Keywords:

Abstract:

SNMPFS
An SNMP Filesystem

Rui Pedro Lopes'?, Tiago Pedrosa? and Luis Pires!
Lpolytechnic Institute of Braganga, Braganca, Portugal
Z|EETA, University of Aveiro, Aveiro, Portugal

Network Management, SNMP, File system.

The intensive operation of constantly growing, heterogeneous networks is a challenging task. Besides the
increase in size and complexity, data networks have become a critical factor for the success of many organi-
zations. During the last decade, many network management architectures where developed and standardized,
aiming at the definition of an open environment to control and optimize its operation. Many of these archi-
tectures use specific protocols and specialized tools, to allow remote monitoring and configuration of network
equipment and computational platforms.

One of the best well known paradigms of human-computer interaction is the file concept and the associated
file system. Files have been around since early days in the personal computer industry and users are perfectly
comfortable associating the work produced in applications to be stored in medium.

In this paper we propose a file system interface to network management information, allowing users to open,

edit and visualize network and systems operation information.

1 INTRODUCTION

A file system is a database typically storing large
blocks of information. The information is stored in
the form of files, structured as a hierarchy of directo-
ries. Each entry in the file system, including directo-
ries and files, is characterized by a limited group of at-
tributes (instant of creation, instant of the last access,
instant of the last change, permissions, owner, group).
This paradigm is, perhaps, one of the best well known
mechanism for storing information, available in sev-
eral operating systems as well as in some embedded
devices, such as PDAs, mobile phones and even digi-
tal cameras.

Usually, files are stored locally in persistent mem-
ory, such as hard-disks or memory cards. It is also
common, particularly in enterprises, to use network
file systems to store files in a remote server, accessed
through a special protocol like NFS (Shepler et al.,
2000) or SMB. In this situation, the network server
exports part of the local file system to a set of selected
clients, allowing them to remotely access files and
directories. However, this centralized, single server
approach, suffers some scalability issues related to
throughput, capacity and fault tolerance.

Distributed file systems are designed to improve

66 Lopes R., Pedrosa T. and Pires L..
SNMPFS - An SNMP Filesystem.
DOI: 10.5220/0004003000660073

scalability and fault tolerance by transparently bal-
ancing the access between servers. It provides the
same view to every client and is responsible for main-
taining coherence of data through distributed locking
and caching (Ghemawat et al., 2003; Howard et al.,
1988; Anderson et al., 1996).

Yet another paradigm, cloud storage systems,
such as Dropbox!, transparently synchronize the lo-
cal copy of data with a remote datacenter, allowing
user access to personal and shared files anytime, any-
where.

Based on this paradigm, we considered the possi-
bility of accessing network management information
as a set of virtual file systems. Network resources,
usually accessed through SNMP (Harrington et al.,
2002), COPS (Durham et al., 2000), or other network
management protocol, are seen as remote shares, to
be mounted in a regular workstation file system and
the instrumentation and configuration information ac-
cessed as regular files.

The nature of the information as well as the pur-
pose of this SNMP File System (SNMPFS) is radi-
cally different from traditional distributed file systems
(DFS). This makes the current requirements different

Lhttp:/iww.dropbox.com

In Proceedings of the 14th International Conference on Enterprise Information Systems (ICEIS-2012), pages 66-73

ISBN: 978-989-8565-10-5

Copyright ¢ 2012 SCITEPRESS (Science and Technology Publications, Lda.)

of traditional DFS. First, distributed file systems are
used to store files belonging to one or more users. In
a network management scenario, the information is
generated both by network resources and users. The
former is used for instrumentation and the later is used
for configuration.

Second, the content of the majority of network
management backed files is constantly changing, be-
cause of the dynamic nature of network parameters.
As an example, consider a value representing the
number of transmitted packets or a value represent-
ing CPU load. In regular file systems, used to store
personal and application files, entries seldom change.
This allows better cache hit rates than in the former
situation.

Third, network management files are very small,
resulting from the parameters they represent. Fre-
quently, a single int is used and, some times, a small
table of values is sufficient.

Fourth, the whole SNMPFS is composed of several
network services and resources, such as routers, fire-
walls, web servers, and so on. Each resource exports
the information resulting from the instrumentation of
working parameters thus playing a part in a poten-
tially huge cluster of distributed file systems.

Fifth, faults are usually frequent, resulting from
connectivity problems, hardware failures, human ac-
tion and others. The system should cope with this
issues, by recovering when possible and replicating
when necessary.

2 FILE SYSTEM DESIGN

The goal of the SNMPFS is to unify around a unique
name space all of the enterprise network management
agents. For concept proving, we are using SNMP
agents, since they are common in organizations and
widely implemented by network devices. This ap-
proach allows integrating the tree of management ob-
jects of distinct SNMP agents in a single file system.
Resuming, the goals of this approach are the follow-
ing:

allow the use of simple files and directories han-
dling tools (cd, cp, cat, ...);

allow to consult and change the values through
simple tools (file redirection, text editors);

allow the creation of pipes:
cat sysUpTime j toxml j mail --s
““sysUpTime”” admin@host.com;

allow using office tools, such as Calc or Excel, to
view and alter tabular information;

SNMPFS - An SNMP Filesystem

Workstation

APP APP APP APP APP APP

Virtual File System |

NTFS
SNMPFS SNMPFS SMB
SNMP SNMP SMB share
agent | agent

Network

Figure 1: SNMPFS global architecture.

allow reducing the complexity of the management
system.

The information generated by each SNMP agent
is accessed through a specific file system (SNMPES),
working as a gateway between the regular file opera-
tions (open, read, write, append, close, ...) and
SNMP commands (Figure 1).

As other file systems, like Server Message Block
(SMB), also known as Common Internet File Sys-
tem (CIFS), to access SMB (Windows) shares across
a network or NTFS for local storage, applications
access data through a uniform layer (VFS - Virtual
File System). Specific file system details are of the
responsibility of each file system technology (SN-
MPFES, SMB, NTFS and so on). As a result, all the
information is stored under the same naming tree.

2.1 Topology

The system topology is straightforward: on one side,
several SNMP agents, associated with diverse enter-
prise resources; on the other side, one or more work-
stations mount the agents’ information through the
SNMPFS (Figure 2).

Figure 2: Simplified topology.
It is possible that two or more workstations mount

the same agents in its local file system. For read oper-
ations this does not present any problem. However,

67

ICEIS 2012 - 14th International Conference on Enterprise Information Systems

for update operations it is possible that potentially
many processes try to change the same value.

2.2 Locking

In conventional distributed file systems, file locking
is essential for coordinating access to shared informa-
tion among cooperating processes. If multiple pro-
cesses are writing to the same file it is necessary
to regulate the access through some kind of locking
mechanism. In SNMPFS, locking is performed by the
agent, in accordance with the managed object defini-
tion, since SNMP agents may also be updated by net-
work management applications concurrently. Some
MIBs provide a mechanism to regulate concurrent ac-
cess. The Expression MIB (Kavasseri, 2000), for ex-
ample, has tables with a special column used to in-
stantiate the row — RowStatus (McCloghrie et al.,
1999b).

2.3 Security

SNMP is inherently insecure. Although true for the
versions 1 and 2¢, SNMPv3 present a modular se-
curity architecture based on cryptographic protocols
and algorithms. It is mandatory that SNMPv3 im-
plementations support the HMAC-MD5-96 protocol
for authentication. They can also support the HMAC-
SHA-96 for authentication and the CBC-DES for pri-
vacy (Blumenthal and Wijnen, 2002). More recently,
a new privacy protocol was added. (Blumenthal et al.,
2004) describes the Advanced Encryption Standard
(AES) for SNMPv3 in the SNMP User-based Secu-
rity Model which can be used as an alternative to the
CBC-DES.

The SNMPv3 security service provides data in-
tegrity, data origin authentication, data confidential-
ity and message timeliness as well as limited replay
protection. It is based on the concept of a user, identi-
fied by a userName, with which security information
is associated. In addition to the user name, an authen-
tication key (authKey) is shared between the commu-
nicating SNMP engines, ensuring authentication and
integrity. A privacy key (privKey), also symmetric,
ensures confidentiality.

Complementing the communication security, the
SNMPv3 model also provides access control through
a view-based access control model (Wijnen et al.,
2002). This model grants or denies access to MIB
portions (view subtrees) according to the predefined
configuration and the current user permissions.

The security details for SNMPv3, either for
authentication, integrity, confidentiality and ac-
cess control, dictates the security functions for the

68

SNMPFS. We have to pass to the file system the
authentication and the access control required by
the SNMP model. The authentication problem is
performed by the system when mounting the file
system. A similar approach is followed for NFS or
SMB shares:

mount -t smb //server/share /mnt -o
username=alser, password=xxx.

If the server recognizes the username and password,
the host is allowed to access the file system and a
user ID (uid) is associated with it.

Access control is enforced by file permissions. In
Unix, each file has a set of permissions (read, write,
execute) for the file owner, group and others. For ex-
ample, the permissions
-FWXF-X---
gives the owner the possibility to read, write and ex-
ecute the file, the group to read and execute and no
other user can read, write or execute.

SNMPFS translates each file permission to the
View-based Access Control mechanism of the SN-
MPv3.

2.4 Attributes

File system entries, such as files or directories, are
characterized by a set of attributes which describes
their fundamental aspects, such as size, date, permis-
sions, name and others. The name and number of at-
tributes is typically static, meaning that it is not pos-
sible to add or remove further information to each file
system entry latter on.

An attribute which is necessary to better describe
the data types and the structure of an SNMP agent is
the MIB tree it implements. The MIB tree is described
in a set of MIB files which contain each node name,
data type, restrictions and role. With this information,
the SNMPFS can present to the user a more meaningful
set of file names as well as file types (a table, a string,
an int, etc). In particular, this information is valuable
for tables, which the SNMPFS exports as Coma Sep-
arated Values (CSV) format and can be opened and
edited by a spreadsheet, such as Microsoft Excel or
OpenOffice Calc.

To be able to access the meta-information about
management data, the SNMPFS has the possibility to
load MIB files from a specific directory. This infor-
mation will allow the files to have a more meaningful
name as well as adapting the content to the nature of
the information it stores.

3 IMPLEMENTATION DETAILS

The SNMPFS implements a gateway between regular
file system access primitives and SNMP commands.
Generally, file systems are implemented at kernel
space, however, we chose to implement the file sys-
tem in userspace to facilitate the development and test
process. We used FUSE (FUSE, 2011), a stable and
well known API for file system development.

The SNMP information is somehow austere,
mainly because of the Object IDs (OIDs) that it uses
to identify each managed object. The OID is a se-
quence of integer values, separated by a ‘.’ (dot):
1.3.6.1.2.1.1.1.0. This sequence defines a path in the
agent’s tree of objects, referring to a specific value
(Figure 3). This path, for example, points to a specific
object, which refers to a value resulting from device
instrumentation.

i "Somewhere" | | 1234 |
TB50

Figure 3: Scalar values organization in the agent.

In Figure 3, for example, the OID 1.2.2.1 refers to
the lower left node in the tree. This node is associ-
ated with a specific value, a scalar, in this case, which
contains the string “Joe”. The scalar is viewed as an
additional node, a leaf, and is referred by adding a °.0’
to the OID.

Each object, the circles in the figure, has a set of
attributes or meta-information, which allows the user
to get the semantics of the value (what does “Joe”
stands for). The attributes, as well as the overall struc-
ture, is described in a file, called a Management Infor-
mation Base (MIB), which associates a descriptive,
meaningful, name to each object and further describes
the data type, access restrictions, OID structure and
others. From the user perspective, this also allows
mapping the sequence of integers to a short name: it

SNMPFS - An SNMP Filesystem

is easier to refer to each object by the short name,
instead of the OID (get sysDescr, instead of get
1.3.6.1.2.1.1.1.0).

After parsing the MIB files, the SNMPFS performs
this mapping, storing the meta-information to im-
prove the information provided to the user by the file
system. The OID in the sequence of integers format
will only be used when the MIB is not available.

3.1 The MIB Parser

As mentioned above, the MIB structure is important
to SNMPFS to provide a more useful and meaningful
view of the file system. MIB files are written in a
subset of the Abstract Syntax Notation One (ASN.1),
called “Structure of Management Information” (Mc-
Cloghrie et al., 1999a). The MIB must be parser so
that the tree, nodes, types and objects extracted. We
are using Marser (Marser, 2007), an API to parse SMI
(v1 and v2).

Moreover, the information from the MIB allows to
identify tabular information, which further helps the
file system to present the information to the user in
a more manageable way. In this case, tables will be
available is CSV format, allowing the user to read and
modify it using a spreadsheet application.

Tables are represented as a further extension to the
OID tree (Figure 4). As in the previous case, where
each scalar is retrieved from a leaf, tabular values are
retrieved from several leafs, hanging on the OIDs that
represent the columns (in the figure, the table is re-
ferred with the OID 1.2.3, which has the columns
1.2.3.1and 1.2.3.2).

fomm———m——————

192.168.1.1

1 192.168.100.254 |
192.168.64.12 r192.168.100‘253 |
193.136.34.10 r192.168.100.252 |

Figure 4: Tabular values organization in the agent.

One or more of the columns are the index, which

69

ICEIS 2012 - 14th International Conference on Enterprise Information Systems

allows to retrieve the rows in the table. So, to
get the first value of the table, it is necessary to
issue: get 1.2.3.2.192.168.1.1, which vyields
192.168.100.254.

3.2 Files

When dealing with agents with an unknown structure,
the user usually has to explore the management in-
formation tree, retrieving all the information that the
agent stores. This operation is called ‘walk’, because
it allows to visit all the places “hidden” in the agent.
The SNMPFS has a special file which allows doing pre-
cisely this. The file, called walk.txt, lists all the
managed objects retrieved as the result of a 'walk’
operation. By simply opening this file in a text editor,
the user will be able to immediately see the objects
the SNMP agent implements:

sysDescr;1.3.6.1.2.1.1.1.0

sysObject!D;1.3.6.1.2.1.1.2.0
sysUpTime;1.3.6.1.2.1.1.3.0

sysContact;1.3.6.1.2.1.1.4.0
sysName;1.3.6.1.
sysLocation;1.3.
sysServices ;1.3.
sysORLastChange ;
sysORID;1.3.6.
sysORID ;1.
sysORID ;1.
sysORID ;1.
sysORID ;1.
sysORID ;1.

W W www
o oo oo
o T T
I I I O i
PR R R R PR wR R e
PR R R RPR oD R
© ©©©©© ke o
PR R RERRNR PO
PR I I O O O
SO EwWNR B OO
®
)

With the information obtained in the file, the user
can configure the file system, describing which files
should be available and what is the name they should
have. The configuration is written is XML and de-
fine all the aspects of the file-system: the agent’s ad-
dress, access credentials, MIBs to load, which nodes
to show and where to mount:

<device name="device">
<mount dir="tmp” />

<mibs dir="../mibs/">
<mib file="SNMPv2 MIB”/>
<mib file="RFC1213 MIB"/>
<mib file="IF MIB"/>
</mibs>

<snmp address=7192.168.1.1" port="161"
version="v2c” community="public” />

<entries>
<scalar label="sysUpTime” />
<scalar label="sysDescr” />
<table label="ifTable” />
<table o0id=7.1.3.6.1.4.1.63.501.3.2.2"

70

file="myTable">

<col 0id=7.1.3.6.1.4.1.63.501.3.2.2.1.1" />
<col 0id=".1.3.6.1.4.1.63.501.3.2.2.1.2" />
<col 0id=7.1.3.6.1.4.1.63.501.3.2.2.1.3” />
<col 0id=".1.3.6.1.4.1.63.501.3.2.2.1.4" />
<col 0id=".1.3.6.1.4.1.63.501.3.2.2.1.5" />
<col 0id=".1.3.6.1.4.1.63.501.3.2.2.1.6" />
<col 0id=7.1.3.6.1.4.1.63.501.3.2.2.1.7" />
<col 0id=".1.3.6.1.4.1.63.501.3.2.2.1.8" />
<col 0id=7.1.3.6.1.4.1.63.501.3.2.2.1.9” />
<col 0id=".1.3.6.1.4.1.63.501.3.2.2.1.10" />
<col 0id=7.1.3.6.1.4.1.63.501.3.2.2.1.11" />
<col 0id=".1.3.6.1.4.1.63.501.3.2.2.1.12" />
</table>
</entries>
</device>

The previous configuration file will result in the
appearance of 5 files in the “tmp’ directory — two ta-
bles, two scalars and the -walk.txt (Figure 5).

) OSXFUSE Volume O (java)

? = m m|| = »
_wall:ixl ifTa t;;;.c_sv
m y_"l'acr:le._csv sysDescr
sysUpTime
5 items o —

Figure 5: Screenshot of an SNMPFS directory.

3.3 Values and Tables

Each file representing a scalar simply has to get the
value from the agent each time it is read. In the pre-
vious configuration file, the scalar ’sysUpTime’ and
’sysDescr’ show as files, containing the information
from the agent located in 192.168.1.1.

Tables, because of the tree like structure, require
more processing. The algorithm we follow is:

read configuratiom file;
for each entry
if is table
read columns;
if columns empty
read columns from MIB;
for each column
while has more leafs

get leaf;
store in row,column;
end;

The fetch of values and store in row and column
format allows to build the content around the CSV
format, that can be manipulated by a spreadsheet ap-
plication (Figure 6).

4 USE CASES

In system and network management, the administra-
tors are used to create scripts to automate some of the
typically repetitive and/or boring maintenance activ-
ities. Many of this scripts work by reading, writing
and updating configuration files, altering the way dae-
mons and services work (such as e-mail, HTTP, SSH,
...). The SNMPFS enables mapping SNMP informa-
tion to a file system structure, thus contributing to
the integration of monitoring, configuration and ac-
counting processes. In other words, the SNMPFS will
foster administrators to develop new tools easier and
to use the same tools in different scenarios because
of the transparency and integration of the file system
paradigm.

The extension of the file system with files re-
lated to instrumentation and configuration informa-
tion from network devices will further alleviate the
burden. By mounting several devices in the same file
system, where each directory represents a different
agent, enables the administrators to be able to make
queries or change values on all the equipment, just by
browsing the file system.

4.1 Monitoring

Monitoring operations require the user to retrieve,
process, analyse and visualize instrumentation infor-
mation. For example, several parameters can be
queried to get the status of remote hosts (Table 1).

Table 1: Monitoring examples.

Query Object Type
the number of users on a system hrSystemNumUsers scalar
the bytes transmitted ifInOctets;ifOutOctets table
the storage areas hrStorageTable table
the processor load hrProcessorLoad table

Other common operation is to build the topology
map of the network, representing the connections and
hosts structure. This is done with the help of the
IP forwarding table, maintained in the switches and
routers. Each table gathers the MAC addresses in
each port, allowing the correlation of addresses into

SNMPFS - An SNMP Filesystem

building a visual representation of the network topol-
ogy. By replicating this information (a simple copy
will do), will enable to create a view of the network a
specific times.

4.2 Configuration

One challenge on integrated management of networks
is how to apply policies that are transversal to more
that one equipment. The integration of several SNMP
agents in the same file system can enable the admin-
istrator to create sound scripts to apply the policy.

In complement to these use cases, one that is be-
ing currently addressed is the use of version control
systems for maintaining snapshots of SNMP agents’
configuration. Each type and version of equipment
has different ways for manipulating their configura-
tions, because of the MIBs they implement. With the
SNMPFS, administrators can make use of already ac-
cepted solutions for version control. A Distributed
Version Control, such as GIT? enables to have a mas-
ter repository for each agent as well as a local reposi-
tory in the management stations.

The first mount of the agent, a new repository is
created and the files are added, tagged as the initial
commit. This local repository is pushed to the mas-
ter repository, which will work as another, more gen-
eral, versioning peer. The master is configured for
post commit routines, that will update the directory
where the agent is mounted. The master will apply the
changes in the file system, configuring the equipment
accordingly and changing the properties that enables
the updated of the configurations. This enables that
different administrators can work on their stations us-
ing the repositories for changing configurations and
the push the configurations to the master that will
change the agents’ status. Moreover, using tags to
identify specific configuration versions allows to eas-
ily change form one configuration to another.

4.3 Scheduling Operations

Modern operating systems have tools that enables
users to schedule jobs (commands or shell scripts) to
run periodically at certain times or dates. One such
tool, popular un Unix-like operating systems, is cron,
used to automate system maintenance or administra-
tion. Proper configured cron jobs allows to activate
some options at some time on agents, for example, to
shutdown several devices at a specific time. More-
over, it also allows to watch files for specific val-
ues for, for example, triggering some configuration
change or event (send emails, executing commands).

2http://git-scm.com/

71

ICEIS 2012 - 14th International Conference on Enterprise Information Systems

Fle Edit View Insert Format Tools Data Window Help X
1 A g) 7 S| L Z) »
e a? | »- L= s wﬁ’g@ L R 4 Gz A i_' -
= I 1T 1 = = = = 2
1 [albary aMT ~w [~ B)Y g T 5 E 5| %) 123 o0 og i
(a1 v | fod, E = |ifindex
A | B [c]o][E] F G H | I] (~]
1 |[findex [fDescr iType fhty [WSpeed fPhysAddress fAdminStatus fOperStatus [flastChange |[finC ctets rrInUcastF'kts
2] 24|/ 16436 10000000 1 10000000 (216774503 1242452
3 2 ethd B 1500 10000000/00:08:0c:11:h2:d3 1 1/0:00:00.00 19236?45 4029
4 3wilan B 1500 10000000{00:13:ce:706:15 2 2/0:00:00.00 58587
2
o]
7
8 1 e
Sheet1 =4 . _ |
Sheet 1 /1 DefaLlt 20% STD Sum=0
Figure 6: Editing the ifTable with a spreadsheet.
5 CONCLUSIONS REFERENCES

Accessing and updating information is a frequent op-
eration in virtually any activity. Because of the evolu-
tion of computing platforms, the electronic informa-
tion is associated with the concept of files, residing
in a generic storage mechanism. Usually, the files
are updated by general use applications, such as of-
fice suites or drawing editors. Often, the content is
in plain text, allowing standard editors to retrieve and
update the information.

Because of the ubiquity of files, modern operat-
ing system have an extensive set of tools to deal with
the maintenance of files, such as renaming, creating,
copying, backing up and restore, and so on. In en-
terprises, work files are typically stored in network
storage, made available through a virtual file system
in local desktop computers.

Network and system management (NSM) is a ma-
jor concern for maintaining the system in good work-
ing conditions. Many of the tasks involved in NSM
require monitoring and updating information result-
ing from instrumentation procedures in applications,
services and equipment. The paradigm in traditional
NSM models rely on client-server protocols, through
special purpose applications.

The SNMPFS, proposed in this paper, integrates
network devices, applications and service manage-
ment in a common platform and paradigm — the file
system. In this way, network management operations
can benefit from the existing powerful operating sys-
tem tools to monitor, update instrumentation, config-
uration and monitoring information.

72

Anderson, T. E., Dahlin, M. D., Neefe, J. M., Patterson,
D. A, Roselli, D. S., and Wang, R. Y. (1996). Servless
network file systems. ACM Transactions on Computer
Systems, 14(1):41-79.

Blumenthal, U., Maino, F., and McCloghrie, K. (2004). The
Advanced Encryption Standard (AES) Cipher Algo-
rithm in the SNMP User-based Security Model. RFC
3826 (Proposed Standard).

Blumenthal, U. and Wijnen, B. (2002). User-based Security
Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3). RFC 3414 (Stan-
dard).

Durham, D., Boyle, J., Cohen, R., Herzog, S., Rajan, R.,
and Sastry, A. (2000). The COPS (Common Open
Policy Service) Protocol. RFC 2748 (Proposed Stan-
dard). Updated by RFC 4261.

FUSE (2011). Filesystem in userspace.
fuse.sourceforge.net.

Ghemawat, S., Gobioff, H., and Leung, S.-T. (2003). The
google file system. Technical report, Google.

Harrington, D., Presuhn, R., and Wijnen, B. (2002). An
Architecture for Describing Simple Network Man-
agement Protocol (SNMP) Management Frameworks.
RFC 3411 (Standard).

Howard, J. H., Kazar, M. L., Menees, S. G., Nichols, D. A.,
Satyanarayanan, M., Sidebotham, R. N., and West,
M. J. (1988). Scale and performance in a distributed
file system. ACM Transactions on Computer Systems,
6(1):51-81.

Kavasseri, R. (2000). Distributed Management Expression
MIB. RFC 2982 (Proposed Standard).

Marser (2007). Marser - a mib parser.
marser.sourceforge.net.

McCloghrie, K., Perkins, D., and Schoenwaelder, J.
(1999a). Structure of Management Information Ver-
sion 2 (SMIv2). RFC 2578 (Standard).

http://

http://

McCloghrie, K., Perkins, D., and Schoenwaelder, J.
(1999b). Textual Conventions for SMIv2. RFC 2579
(Standard).

Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,
Beame, C., Eisler, M., and Noveck, D. (2000). NFS
version 4 Protocol. RFC 3010 (Proposed Standard).
Obsoleted by RFC 3530.

Wijnen, B., Presuhn, R., and McCloghrie, K. (2002). View-
based Access Control Model (VACM) for the Simple
Network Management Protocol (SNMP). RFC 3415
(Standard).

SNMPFS - An SNMP Filesystem

73

