
An Outline of Development Process Framework for Software
based on Open-source Components

Jakub Swacha, Karolina Muszyńska and Zygmunt Drążek
Institute of Information Technology in Management, University of Szczecin, Mickiewicza 64, 71-101 Szczecin, Poland

Keywords: Open-source Software, Software Adaptation, Development Methodology.

Abstract: The open-source community produces a wide range of software products every year. However, there are
often significant differences between the set of functionalities and/or non-functional requirements demanded
by the end-users and what the available software offers. Therefore, often an open-source system cannot
simply be adopted; it has to be adapted. In this paper we propose a new process framework for adapting
open-source software. We call it FEChADO which is an acronym of the six steps it consists of: Find
available solutions, Evaluate solutions from the list, Choose the most appropriate solution, Adapt the
solution, Develop new modules, Obtain users’ feedback. The framework is a direct result of our practical
experiences from developing software based on open-source components.

1 INTRODUCTION

1.1 Motivation

The open-source software (OSS) becomes
increasingly popular and open-source solutions can
be found for many applications. However, ready-
made open-source solutions rarely fully meet the end
users’ requirements. Therefore, most of them require
adaptation in order to make the users satisfied.

Although there is vast literature on software
development process, and significant literature on
selecting open-source software (to be discussed in
section 2), until now little has been written on the
process of developing software based on open-
source components, where it is important both to
choose the most appropriate existing solution and to
adapt it to the requirements of the specific end users.

1.2 Problem Setting

We understand adapting OSS as tailoring it to the
needs of a specific end-user or a group of them. The
permission for users to modify code for private
purposes is a core property of the open-source
software. Such modifications are rarely useful for
other users, so usually there is no reason for further
redistribution of the modified software, and the
relevant license requirements do not matter.
Otherwise, contributing it to the community should

be considered with all such requirements met.

1.3 Approach

We assume open-source software adaptation to be a
repeatable process, hence a framework can be
defined for its efficient execution. Such a framework
could be based on theoretical inference starting with
requirements, or obtained by generalization of
practical experiences. We chose the latter and use
observations made during our involvement in OSS
adaptation projects (see, e.g., Swacha et al., 2011).

We consider six main stages that form the
development process framework, describing an
exemplary method of their implementation. The
proposed framework can be seen as high-level and
flexible as it does not enforce a specific method for
any of the stages; any method is suitable for use
provided it accepts the available inputs and produces
the required outputs.

1.4 Contributions

Our main contribution is the development process
framework that can be used in various organizations
for adapting open-source software.

2 RELATED WORK

Before formulating the proposed process framework

183Swacha J., Muszyńska K. and Drążek Z..
An Outline of Development Process Framework for Software based on Open-source Components.
DOI: 10.5220/0004005001830186
In Proceedings of the 14th International Conference on Enterprise Information Systems (ICEIS-2012), pages 183-186
ISBN: 978-989-8565-11-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

numerous research findings, existing solutions and
scientific papers were verified and examined.

The QSOS method for qualification and selection
of open source software (Atos Origin, 2006) is
performed in four stages: definition of frames of
reference, evaluation of software by identifying its
main characteristics, defining its functional coverage
and risks, qualification of the software using filters
to translate needs and constraints to the selection of
most suitable solution, and selection of software
based on the outputs of the previous stages.

M. Cabano et al. (2007) based their context
dependent evaluation methodology on common
structural pattern shared by most widely known
evaluation models like Open Source Maturity Model
by B. Golden (2005), or Business Readiness Rating
for Open Source by Carnegie Mellon West and Intel
(OpenBRR, 2005). The assessment process of the
context dependent methodology is composed of:
context analysis, preliminary selection, and filtered
selection.

R. Galoppini (2011) in his pragmatic
methodology, indicates the best sources to find OSS
and lists evaluation criteria to be applied.

Open-source software evaluation process
described by D.A. Wheeler (2011) consists of four
steps: identify candidates, read existing reviews,
compare the leading programs’ attributes to the
needs and analyze the top candidates in more depth.

A bit different approach, which concentrates on
the software quality is described in a paper by G.
Polancic et al. (2004). It is based on multiple criteria
of quality, that can be checked using accessible
quantitative data.

The main goal of the abovementioned OSS
evaluation methods and frameworks is to identify,
assess, sometimes also compare, and select open
source products. The proposed FEChADO
framework concentrates on software development
process based on existing OSS components, it
assumes that the OSS evaluation process must be
followed by additional adaptation and development
phases.

3 FEChADO FRAMEWORK

We call our process framework FEChADO which is
an acronym of the six steps it consists of (see Fig. 1).

 Find available solutions
(specify requirements & list candidates)

Evaluate solutions
(specify criteria, filter & rank candidates)

Choose the best solution
(discuss & choose)

Adapt the selected solution
(core + add-ons + modifications)

Develop new modules
(develop & possibly publish)

Obtain users’ feedback
(ask & improve)

Figure 1: Overview of the FEChADO framework.

3.1 Stage 1: Find Available Solutions

Phase 1.1: Specifying Requirements. In the first
step, the set of functionalities and non-functional
requirements of the end-users has to be defined.

If the general description of the software fits into
an established software category, a list of suggested
requirements may be composed, based on
characteristics of software belonging to that
category. Otherwise, a brainstorming session
involving both designers and users can be organized
to obtain such list.

This list is then used as a base for a questionnaire
to be filled in by the end users. They value each
proposal and are also asked for their own proposals
that were not mentioned in the questionnaire.

The results from the questionnaires are then
processed and analyzed in order to obtain a list of
requirements arranged in three groups: (1) core
requirements (that must be met), (2) additional
requirements (that should be met), (3) special
requirements (that only specific types of end users
believe should be met). The list is then presented to
the end users for correction and re-evaluation.

Phase 1.2: Listing available Solutions. There
are various sources that can be searched for
solutions that possibly match the specified
requirements (see, e.g., Golden, 2005). We
recommend starting with searching open source
project portals, such as sourceforge.net and
freecode.com, as well as using web search engines.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

184

Multiple search phrases should be tried, as different
words may be used to describe equivalent
functionalities. The search should be continued until
no more matching solutions can be found.

3.2 Stage 2: Evaluate found Solutions

Phase 2.1: Specifying evaluation Criteria. The
evaluation criteria are specified by assigning
measurable fulfilment levels to the requirements.
Every criterion should have at least one defined
fulfilment level: acceptable; that is, solutions
evaluated below this level must not be chosen.
However, there could be more levels defined, so that
solutions that pass the acceptable level could be
compared between each other. A satisfactory level
can be defined, such that no solution can be
evaluated as better with regards to a given criterion
if they both attain this level.

The evaluation criteria can be grouped,
depending on their measurability, into: (1) objective
and easily measurable, (2) objective and not easily
measurable, (3) subjective.

The weights of criteria may be established using
a simple ranking done by end users, or using more
sophisticated approaches, like pair-wise comparisons
(see, e.g., the AHP method – Saaty, 1980).

Phase 2.2: Preliminary evaluation. The goal of
the preliminary evaluation is to shorten the candidate
list by removing software that does not attain
acceptable level for criteria based on the core
requirements. In this phase only objective and easily
measurable criteria should be considered.

Phase 2.3: Main evaluation. This phase starts
with eliminating software that does not attain
acceptable level for objective criteria (now also not
easily measurable) based on the core requirements.

Both the criteria fulfilment levels and criteria
weights are scaled and normalized, and then used to
construct an aggregate measure for each candidate
solution and group of criteria (core criteria,
combined core and additional criteria, and all
criteria). One or two highest-evaluated solutions are
chosen for each group of criteria.

Phase 2.4: In-depth evaluation. The goal of this
phase is to prepare full information that will be
considered for making the choice, including
subjective criteria. Evaluation is done by several
people, working as a team or independently – the
results are averaged in the second case. In contrast to
the two previous phases, the end users should be
involved in the evaluation.

3.3 Stage 3: Choose the Most
Appropriate Solution

Phase 3.1: Discussion of evaluation Results. A
meeting of the stakeholders should be organised that
starts with presentation of the evaluation results after
which every person should express their opinion and
provide additional information that could impact the
choice, e.g.:

 the end users should point to drawbacks or
special advantages of respective solutions,

 the invited experts should clarify, if the
mentioned drawbacks are specific to solutions,
or they are merely results of improper usage,

 the members of the development team should
declare if they are capable of fixing the
drawbacks, and what the cost would be ,

 the sponsors of the project should declare if they
will contribute necessary resources.
Phase 3.2: Making the Choice. The decision on

choosing the solution for adoption is made by the
sponsors of the project. It should be based on the
results of the evaluation process, but if two or more
solutions were evaluated closely, the decision
maker(s) should pick one of them using their own
opinion rather than the aggregated measure value.

3.4 Stage 4: Adapt the Solution

Adapting the solution consists of acquiring,
installing, and configuring the core solution, then the
required add-ons, and, finally, applying
modifications required for the solution to meet the
requirements.

What makes the modifications applied at this
stage distinctive from those of the next stage is that
they are aimed at the requirements of the specific
end user group, and as such they will rarely be
useful for other users, and that they are not usually
defined as a separate entity (module or even
function), being often a list of file/line updates.

Every modification made to the original solution
must be explained in the technical documentation of
the final product, in terms of its purpose, relation to
other modifications, assumed conditions and
possible risk factors. Regression testing should
assure that the modification does not hurt stability,
security or degrade performance of the system.

3.5 Stage 5: Develop New Modules

Sometimes, the modifications related to a certain
group of requirements can be implemented as a new
module for the chosen solution.

An�Outline�of�Development�Process�Framework�for�Software�based�on�Open-source�Components

185

Developing a module should be done keeping
straight with the guidelines defined in the solution’s
documentation. The new module should integrate
seamlessly with the solution, and be configurable,
preferably from the solution’s administration panel,
if such exists.

If the organization’s internal regulations permit,
and there are no redistribution constraints in the
license of the original solution that could be
violated, it should be considered to contribute the
module to the open-source community.

Having decided to publish the new module, it
should be pruned from elements that have any value
only for the sponsor’s organization. Depending on
the number and character of such elements, it may
be accomplished in three ways: (1) by turning the
adaptation elements into a profile of module
configuration settings, (2) by moving part of
functions to an additional module, only for internal
usage, (3) by forking the module into internal (full)
and external (limited) versions.

If the module published as open source gains
popularity, it may even attract external developers
who may improve it. In such case, it should be
checked if the improved version of the module could
be used instead of the one developed internally.

3.6 Stage 6: Obtain Users’ Feedback

It is important that the end users’ opinions on the
final product are gathered. The opinions that pertain
to the implemented modifications can be used by the
internal development team to improve them.
Contrasting opinions should be resolved via
discussion with the involved users.

The opinions that refer to the chosen solution
should be passed to its original developers,
especially bug reports and feature requests.

In order to facilitate the feedback process, a web
form should be made available for the end users, so
that their opinions could be reported easily.

4 PRACTICAL EXPERIENCES

The development process framework outlined in this
paper has been applied in a complex project
(Swacha et al., 2011), consisting of five components,
four of which were adaptations of open source
systems. The core of the framework was created
after developing the first component of the
mentioned project, and applied, in limited or full
extent, to the remaining ones. The development of
the framework was evolutionary: each application

resulted in experiences that allowed for further
improvement of the framework.

The framework has been positively evaluated by
the respective decision makers and developers.

5 CONCLUSIONS

We have outlined a framework for software
development process based on open-source
components.

The framework described in this paper can be
applied to any software development process that
involves OSS adaptation. It helps achieve quality of
the final products at the same time being simple and
non-obtrusive.

REFERENCES

Atos Origin (2006). Method for Qualification and
Selection of Open Source software, version 1.6.
Retrieved Feb 1, 2012 from www.qsos.org/download/
qsos-1.6-en.pdf.

Cabano, M., Monti, C., Piancastelli, G. (2007). Context-
Dependent Evaluation Methodology for Open Source
Software. In Feller, J. Fitzgerald, B., Scacchi, W. and
Sillitti, A. (Eds.), Open Source Development, Adoption
and Innovation (pp. 301–306). New York: Springer.

Galoppini, R. (2011). How to find an Open-Source
Alternative to a Commercial Software. Retrieved Feb
1, 2012 from http://www.masternewmedia.org/open-
source-software-tools-and-directories-where-to-find-
them-how-to-evaluate-them.

Golden, B. (2005). Succeeding with Open Source. Boston:
Addison-Wesley.

OpenBRR (2005). Business Readiness Rating for Open
Source. Retrieved Feb 1, 2012 from http://docencia.
etsit.urjc.es/moodle/file.php/125/OpenBRR_Whitepap
er.pdf.

Polancic, G., Horvat, R. V., Rozman, T. (2004).
Comparative assessment of open source software
using easy accessible data. In Luzar-Stiffler, V. and
Dobrić, V. H. (Eds.), Proceedings of the 26th
International Conference on Information Technology
Interfaces (pp. 673–678). Zagreb: IEEE.

Saaty, T. L. (1980). The Analytic Hierarchy Process. New
York: McGraw-Hill.

Swacha, J., Muszyńska, K., Komorowski, T. and Drążek,
Z. (2011). Development and maintenance of a multi-
lingual e-Tourism website on the example of
BalticMuseums 2.0 Online Information Platform.
Information Management, 3, 237–246.

Wheeler, D. A. (2011). How to Evaluate Open Source
Software / Free Software (OSS/FS) Programs. Retrie-
ved Feb 1, 2012 from http://www.dwheeler.com/oss
_fs_eval.html.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

186

