
Modularizing Software Process Lines
using Model-driven Approaches

A Comparative Study

Fellipe A. Aleixo1,2, Uirá Kulesza1, Marília Freire1,2, Daniel Alencar1 and Edmilson Campos Neto1,2
1Department of Computer Science and Applied Mathematics, Federal University of Rio Grande do Norte, Natal-RN, Brazil
2Federal Institute of Education, Science and Technology of Rio Grande do Norte, Campus Natal-Central, Natal-RN, Brazil

Keywords: Software Process, Variability Management, Software Process Lines.

Abstract: This work presents a comparative study of the usage of compositional and annotational approaches in the
modularization of software process lines. In our comparative study, an Open-UP based software process line
extracted from three existing projects are modelled and implemented using the compositional and annotative
approaches with the main aim to address a systematic variability management and automatic process
derivation. The results show that the GenArch-P – annotative approach – can bring many advantages to the
modelling of software process lines considering our comparison criteria.

1 INTRODUCTION

The software process line engineering is inspired in
the software product line engineering (Pohl et al.,
2005) aiming to promote the large-scale reuse of
software processes families. The objective is to
address the automatic customization of software
processes to specific enterprise contexts and
scenarios. Over the last years, several tools and
techniques were developed according with these two
approaches and several empirical studies have
explored and compared their adoption (Kästner &
Apel, 2008) (Kästner, 2010). Much of the evolution
that happened in the software product line
engineering is now being reflected to software
processes domain.

The investigation in software process lines have
grown in the last years and have reached important
results. The consolidation of the theme was achieved
by relevant research work, within such areas: (i)
motivation for software process line engineering
(Rombach, 2005) (Washizaki, 2006) (Ternité, 2009);
(ii) representing process variation (Simidchieva et
al., 2007) (Martínez-Ruiz et al., 2011) (Simmonds &
Bastarrica, 2011); (iii) scoping software process
lines (Armbrust et al., 2009); and (iv)
modularization of software process lines artifacts
(Barreto et al., 2010) (Aleixo et al., 2010). With the
consolidation of this research field, other challenges

emerge and need to be addressed by researchers.
Examples of existing challenges related with the
software process line modularization are: Which
approaches for process modularization are available?
Which techniques and tools should be used in
different scenarios? Which are the benefits and
limitations of each of these approaches?

This work presents a comparative qualitative
study of the usage of compositional and annotational
approaches in the modularization of software
process lines. The compositional approach is
represented by the EPF Composer (EPF, 2012) an
industrial process engineering tool that supports the
modularization and composition of process
elements. The annotational approach is represented
by the GenArch-P (acronym for GenArch-Process)
(Aleixo et al., 2010), an adaptation of an existing
model-based product derivation tool (Cirilo et al.,
2008) that provides support to create generative
models that represents the process variabilities and
associate them with existing process elements.

Our work adapted the comparison criteria from
Kästner (2008) (2010) to analyze these approaches
from different perspectives, such as: modularity,
traceability, error detection, granularity, uniformity
and adoption. Beyond these criteria is included a
new criterion that is the support to systematic
variability management.

The remainder of this paper is organized as
follows. Section 2 provides an overview of the two

120 A. Aleixo F., Kulesza U., Freire M., Alencar D. and Campos Neto E..
Modularizing Software Process Lines using Model-driven Approaches - A Comparative Study.
DOI: 10.5220/0004005801200125
In Proceedings of the 14th International Conference on Enterprise Information Systems (ICEIS-2012), pages 120-125
ISBN: 978-989-8565-11-2
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

investigated approaches. Section 3 describes the
proposed case study, the target software process line
and the used comparison criteria. Section 4 describes
the case study realization and the obtained results.
Finally, the conclusions are presented in Section 5.

2 MODEL-DRIVEN
APPROACHES FOR
SOFTWARE PROCESS LINES

In recent years, several approaches have been
proposed to the development of software process
lines. However there are two of them that stand out
from the others because they focus on the
modularization of process variabilities. One of these
techniques is EPF that allows modularizing process
elements using compositional refinement techniques.
The other one is called GenArch-P that promotes the
variability management of process artifacts using
annotation-based techniques.

2.1 Compositional: EPF Composer

The EPF Composer is a conceptual framework for
authoring, tailoring and deployment of software
processes (EPF, 2012). In EPF, a sofware process is
organized in terms of method content and processes
Method contents describe the process elements, such
as: activities, roles, practices, guidances, among
others. Processes describe the flow of activities,
which reference the elements defined in method
content. Process variabilities in EPF can be handled
with four variability mechanisms that can be
applied to method contents and processes. Those
mechanisms are (EPF, 2012): (i) contributes, (ii)
replace, (iii) extends and (iv) extends and replace.

In contributes variability mechanism, a
specialized element appends the content of a base
element. In replaces variability mechanism, a
specialized element takes place of a base element. In
extends variability mechanism, a specialized element
reuses some attributes, and overwrite others of the
base element. At last, the extends and replace
variability mechanism combines the effects of the
extends and the replaces variability mechanisms into
one strategy. While the replace variability replaces
all contents from the base element, this variability
mechanism allow the inheriante of the non-defined
attributes of the specialized element.

2.2 Annotation: GenArch-P

GenArch-P (Aleixo et al., 2010) is a tool for

software process derivation adapted from its original
version to software product lines, called GenArch
(Cirilo et al., 2008). The tool is based on the
annotational approach, where the variable elements
of a software process are annotated to reflect which
type of variation is implement by the element. The
annotational approach is widely used in various
software product lines tools, such as pure::variants
and CIDE.

The GenArch-P works with two models: a
simplified process model and the feature model. The
elements of the process model are annotated to
reflect their relationship to specific features. The
annotations in GenArch-P are based on the
underlying structure of the process model where
each element can have an associated variation
property that describes the variation type of this
element and the feature parent.

The process model is a simplified representation
of the software process specification, that presents
the process elements as a hierarchical tree. The
feature model is automatically generated by the tool.
After the annotations, the process model acts like a
configuration model, allowing the visualization of
the associations between features and process
elements. The feature model is a common artifact at
the software product lines development, introduced
by Feature-Oriented Domain Analysis (Kang et al.,
1990), that represents all the possible instances of a
product line. The model presents all the possible
options to be selected, in terms of features.

3 STUDY SETTINGS

In our study, we have modelled the same OpenUP-
based process line composed of different kinds of
process variabilities using the evaluated modelling
approaches. After the specification of the software
process line using EPF and GenArch-P, we have
conducted a comparative analysis of the final results
based on criteria adapted from a previous study
(Kästner et al., 2008) (Kästner, 2010).

3.1 Target Software Process Line

The definition of the software process line used in
our study involved the analysis of OpenUP-based
processes from three existing research and
development projects. These projects were
developed in cooperation between our institution
and other ones. The first project was the
development of a software system for auditing the
telephony networks. This system performs the

Modularizing�Software�Process�Lines�using�Model-driven�Approaches�-�A�Comparative�Study

121

counting, summarization, and the analyses of the
connection records created by a specific hardware.
The second project involved the development of a
module of a distributed system responsible for the
collection and the storage of the information related
to the federal institutions of professional and
technological education in Brazil. The third, and
last, project comprised the implementation of an
integrated academic and administrative management
system for the federal institutions of professional
and technological education in Brazil.

The complete specification of the software
process line to be modularized was accomplished
using the extractive technique. It comprised the
analysis of the commonalities and variabilities of the
selected software processes. The common process
elements compose the core of the process line, while
the variable process elements were modelled
separately and associated to high-level features. It
was identified 76 process elements composing the
core of the process line. Regarding the variabilities,
it was found 9 optional features, 8 alternative
features, and 5 OR-features. Table 1 shows the
names of the identified features and the number of
associated process elements.

Table 1: Identified features in the software process family.

Feature Alternatives
(if there is)

Process
elements

Others processes influences
Additional elements from the Scrum Process 25

Requirements techniques and technologies

Specification
techniques

Use cases 27
Users stories 27
Product backlog 27

Specification
tools

Asta Community 24
Rational Software Architect 24
Borland Together 24
ArgoUML 24

Design techniques and technologies
Architecture
documentation

Agile design 64
Well documented architecture 16

Implementation techniques and technologies

Used language

Java 7
C# 7
Ruby 7
Phyton 7

Use of JEE framework 4
Use of Eclipse IDE 5
Use of JUnit framework 15

Continuous integration techniques and technologies
Use of Hudson tool 8

Metrics techniques and technologies
Use of Maven tool (code metrics – SVN mined) 5
Metric for assess the activities progress 3
Metric for asses the deadlines fulfilment 3
Metric for asses the duration of main activities 3

During our analysis, we have also found
constraints between features from the process line.
For example, the features representing the usage of

JEE and JUnit frameworks requires the selection of
Java features as the programming language. Further
information about the specification of the software
process line using the different approaches can be
found here (Aleixo et al., 2012).

3.2 Comparison Criteria

In order to promote the assessment of software
product line implementation techniques, Kästner et
al. (2010) have defined comparison criteria with
such purpose. In our work, we have adapted most of
these criteria – modularity, traceability, error
detection, granularity, uniformity, and adoption – to
the context of software process lines, which are
presented in Table 2. In addition, we have also
analysed the approaches support for systematic
variability management.

Table 2: Comparison criteria.

Criterion Definition

Modularity

It analyses the support to modularization of the
process elements associated with specific
features (features implementations), isolating
the implementation of a specific feature

Traceability
It shows how easy is the visualization of the
mapping between features and their related
process elements

Error detection

It analyses how existing approaches provide
support to consistency checking of the
software process line and their (resultant)
derived processes

Granularity

It assesses the approach support to associate
features with process elements of different
granularity, considering also the attributes of
the process elements

Uniformity

It analyses the ability to uniform support for
different forms of software processes
specification, evaluating how an approach is
tied to a specific process specification form

Adoption

It determines the difficulty of adopting existing
approaches in terms of the amount of
necessary knowledge (concepts, mechanisms
and tools) for the approach application

Systematic
variability

management

It assesses the approach mechanisms for
systematic and effective management of
variability: (i) the variability specification,
their constraints, and the mapping with process
elements; and (ii) the approach support to
automated process derivation from existing
process core assets

4 STUDY RESULTS

In this section, we report our study results by
describing the process line modelling using EPF
Composer (Section 4.1) and GenArch-P (Section
4.2). In addition, we also present and discuss the
obtained results for the comparison criteria of the
two approaches (Section 4.3).

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

122

4.1 Process Line Modelling using EPF
Composer

Process Line Engineering. The modelling of the
process line was accomplished taken as basis the
original method plugin of OpenUP. EPF defines a
customizable software process in terms of method
contents and processes, which are fundamental
concepts from EPF. The method contents allow
specifying the process elements and all their
attributes, which can later be (re)used and composed
to define the workflows of a new process.

The process line engineering involved the
following steps: (i) creation of a new method plugin;
(ii) creation of the mandatory process elements, in a
“core” content package; (iii) creation of specific
content packages to each feature, with the
correspondent process elements; (iv) creation, if
necessary, of the correspondent capability patterns to
each feature, to encapsulate the additions to the
workflow defined by the “core” elements. Each of
these capability patterns uses the content variability
"contributes" mechanism to refine the capability
pattern that represents the core including the specific
flow associated with the process variability. Table 3
presents a summary of the EPF mechanisms used to
implement each type of feature.

Table 3: EPF mechanisms used to each type of feature.

Type of
feature

Used EPF mechanism

Alternative

(i) hierarchical content package structure +
(ii) process elements of each alternative +
(iii) capability patterns to encapsulate the
additions to the “core” workflow

Optional

(i) content package structure +
(ii) associated process elements +
(iii) capability patterns to encapsulate the
additions to the “core” workflow

OR-feature

(i) hierarchical content package structure +
(ii) process elements of each related option +
(iii) capability patterns to encapsulate the
additions to the “core” workflow

Process Derivation. EPF Composer provides the
functionality to the definition of a process
configuration. In the configuration definition, the
process engineer chooses which modular structures
will be part of a published process – a navigable web
site. The process of configuration definition and
process instance publication can be repeated,
allowing the publication of all process line
possibilities. After the configuration definition, a
customized process is published with its respective
workflows and process elements (activities, tasks,
roles, among others).

4.2 Process Line Modeling using
GenArch-P

Process Line Engineering. The process line
engineering involved the following steps: (i)
definition of a complete software process
specification (ii) creation of a new GenArch-P
project; (iii) use the tool to parse the process
specification, generating a simplified process model;
(iv) annotation of the involved process elements
with features expressions defining the configuration
knowledge; (v) specification of constrains and
dependency relationship between features.

Figure 1 shows an example of the GenArch-P
process model where the elements are hierarchically
distributed to compose a wide view of the software
process structure. Figure 1 also shows the
annotations in process elements defining
associations to the variabilities of the process line. It
represents the configuration knowledge of mapping
from features to process elements. For example, the
feature that represents the agile design alternative
feature is associated to the following process
elements: (i) concurrent testing, (ii) continuous
integration, (iii) test-driven development, and others
not presented in the figure. After the annotation of
process elements, the GenArch-P generates the
correspondent feature model. Both the feature model
and the annotated process model guide the tool in
the automated process instance derivation.

Figure 1: Fragment of the process model with the features
annotations.

Process Derivation in GenArch-P starts with the
creation of a new feature configuration that allows
the processes engineers to select the desired features
for a new process instance. During the features
selection, constraints associated with features are
analysed. Thus, the selection of specific features

Modularizing�Software�Process�Lines�using�Model-driven�Approaches�-�A�Comparative�Study

123

may imply the removal of others. After the features
selection, a new process specification is derived,
with the process elements associated to the chosen
features.

4.3 Criteria Analysis

Modularity. Using EPF Composer is possible to
group software process elements in specific content
packages, and workflows in capability patterns.
These modularization mechanisms allow the
grouping of process elements related to a given
feature. Thus, our study concludes that EPF
Composer provides useful support for modularity of
process specifications. GenArch-P does not provide
modularization mechanisms for the process
specifications. The process engineers only interact
with a simplified model of the process, abstracting
the details and organization of the process
specification. We concluded that GenArch-P has
partial support for modularization, because the
software process specification could already be
modularized with low-level mechanisms.

Traceability. Using the EPF Composer the
traceability is achieved by the organization of the
elements in the correspondent structures: content
packages and capability patterns. Although the EPF
Composer lacks an explicit mechanism to map
features to process elements, we can conclude that
EPF Composer has a partial support for traceability.
Using GenArch-P, the process engineer can
visualize all mapping relationships between features
and process elements in the annotated process
model. Due to this characteristic, it is concluded that
GenArch-P offers good support for traceability.

Error Detection. The EPF Composer does not
offer a mechanism to detect semantic errors in the
specification of the process line. In addition, EPF
cannot represent constraints between features. The
only initiative accordingly is a dependency checking
during the configuration definition. Because of that,
we can conclude that the EPF Composer offers a
weak support for error detection. GenArch-P does
not have an explicit mechanism for error detection,
but during the annotation of the process elements, it
can specify constraints associated with the features.
These constraints allow guaranteeing that existing
constraints between features will be respected, such
as requires or excludes relationships. Thus, we can
say that GenArch-P provides currently only partial
support for error detection.

Granularity. The content package and capability
pattern mechanisms from EPF Composer provide
support to coarse-grained granularity through the

grouping of process elements and workflows.
Moreover, the variability mechanisms can be used to
redefine existing attributes of process elements, thus
providing support to fine-grained granularity. We
conclude that EPF Composer has a good support for
coarse and fine-grained elements. GenArch-P
restricts the granularity of the process elements at
the level of elements captured by the parsing of the
process specification in order to generate the
simplified process model. The current version of
GenArch-P only supports the granularity of process
activities and tasks, but not yet their attributes. We
concluded that GenArch-P currently provides a
partial support for fine-grained granularity.

Uniformity. EPF Composer does not provide
uniform support for different software process
specifications. It happens because the EPF
Composer only specifies software processes
according with the UMA meta-model. Because of
that, it was concluded that the EPF Composer does
not offer uniform support for different forms of
software process specification. Using GenArch-P,
the process specification language is abstracted by a
simplified process model. This model has not any
dependency with the low-level process specification.
Because of this, it is concluded that the GenArch-P
provides support to the uniformity criterion.

Adoption. The EPF Composer provides an
ample set of concepts and mechanisms that need to
be known by the process engineers. In addition, they
also need to understand the variability mechanisms
to address the modularization and configuration of
process variabilities. By forcing a process engineer
to know a set of mechanisms, concepts and
functionalities, it is concluded that EPF Composer
has weak support for the adoption criterion. The
GenArch-P tool automates most of the tasks
involved in the modelling of the software process
line. It does not require that the process engineers
have an extensive knowledge beyond the software
process variabilities, allowing an easy adoption.

Systematic Variability Management. Using
EPF Composer, the process engineer cannot specify
the existing variabilities using a feature model and
explicitly associate them to process elements. On the
other hand, GenArch-P allows an explicit feature
modelling, including the feature representation with
its respective constraints, the mapping to existing
process elements, and the automatic process
derivation based on feature selection. Thus, we can
conclude that GenArch-P offers a systematic
variability management.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

124

5 CONCLUSIONS

This paper presented the results of a comparative
study of compositional and annotational modeling
approaches of software process lines. Two modern
approaches were selected: (i) EPF Composer –
representing the compositional approach and (ii)
GenArch-P – representing the annotational
approach. These two investigated approches were
used to specify a non-trivial Open-UP processes
line.

Our study adopted a comparison criteria
previously adopted in the analysis of the
implementation techniques of software product lines
(Kästner, 2010). Based on the results of the study, it
can be concluded that the annotational approach
obtained better results in the software processes lines
definition. In five of the seven defined criteria, the
GenArch-P presented better results, which are: (i)
traceability, (ii) error detection, (iii) uniformity, (iv)
adoption, and (v) systematic variability
management. The EPF Composer had better results
in the modularity criterion, which reinforces one of
the known strengths of compositional approaches. In
the granularity criterion, the EPF Composer
approach had also better results, due to the variety of
variability mechanisms provided.

The study illustrated that annotative and
compositional approaches have their own strengths
and limitations defining software process lines, and
both are valid alternatives. The possible integration
of the compositional and annotative approaches can
combine the strengths of these two approaches and
will be investigated in future work.

ACKNOWLEDGEMENTS

This work was partially supported by the National
Institute of Science and Technology for Software
Engineering (INES) - CNPq under grants
573964/2008-4 and CNPQ 560256/2010-8.

REFERENCES

Aleixo, F. A., Freire, M. A. & Kulesza, U., 2012. Software
Process Lines. [Online] Available at: https://sites.
google.com/site/softwareprocesslines/ [Accessed 27
January 2012].

Aleixo, F. A., Freire, M. A., Santos, W. C. d. & Kulesza,
U., 2010. A Model-driven Approach to Managing and
Customizing Software Process Variabilities. In 12th
ICEIS. Funchal, Madeira, Portugal, 2010. SciTePress.

Aleixo, F. A., Freire, M. A., Santos, W. C. d. & Kulesza,
U., 2010. Automating the Variability Management,
Customization and Deployment of Software
Processes: A Model-Driven Approach. Lecture Notes
in Business Information Processing, pp.372-87.

Armbrust, O. et al., 2009. Scoping software process lines.
Software Process: Improvement and Practice, 14-3,
pp.181-97.

Barreto, A., Duarte, E., Rocha, A. R. & Murta, L., 2010.
Supporting the Definition of Software Processes at
Consulting Organizations via Software Process Lines.
In 7th QUATIC. Porto, Portugal, 2010. IEEE
Computer Society.

Cirilo, E., Kulesza, U. & Lucena, C. J. P. d., 2008. A
Product Derivation Tool Based on Model-Driven
Techniques and Annotations. The Journal of Universal
Computer Science, 14-8, pp.1344-67.

EPF, 2012. Eclipse Process Framework Project (EPF).
[Online] Available at: http://www.eclipse.org/epf/
[Accessed 27 January 2012].

Kang, K. C. et al., 1990. Feature-oriented domain analysis
(FODA) feasibility study. SEI.

Kästner, C., 2010. Virtual Separation of Concerns:
Toward Preprocessors 2.0. Magdeburg, Germany:
Dissertation, Otto-von-Guericke-Universität.

Kästner, C. & Apel, S., 2008. Integrating Compositional
and Annotative Approaches for Product Line
Engineering. In GPCE Workshop on Modularization,
Composition and Generative Techniques for Product
Line Engineering (McGPLE). Passau, Germany, 2008.
University of Passau.

Kästner, C., Apel, S. & Kuhlemann, M., 2008. Granularity
in software product lines. In ICSE., 2008.

Martínez-Ruiz, T., García, F., Piattini, M. & Münch, J.,
2011. Modelling Software Process Variability: an
Empirical Study. IET Software, 5 (2), pp.172-87.

Pohl, K., Böckle, G. & Linden, F. v. d., 2005. Software
product line engineering: foundations, principles, and
techniques. Berlin, Germany: Springer-Verlang.

Rombach, H. D., 2005. Integrated Software Process and
Product Lines. In ISPW. Beijing, China, 2005.
Springer.

Simidchieva, B. I., Clarke, L. A. & Osterweil, L. J., 2007.
Representing Process Variation with a Process Family.
In ICSP. Minneapolis, MN, USA, 2007. Springer.

Simmonds, J. & Bastarrica, M. C., 2011. Modeling
Variability in Software Process Lines. Santiago, Chile:
Universidad de Chile.

Ternité, T., 2009. Process Lines: A Product Line
Approach Designed for Process Model Development.
In 35th Euromicro Conference on Software
Engineering and Advanced Applications. Patras,
Greece, 2009. IEEE Computer Society.

Washizaki, H., 2006. Building Software Process Line
Architectures from Bottom Up. In PROFES.
Amsterdam, The Netherlands, 2006. Springer.

Modularizing�Software�Process�Lines�using�Model-driven�Approaches�-�A�Comparative�Study

125

