that the degree of a 
similarity relation, between two or more elements, it 
is also related to the point of view or to the context 
analysed. For example, consider the problem of 
compare two vegetables, tomato and khaki, in 
relation to two different points of view (contexts), 
appearance and flavour. In respect to the appearance 
context, would be possible to check that tomato is 
very similar to khaki, with a very high degree of 
similarity; but in relation to the flavour, would be 
possible to check that both are bit similar, with a 
minor degree of similarity.   

Thus, this paper presents the Context FOntGAR 
algorithm for mining generalized association rules, 
using fuzzy ontologies composed by relationships of 
specialization/generalization varying in the interval 
[0,1], and similarity relations with different degrees 
according to the context. The generalization can to 
occur in all levels of fuzzy ontologies. The paper is 
organized as follow: Section two shows some related 
works. Section three presents the Context FOntGAR 
algorithm. The section four presents the 
experiments, and the section five shows the 
conclusions. 

2 BACKGROUND 

Aiming to obtain general knowledge, the generalized 
association rules, which are rules composed by items 
contained in any level of a given taxonomy, were 
introduced by (Srikant and Agrawal,1995). There 
are many works using crisp taxonomic structures. 
These works are distinguished, mainly, in function 
of the stage (of the algorithm processing) in which 
these structures are used.  

In the pre-processing, the generalized rules are 
obtained through extended databases, and these 
bases are generated before the pattern generation. 
Extended databases are the ones composed by 
transactions containing items of the original 
database and ancestors of the taxonomy. In the post-
processing the generalized rules are obtained after 

the generation of the traditional rules, through a sub-
algorithm that uses some generalization 
methodology based on the patterns generated.      

In (Wu and Huang, 2011), the mining is made 
using an efficient data structure. The goal is to use 
the structure for find rules between items in different 
levels of a taxonomy tree, under the assumption that 
the original frequent itemsets and association rules 
were generated in advance. Thus, the generalization 
occurs during the post-processing step. In relation to 
the post-processing, (Carvalho et al., 2007) proposed 
the GARPA algorithm. The algorithm, unlike what 
was proposed by (Srikant and Agrawal, 1995), do 
not insert ancestor items in the database transactions. 
The generalization was done using a method of 
replacing rule items into taxonomy ancestors. From 
the quantitative point of view, this process is  more 
advantageous than proposed by (Srikant and 
Agrawal, 1995), because implies a smaller amount 
of candidates, and consequently of rules generated, 
dispensing the use of measures for pruning 
redundant rules. 

In mining generalized rules, most of the works 
using fuzzy logic are mainly focused in to obtain 
generalized fuzzy association rules, which are the 
ones composed by fuzzy linguistic terms, such as 
young, tall, and others. In such approaches are used 
crisp taxonomies and the linguistic terms are 
generated based on fuzzy intervals, normally 
generated through clustering. Besides, these works 
are directed to explore quantitative or categorical 
attributes. In this context we can to point, for 
example, the works (Hung-Pin et al., 2006), 
(Mahmoudi et al., 2011), (Cai et al., 1998), (Hong et 
al., 2003) and (Lee et al., 2008). On the other hand, 
few works use fuzzy taxonomies in order to obtain 
their rules. In this case, the focus is not the exploring 
of patterns composed by linguistic terms, but it is 
how to explore taxonomic structures composed by 
different specialization/generalization degrees.  

The problem of mining generalized rules using 
fuzzy taxonomies was proposed by (Wei and Chen, 
1999). They included the possibility of partial 
relationship in taxonomies, i.e., while in crisp 
taxonomies the specialization/generalization degrees 
are 1, in fuzzy structures such degrees vary in the 
interval [0,1]. So, the degree ߤ௫௬ which any node y 
belongs to its ancestor x can be derived based upon 
the notions of subclass, superclass and inheritance, 
and may be calculated using the max-min product 
combination. Specifically, ߤ௫௬ = max∀௟: ௫ → ௬( min∀௘	௢௡	௟  ௟௘)  (1)ߤ

Where l: ݔ	 →  is one of the paths of attributes ݕ	
x and y, e on l is one of the edges on access l, ߤ௟௘ is 
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the degree on the edge e on l. If there is no access 
between x and y,   ߤ௫௬ = 0 (Wei and Chen, 1999). 

In addition to defining such structures, they also 
consider extended degrees of support and confidence. 
The degree of the extended support (Dsupport) is 
calculated based on this ߤ௫௬. If a is an attribute value 
in a certain transaction t  ∈ T, T is the transaction set, 
and x is an attribute in certain itemset X, then, the 
degree ߤ௫௔ can be viewed as the one that the 
transaction {a} supports x. Thus, the degree that t 
supports X may be obtained as follows: ߤ௧௑ = 	 ௧௑ݐݎ݋݌݌ݑݏ = min	∀ ௫∈௑	(max∀	௔∈௧  ௫௔)) (2)ߤ

Furthermore, an ∑ܿݐ݊ݑ݋ operator is used to sum 
up all degrees that are associated with the 
transactions in T, in terms of how many transactions 
in T support X: ෍ 	்	∋	௧	∀)	ݐ݊ݑ݋ܿ (௧௑ݐݎ݋݌݌ݑݏ = 	 ෍ ்	∋	௧	∀)	ݐ݊ݑ݋ܿ  ௧௑)  (3)ߤ

Thus, the support of a generalized association 
rule X → Y, let X ∪	Y = Z ⊆ I, can be obtained as 
follows, where |ܶ| is the total of transactions in the 
database: ∑ 	்	∋	௧	∀)	ݐ݊ݑ݋ܿ |ܶ|         (4)	௧௓)/ߤ

Similarly, the confidence (X → Y), called 
Dconfidence, can be obtained as follows: ∑ 	்	∋	௧	∀)	ݐ݊ݑ݋ܿ ∑	/(௧௓ߤ ∀)	ݐ݊ݑ݋ܿ ௧	∈	்	 ௧௑)  (5)ߤ

It is important to say in (Wei and Chen, 1999) 
only the concepts are defined and in (Chen and Wei, 
2002) the authors proposed two algorithms to realize 
the mining, one working with the mentioned 
taxonomies, and other working with these 
taxonomies and linguistic terms. The first was called 
FGAR, and the second was called HFGAR, both 
algorithms use the same concept of extended 
transactions. 

A similar work can be found in (Keon-Myung, 
2001), however, it is related to the mining 
generalized quantitative association rules. The 
authors use two different structures: fuzzy concept 
hierarchies and generalization hierarchies of fuzzy 
linguistic terms. In the first, a concept may have 
partial relationship with several generalized 
concepts, and the second is a structure in which 
upper level nodes represent more general fuzzy 
linguistic terms. 

As well as Wei and Chen (Wei and Chen, 1999), 
(Keon-Myung, 2001) also use the technique of 
extended transactions. Besides, it is considered the 
use of interest measures for prune redundant rules. 
According to (Wen-Yang et al., 2010), the works 
using fuzzy taxonomies, like proposed by (Wei and 

Chen 1999), require the same be static, ignoring the 
fact they cannot necessarily be kept unchanged. For 
example, some items may be reclassified from one 
hierarchy tree to another for more suitable 
classification. 

In this sense, the work (Wen-Yang et al., 2010) 
introduces an algorithm where the final set of rules 
generated can be updated according to the evolution 
of the structures. The evolution can to occur due 
four basic causes: insertion, deletion, renaming and 
reclassification of items.  Fuzzy taxonomies are used 
and, as well as (Wei and Chen, 1999), (Keon-
Myung, 2001), and (Wen-Yang et al., 2010), the 
generalized rules are obtained using extended 
transactions. 

Thus, in respect to the use of fuzzy taxonomies, 
composed by degrees of specialization/ 
generalization varying in the interval [0,1], the 
works (Wei and Chen, 1999) , (Keon-Myung, 2001), 
and (Wen-Yang et al., 2010), are the most relevant 
found in the literature.   

On the other hand, some works, like (Escovar et 
al., 2006) and (Miani et al., 2009) are directed to the 
semantic of the data mined. They use ontologies for 
extract associations of similarity existing between 
items of the database. These relations are 
represented in the leaves of ontology, but the 
specialization/generalization degrees are constant 1, 
like crisp ontologies. The work (Miani et al., 2009) 
is an extension of (Escovar et al., 2006), and the 
main differences are the introduction of a 
redundancy treatment and a step of generalizing 
non-frequent itemsets. However, both algorithms are 
limited, since generalizes at only one level of 
ontology (leaf nodes to parents). 

As said, these works do not consider the question 
of context in the similarities represented at the 
leaves. In this line, the work (Cerri et al., 2010)  
propose an Upper Fuzzy Ontology With Context 
Representation (UFOCoRe), an approach that 
represent multiple relationship strengths in a single 
ontology, so that it is possible to express different 
relationship semantics depending on the context 
chosen. The approach does not define context 
ontology like the ones used in context-aware 
systems, but it allows organizing the context 
information of multiple perspectives in single 
domain ontology. As described, there are few works 
dealing with mining generalized association rules 
under fuzzy taxonomies. Besides, most of the works 
are inserted in the line of mining generalized fuzzy 
association rules, which is a concept smoothly 
different, since for it are used crisp taxonomies and 
the fuzzy generalized rules are obtained, most of the 
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time, with the utilization of linguistic terms. Besides, 
it is possible to see a bias, which is the realization of 
the generalization process exploring fuzzy 
taxonomies during the pre-processing stage, through 
extended transactions. In this sense, considering the 
concept of fuzzy taxonomies, presented in (Wei and 
Chen, 1999), no work to date was proposed for 
obtain generalized rules during the post-processing 
stage including the questions of similarity relations 
considering context. 

3 THE PROPOSED ALGORITHM 

The aim of the Context FOntGAR is post-process a 
set of specialized association rules (AR) using fuzzy 
ontologies, in order to obtain a reduced non-
redundant and more expressive set of generalized 
rules, facilitating the user’s comprehension. Figure 1 
illustrates all steps of the Context FOntGAR 
algorithm. The steps colored in grey are the main 
points of our algorithm. 

3.1 Main Ideas 

The process of generating traditional association 
rules is based on Apriori (Agrawal and Srikant, 
1994), and as an mining association rule algorithm, 
it needs of an user-provided minimum support and 
minimum confidence parameters to run. Moreover, 
it needs of a minGen, a side and a context 
parameters: 

• minsup, which indicates the minimum support; 
• minconf, represents the mininum confidence; 
• minGen, which represents the minimum quantity 
of   descendants in different specialized rules; 

• minSim, which is the minimum similarity used 
in the reasoner inferences (Miani et al., 2009);  

• side, which represents the side of generalization; 
• context, which represents the context used in the 
similarity; 
The minsup, minconf, minGen and minSim 

parameters are expressed by a real value in the 
interval [0,1]. The side parameter is expressed by a 
string left, right or lr, indicating the generalization 
side. The generalization can be done on one side of 
the rule (antecedent or consequent) or both sides (lr: 
left and right side). While the left side indicates 
relations between classes of items and specialized 
items, the side right indicates relations between the 
specialized items and classes of items. The side lr 
indicates relations between classes. The similarities 
are represented in the leaves of ontology. Relations 

with similarity degree value greater than or equal to 
the user-provide minSim (Miani et al., 2009) can be 
show in the rules generated, increasing the semantic 
enrichment of the same. The generalization is made 
through a sub-algorithm that uses a methodology of 
grouping and replacement in the rules. In this 
methodology, two or more rules are grouped in order 
to be replaced by a unique generalized rule. Several 
groups can be generated, and the grouping is done 
based on the parameter side and on the fuzzy 
ontology. In this case, two or more rules having 
identical parents in the side of generalization are 
grouped in a same group. 

It is important to say that a group is generated 
only if two or more rules can be grouped, because is 
not reasonable generalize a unique rule. As several 
groups may be generated, various generalized rules 
may be obtained. During the grouping, the ancestors 
analyzed are the immediate ones of items present on 
rules in question, which are the ancestor presents in 
the current level of generalization. The parameter 
side indicates the generalization side. Thus, when 
this parameter is set with left or right, if two or more 
rules have the same elements in the opposite of side, 
and have identical parents in relation to the items 
present in the side, then these rules are placed in a 
same group. For example, supposing ontology of 
bread and milk, where bread is a breadA, breadB, 
breadC, breadD, breadE, and milk is a milkA, milkB 
milkC. Suppose the algorithm generates, during the 
extracting patterns stage, a set of traditional rules 
milkA → breadA, milkA → breadB, milkA → 
breadC, which are the ones composed only by leaf 
nodes. 

 
Figure 1: Steps of the Context FOntGAR. 

When the parameter side is lr, if two or more rules 
have the same parents in relation to the
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Figure 2: Pseudo-code of generalization.

antecedent items, and, respectively, have the same 
parents in relation to the consequent items, then 
these rules will be grouped together. For example, 
considering that traditional rules milkA → breadA, 
milkB → breadB, milkC → breadC have been 
generated. Comparing these rules, we can see that 
they have the same parent in relation to the 
antecedent, and respectively, they have the same 
parent in relation to the consequent. Thus, these 
rules will be grouped together. 

It is important to say the rules used in the 
grouping can be composed by any quantity of items. 
At first, the patterns used during the generalization 
are the traditional ones generated by the extracting 
patterns stage. Posteriorly, the obtained generalized 
rules are treated in the same way, in order to obtain a 
new set of generalized rules. Thus, it is a recursive 
process. An important point is that generalized rules 
can be generated without the use of all descendants 
of an ancestor. In this sense, to avoid an over-
generalization, a set of specialized rules contained in 
a group can be substituted by a more general rule 
only if a minGen parameter (Miani et al., 2009) was 
satisfied. Consider that the minGen value is 0.6 
(60%), and the side is lr, the rule milk → bread will 
be generated even if there is no rule for each kind of 
bread and milk in the current group, but only if 60% 
of descendants of bread and milk are present in this 
set of rules. Thus, the use of minGen could produce 
a semantic loss. In this sense, in order to guide the 
user’s comprehension, the algorithm show the items 
which have not participate in the generalization 

process. For example, suppose the item breadE is 
not present in the specialized AR set, the generalized 
rule are shown as milk → bread (-breadE), 
indicating that the item breadE did not compose the 
generalization. 

 In this research, for represent a fuzzy ontology 
with specialization/generalization degrees varying in 
[0,1] and context in similarity relations, we follow 
the ideas described in two  meta-ontologies, 
proposed in (Agrawal and Srikant, 1994), and (Cerri 
et al., 2010) respectively. Both are upper ontologies 
as it represent fuzzy constructs to be inherited and/or 
instantiated by specific domain ontologies. Such 
ontologies are based on OWL DL (Smith et al., 
2004), a W3C recommendation supported by several 
reasoners and application programming interfaces 
used to develop ontology-based applications. 

3.2 The Algorithm Step by Step 

First, the ontology reasoner is used to infer the 
membership degrees of the leaves in relation to the 
ancestors, through the equation 1 of the section two. 
These degrees are stored in a data structure. The 
steps of data scanning, generating candidates and 
generating rules are done similarly to the Apriori. 
At end of generating rules we have a set of 
specialized rules, which will be used on the 
generalization treatment. Then, the generated rules 
and the side of generalization are passed to the 
groupingRules function (line 7), which is 
responsible by the grouping treatment mentioned 
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above. Posteriorly, for each group generated, all 
rules in a group are represented by a more general 
rule (line 10). So, the minGen parameter (line 11) is 
checked, besides, it is verified if antecedent ∩ 
consequent = 0 and if no consequent item is ancestor 
of any antecedent item (line 12). If such verifications 
are satisfied (line 13), the calculus of support is 
done. If the general rule is not frequent then the 
generalization is not made. In this case, if the level is 
1 (line 19), the rules of the corresponding group are 
inserted in the result. But if the general rule is 
frequent, the rules of the corresponding group are 
replaced by the same, and it is inserted in the result.  

After that, if there are generalized rules, the same 
are used in the next level of generalization. If this 
situation is true for all next levels, the generalization 
process will be done until a level below the ontology 
root. However, if there is no generalized rule at a 
certain level, then will be impossible generalize in 
the next levels. When this happens, the 
generalization process is concluded. After the 
generalization treatment, the algorithm uses the 
ontology reasoner to obtain the similarity relations. 
So, these relations are used in the non-generalized 
rules. Finally, after that, the algorithm enters its final 
stage, which is the results generation.  

3.3 Calculating the Support and 
Confidence Degrees 

Considering the fuzzy taxonomy of Figure 3, Fruit 
→ Meat is a generalized rule and {Fruit, Meat} is 
their itemset format. The support is calculated based 
on the sum of all degrees of transactions that support 
simultaneous occurrences of {Fruit, Meat}. 
However, {Fruit, Meat} is obtained and known only 
during the post-processing. Then, for obtain the 
degree of each transaction, it would be necessary a 
new scanning in the database. As many generalized 
rules may be generated, the quantity of new 
scanning also may be huge, and depending on the 
quantity of rows of the database, the performance of 
the algorithm would be affected. 

In Context FOntGAR we use two data structures 
(Figure 3 and Figure 4) to allow the calculating of 
support avoiding additional scan. Such structures are 
composed by keys and values. In Figure 3, a key is 
an item of the database or an ontology ancestor.  
Each key points a value, which is a vector storing 
the transaction identifiers where the key appear. The 
vector is an object of the class Vector in Java, 
dynamically created. The equation used in the 
calculus of support is derived of the Equation 2 
(section two). So, if we partitioned  the  same in  two 

subparts (Part 1 and Part 2), we have: 
• Part 1 = max∀	௔∈௧(ߤ௫௔)  
• Part 2 =	min	∀	௫∈௑	(   .(૚	࢚࢘ࢇࡼ
As said, we can have many generalized rules, but 

we don’t know what will be generated. So, the 
itemset format of each may be any X = {ݔଵ, … ,  ,{௡ݔ
where X is the generalized rule, and ݔଵ, … ,  ௡ areݔ
items of the rule. That way, during the first scan, we 
do the computation of Part 1, which is the degree 
that each transaction t supports an ancestor x. Based 
on the results of Equation 1, found at beginning of 
the algorithm, these degrees are calculated and 
stored in a data structure (Figure 4), where a key is 
the ancestor x (which will be present in generalized 
rules), and each key points a value, which is a vector 
storing the degrees mentioned. Thus, since the result 
of Part 2 correspond to min operator for the degrees 
related to any rule {ݔଵ, … ,  ௡}, we use the storedݔ
degrees of ݔଵ, … ,  ,௡ for calculating the Part 2ݔ
obtaining the support of any generalized rule.             

An important point is that if ߤ௧௑ = 0 the 
transaction does not supports ݔ௡, then the degree ߤ௧௫ 
is not stored in the vector. Thus, each vector linked 
in a key of the Figure 3 has the same quantity of 
positions of the vector pointed out by the same key 
of the Figure 4. Besides, in such vectors, the values 
of correspondent positions are related. For example, 
through Figure 3 we can see that the key Fruit is 
present in three transactions, T1, T2 and T4. Then, 
from the Figure 4.5 we can infer that the degree 
which T1, T2 and T3 support Fruit is 1, 0.7 and 0.7, 
in the same order. 

 
Figure 3: Indexing items and ancestors. 

Now, consider an example about how calculate 
the support of the rule Fruit → Meat: First, the 
algorithm uses the structure shown in the Figure 3 
for    verify   the   quantity   of   transactions   in   the 
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Figure 4: Storing the transaction support degrees. 

 
Figure 5: Idea used in the calculating of support. 

intersection of values stored in vectors of these keys, 
since it represents all simultaneous occurrences of 
Fruit and Meat on the dataset transactions. Figure 5 
illustrates this idea. In this case we have two 
occurrences of {Fruit, Meat}. 

Then, in relation to each key, the algorithm uses 
the positions of these transactions in Figure 3 to 
found the degree which each transaction supports 
these ancestors. Such degrees are present in the same 
positions of the vectors linked at Fruit and Meat on 
the Figure 4. In this case we have: Fruit: 0.7/T2, 
0.7/T4; Meat: 0.6/T2, 1/T4, which are results of Part 
1. Based on these degrees, we use Part 2 to calculate 
the ߤ௧௑, where X is {Fruit, Meat}.  

For T2 we have: ߤ௧௑ = 	min	∀	௫∈௑	( (1	ݐݎܽܲ = min(0.7, 0.6) = 0.6 

For T4 we have: ߤ௧௑ = 	min	∀	௫∈௑	( (1	ݐݎܽܲ = min(0.7, 1) = 0.7 

So, according to Equation 3, we have 0.6 + 0.7 = 
1.3. Furthermore, the Equation 4 is used to calculate 
the support, which is 0.21. Although we presented a 
specific example, the process applies to any rule.  

3.4 Inferring Similarity Relations 
According to the Context 

As said before, for represent our fuzzy ontology, we 
follow the ideas described in two  meta-ontologies, 
proposed in (Agrawal and Srikant, 1994), and (Cerri 
et al., 2010). The approach proposed in (Cerri et al., 
2010) allows to represent, in a single ontology, 
distinct relationships according to different contexts.  

In relation to fuzzy relationships, they introduce 
the ctx:ContextFuzzyRelationMembership class, 
responsible for associating fuzzy relationships to 
several contexts. 

Ctx:ContextFuzzyRelationMembership is 
subclass of the fuzz:FuzzyRelationMembership class 
from the fuzzy ontology, thus it inherits 
fuz:fuzzyRelationDomain, fuz:fuzzyRelationRange, 
fuz:fuzzyRelationProp and fuz:membershipDegree 
properties. The context association is represented by 
ctx:hasContext and ctx:context properties, which 
link contexts to fuzzy relationships 
(fuz:FuzzyRelation) and fuzzy degrees respectively. 
By using such constructs, a domain expert can 
model fuzzy relationships from different 
perspectives, with specific fuzzy degrees according 
to each context. 

In our algorithm, the similarity degree values 
between items are represented in the fuzzy ontology 
leaves, which specify the semantics of the database 
contents. This step navigates through the fuzzy 
ontology structure to identify semantic similarity 
between items, according to the pre-defined context 
parameter. If according to a user-provide context the 
similarity degree between items is greater than or 
equal to the minSim parameter cited in section 3.1, a 
semantic similarity association is found and this 
association is considered similar enough. A fuzzy 
association of size 2 is made by these pair of items 
found and are expressed by the symbol ~ indicates 
the similarity relation between items, for example, ݅݉݁ݐ௔~݅݉݁ݐ௕. 

After that, this step verifies the presence of 
similarity cycles as proposed in (Escovar et al., 
2005). These are fuzzy associations of size greater 
than 2 that only exists if the items are, in pairs, 
sufficiently similar. The minimum size of a cycle is 
3, and the maximum is the number of sibling leaf 
nodes, for example, ݅݉݁ݐ௔~݅݉݁ݐ௕~݅݉݁ݐ௖. 
According to (Escovar et al., 2005), based on the 
concept of fuzzy intersection, the similarity degree 
value of a cycle is the minimum value found among 
the pairs. For example, if in a context ݅݉݁ݐ௔~݅݉݁ݐ௕ 
are 0.8 similar; ݅݉݁ݐ௕~݅݉݁ݐ௖ are 0.7 similar; ݅݉݁ݐ௔~݅݉݁ݐ௖ are 0.5 similar, then 
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 ௖ are 0.5 similar. Similarity݉݁ݐ݅~௕݉݁ݐ݅~௔݉݁ݐ݅
cycles are obtained through the transitive property 
(Zadeh, 1965). All similarity relations and similarity 
cycles with degree values greater than or equal to the 
minsim are stored (as strings) by the algorithm. After 
that, this step does a search in the rules generated 
checking if the same have items that are included in 
some relation or cycle stored. In positive cases, these 
items are replaced by the correspondent string 
stored. We can say the positive cases are related to 
the traditional rules which have not been 
generalized, since the similarity relations are 
associated only to the leaf nodes. For example, 
suppose the rule: ݅݉݁ݐ௔,	݅݉݁ݐௗ  	݅݉݁ݐ௕	→ 	݅݉݁ݐ௙	, ݅݉݁ݐ௛	. Considering that there is a similarity relation ݅݉݁ݐ௔~݅݉݁ݐ௕, then the stored correspondent string, ݅݉݁ݐ௔~݅݉݁ݐ௕, it is inserted in the rule, replacing the 
single items ݅݉݁ݐ௔ and 	݅݉݁ݐ௕	. So only the new 
rule, ݅݉݁ݐ௔	~	݅݉݁ݐ௕,  	݅݉݁ݐௗ	→	݅݉݁ݐ௙	,݅݉݁ݐ௛	, it is 
show by the algorithm. 

We can say that our approach is totally different 
than (Miani et al., 2009) and (Escovar et al., 2006). 
In these works, the inclusion of similarities in the 
rules is done through a concept of fuzzy item, which 
are a type of similarity representation. Such items 
are inserted in the set of candidates, during the 
candidate generation, and are used to generate the 
rules. Besides, a calculus of fuzzy occurrences also 
is done.  Another different point is that (Miani et al. 
2009) and (Escovar et al., 2006) do not consider the 
inclusion of context in the similarity relation. 

4 EXPERIMENTS 

This section shows some experiments performed to 
validate the Context FOntGAR algorithm. Two real 
datasets were used. The first dataset (DB-1) contains 
information about Years of study, Race or ethnicity 
and Sex, and was provided by Brazilian Institute of 
Geography and Statistics (IBGE). DB-1 contains 
10000 transactions with 12 distinct items. The 
second data set (DB-2) contains a one day sale of a 
supermarket located in São Carlos city. DB-2 
contains 1716 transaction with 1936 distinct items.  

Two fuzzy ontologies were created, one for the 
DB-1, called Ont-1 ontology, and other for the DB-
2, called Ont-2 ontology. The Ont-1 was constructed 
contained one level of abstraction, except by the 
root, and Ont-2 was constructed with four levels of 
abstraction, except by the root. In both ontologies 
the average value of specialization/generalization 
degrees was 0.8. Both ontologies were modeled in 

OWL (Web Ontology Language) and the Jena 
Framework was used to allow navigation through 
ontology concepts and relations.  

In order to compare and illustrate the 
performance of Context FOntGAR, the experiments 
were carried out with respect to two major aspects. 
First, with the DB-1, the GARPA algorithm 
(Carvalho, Rezende et al. 2007) under a 
corresponding crisp taxonomy, NARFO (Miani et al. 
2009) under a corresponding crisp ontology and 
Context FOntGAR algorithm under the Ont-1 were 
run. The purpose was to show what the effect of 
fuzzy extensions could be. In this comparison, 2 
experiments have been conducted. Second, with the 
DB-2 and Ont-2, the Context FOntGAR was 
executed. The purpose was to show how the 
generalization treatment could improve the reduction 
in the rules amount. This experiment checks the 
compaction rate, which represents the percentage of 
reduction in the volume of rules.  

4.1 Performance Comparisons  

We performed 2 experiments with real data and 
taxonomic structures mentioned above, changing a 
different parameter in each experiment. The 
experiments were done with default values of 
parameter, except for the one being varied. By 
default, minsup = 0.02, minconf = 0.4 and mingen = 
0.2. The side of generalization was set to lr in all 
algorithms. 

Number of Transactions 

In Figure 6, the vertical axis is the average of 
reading time per transaction (in milliseconds) in 
relation to the first scanning in the database. Here 
was compared the first scan on NARFO and the first 
scan on Context FOntGAR. We varied the number 
of transactions from 2000 to 10000. From Figure 6, 
it is possible see that the gap between Context 
FOntGAR, and NARFO show that the scanning with 
fuzzy ontologies is more time consuming than 
scanning with crisp ontologies. There are two 
reasons. First, the membership degree calculation 
demands more time. Second, the data structures 
generation contributes for increase the runtime. 
However, we can see that the gap tends keep stable 
with the increase of the number of transactions. This 
shows that the computational complexity is linear 
with the number of transactions, which is the same 
as the crisp algorithm. The difference between the 
two curves turns to be constant. 

In Figure 7 we changed the minimum degree of 
support from 0.05% to 0.2%. The vertical axis is the 
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Figure 6: Scanning time (per transaction). 

Minimum Degree of Support  

total execution time in seconds. Notably, with the 
increase of minsup, the runtime of both Context 
FOntGAR and GARPA decreases. The reason is that 
when the minsup increases the amount of traditional 
rules decrease, and consequently a minor quantity of 
rules are post-processed. However, we can see that 
GARPA consumes more time than Context 
FOntGAR. The reason is that GARPA demands 
more time during the calculating of support, because 
a new scan is done in the database for each 
generalized rule obtained. So, depending on the 
quantity of rules and rows of the dataset, the runtime 
can be very high. On the other hand, apart from 
provide an indexed access to data, in Context 
FOntGAR, the data structures avoid the necessity of 
new scans in the database, decreasing the runtime. 

 
Figure 7: Comparison in relation to the runtime. 

Compaction Rate in Context FOntGAR 

The Figure 8 shows that the compaction rate is 
high, especially when values of minGen are low. 
This means that for high values of minGen the 
number of generalized rules decreases and 
consequently the number of traditional rules 
increases, reflecting in the amount generated. 

 
Figure 8: Compaction rate in Context FOntGAR. 

4.2 Exploring Rules with Similarity 
Relations 

In order to explore rules with similarity relations the 
DB-2 and Ont-2 were used. For explore different 
contexts Ont-2 was extended through the meta- 
ontology mentioned above. Two contexts were 
inserted, flavour and appearance. The Table 1 shows 
some leaf items and their respective similarity degree 
values, in relation to the two contexts. The part shown 
represents the similarTo relationship between the 
spinach and mustard according to context appearance. 
The similarity degree is set to 0.7. 

Table 1: Similarity Degree Values. 

 Similarity Contexts 
items Appearance Flavour 

Coca-Cola Pepsi 0.8 0.6 
Pepsi Brazilian Coke 0.8 0.5 

Tomato Khaki 0.7 0.3 
European 
Chocolate 

Brazilian 
Chocolate 0.8 0.6 

spinach lettuce 0.7 0.4 
spinach mustard 0.7 0.4 

In Table 1 the similarity degree values are given 
in pairs of items. For example, spinach and mustard 
have similarity 0.7 in context of appearance. 
Besides, based on the table 1 two similarity cycles 
can be found in the ontology. Depending on the 
similarity value, the selection of context may cause 
change in the similarities represented in the rules. 
Our experiment was carried out employing the 
parameters values: minimum support (minsup) =0.2, 
minimum confidence (minconf)=0.2, and minimum 
similarity (minsim)=0.3. Some examples of rules 
generated are: 

Appearance Context: 
• spinach~lettuce~mustard, coffee → onion, potato 
• tomato~khaki, bread → soap, detergent 
• milk → EuropeanChocolate~BrazilianChocolate 
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5 CONCLUSIONS 

This paper proposes the Context FOntGAR 
algorithm, a new algorithm for mining generalized 
association rules under all levels of fuzzy ontologies, 
including similarity relations in the rules. The 
experiments show that Context FOntGAR makes an 
efficient generalization treatment, reducing the 
amount of rules. This work presents several 
contributions. First, it is introduced an algorithm 
which uses fuzzy ontologies with context-based 
similarity relations during the post-processing stage. 
Considering the bias found in the literature, our 
algorithm makes an important improvement on the 
state of the art. Another important contribution is 
that Context FOntGAR improves the semantic in the 
rules and generates non-redundant patterns without 
use pruning measures, since the generalized ones are 
obtained based on the traditional rules. For future 
works we are doing some improvements in the 
Context FOntGAR algorithm. We are improving the 
use of mingen, based on the user’s preferences. 

ACKNOWLEDGEMENTS 

We wish to thank the Determinants of Educational 
Performance Project (CAPES/INEP). 

REFERENCES 

Agrawal, R., T. Imielinski, et al. (1993). Mining 
association rules between sets of items in large 
databases, Washington, DC, USA, ACM. 

Agrawal, R. and R. Srikant (1994). Fast algorithms for 
mining association rules. Conference on Very Large 
Databases (VLDB). Santiago, Chile, Morgan 
Kaufmann Publischers Inc.: 487-499. 

Cai, C. H., Ada, et al. (1998). Mining Association Rules 
with Weighted Items. International Database 
Engineering and Application Symposium. 

Carvalho, V. O. D., S. O. Rezende, et al. (2007). 
Obtaining and evaluating generalized association 
rules. 9th International Conference on Enterprise 
Information Systems, ICEIS 2007, Funchal, Madeira; 
12 June 2007 through 16 June 2007. 

Cerri, M. J., C. Yaguinuma, et al. (2010). UFOCoRe: 
Exploring Fuzzy Relations According to Specifics 
Contexts. International Conference on Software 
Engineering & Knowledge Engineering (SEKE 2010). 
San Francisco Bay, USA: 529-534. 

Chen, G. and Q. Wei (2002). "Fuzzy association rules and 
the extended mining algorithms." Information 
Sciences - Informatics and Computer Science: An 
International Journal 147(1-4): 201-228. 

Escovar, E. L. G., M. Biajiz, et al. (2005). "SSDM: A 
Semantically Similar Data Mining Algorithm." 20 
Brazilian Symposium of Databases. 

Escovar, E. L. G., C. A. Yaguinuma, et al. (2006). Using 
Fuzzy Ontologies to Extend Semantically Similar Data 
Mining. 21 Brazilian Symposium on Databases. 
Florianópolis, Brazil: 16-30. 

Hong, T. P., K. Y. Lin, et al. (2003). "Fuzzy data mining 
for interesting generalized association rules." Fuzzy 
Sets and Systems 138(2): 255-269. 

Hung-Pin, C., T. Yi-Tsung, et al. (2006). A Cluster-Based 
Method for Mining Generalized Fuzzy Association 
Rules. Innovative Computing, Information and 
Control, 2006. ICICIC '06. First International 
Conference on. 

Jiawei Han and Y. Fu (1995). Discovery of Multiple-Level 
Association Rules from Large Databases. 21º VLDB 
Conference. Zurich, Switzerland: 420-431. 

Keon-Myung, L. (2001). Mining generalized fuzzy 
quantitative association rules with fuzzy generalization 
hierarchies. IFSA World Congress and 20th NAFIPS 
International Conference, 2001. Joint 9th. 

Lee, Y.-C., T.-P. Hong, et al. (2008). "Multi-level fuzzy 
mining with multiple minimum supports." Expert 
Systems with Applications: An International Journal 
34(1): 459-468. 

Mahmoudi, E. V., E. Sabetnia, et al. (2011). Multi-level 
Fuzzy Association Rules Mining via Determining 
Minimum Supports and Membership Functions. 
Intelligent Systems, Second International Conference 
on Modelling and Simulation (ISMS), 2011. 

Miani, R. G., C. A. Yaguinuma, et al. (2009). NARFO 
Algorithm: Mining Non-redundant and Generalized 
Association Rules Based on Fuzzy Ontologies. 
Enterprise Information Systems. J. Filipe and J. 
Cordeiro, Springer Berlin Heidelberg. 24: 415-426. 

Smith, M. K., C. Welt, et al. (2004). "W3C Proposed 
Recomendation: OWL Web Ontology Language 
Guide."   Retrieved 2 dezembro, 2010, from  

Srikant, R. and R. Agrawal (1995). Mining Generalized 
Association Rules. Proceedings of the 21th 
International Conference on Very Large Data Bases, 
Morgan Kaufmann Publishers Inc. 

Vo, B. and B. Le (2009). "Fast Algorithm for Mining 
Generalized Association Rules." International Journal 
of Database Theory and Application 2(3): 1-12. 

Wei, Q. and G. Chen (1999). Mining generalized 
association rules with fuzzy taxonomic structures. 
Fuzzy Information Processing Society, 1999. NAFIPS. 
18th International Conference of the North American. 

Wen-Yang, L., T. Ming-Cheng, et al. (2010). Updating 
generalized association rules with evolving fuzzy 
taxonomies. IEEE International Conference on Fuzzy 
Systems (FUZZ), 2010. 

Wu, C.-M. and Y.-F. Huang (2011). "Generalized 
association rule mining using an efficient data 
structure." Expert Systems with Applications 38(6): 
7277-7290. 

Zadeh, L. A. (1965). "Fuzzy sets." Information and 
Control 8(3): 338-353. 

Mining�Generalized�Association�Rules�using�Fuzzy�Ontologies�with�Context-based�Similarity

83


