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Abstract: This article is concerned with the solution of the SLAM (Simultaneous Localization And Mapping) problem 

in an indoor environment using a low-cost mobile robot that autonomously explores the environment. The 

robot was constructed with a distance measurement subsystem composed of three types of sensors: a 

wireless webcam with a laser pointer (a visual sensor), two infrared sensors and an ultrasonic TOF (time-of-

flight) sensor. Firstly, an algorithm that requires a small computational load is used to fuse the noisy raw 

data acquired by these sensors and generate the environment features. These features are then used by a 

particle filter to solve the SLAM problem. An autonomous feature-based exploration algorithm was 

implemented and is also presented. The results obtained in the experiments carried out in two small indoor 

environments show that the estimated environment map generated when the robot uses the autonomous 

exploration algorithm is very similar to the one generated when the robot poses were manually chosen. 

1 INTRODUCTION 

Nowadays it is highly desirable that a mobile robot 

is able to navigate in an unknown environment 

autonomously, which means that the robot needs to 

construct a map of the environment and at the same 

time locate itself within this map, a problem 

commonly referred as SLAM (Simultaneous 

Localization And Mapping) in the robotics literature. 

Three software modules, which run in a 

cooperative form, were used (Figure 1): a) a sensor 

data fusion algorithm; b) an autonomous feature-

based exploration algorithm; and c) a version of 

particle filter (Rao-Blackwellized). The two first 

modules were developed by the authors and are the 

main contributions of this article. 

The robot, which was designed and built by the 

authors of this article, named SLAMVITA (final 

cost around US $ 2,100.00) employs three types of 

sensors: a wireless webcam with a laser pointer (a 

visual sensor), two infrared sensors and an ultrasonic 

TOF (time-of-flight) sensor or sonar. An algorithm 

was developed to transform the noisy data acquired 

by these sensors into features that geometrically 

represent the environment (walls). 

A    particle    filter    algorithm,   known  as Rao- 

 

  

Figure 1: Algorithm modules to solve the indoor SLAM 

problem.  

Blackwellized or FastSLAM (Huge and Bailey, 

2006), was implemented based on a proposal by 

(Thrun et al., 2005) which was modified to use the 

odometry motion model, such that the outputs of the 

encoders were computed as control information. 

This algorithm simultaneously estimate the robot 

poses and the environment map in solution of 

SLAM problem. 

The autonomous exploration algorithm is 

structured as rules to perform two basic tasks: a) to 

decide the best target to explore in the environment 

in an incremental way; and b) to decide when to 

finish the exploration task. 

This article is organized as follows. Section 2 

introduces the SLAM problem and the approaches 

used to solve it. In Section 3 the proposed sensor 

data fusion algorithm is presented and shows the 
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results of a simple experiment which was designed 

to measure its accuracy for environment mapping. 

Section 4 explains the autonomous exploration 

algorithm. Section 5 presents the experiment results 

obtained by the solution for the SLAM problem with 

and without using the proposed autonomous 

exploration algorithm in a small indoor environment. 

The same Section shows that the proposed solution 

fails if the raw data of any two SLAMVITA robot 

sensors are used by the fusion algorithm. 

2 SLAM PROBLEM OVERVIEW 

Some approaches employed to solve the SLAM 

problem were obtained using different techniques, 

such as fuzzy logic (Huge, 2001; Aguirre and 

Ganzález, 2002), artificial neural networks (Thrun, 

1993), and the Dempster-Shafer theory 

(Milisavljević, Bloch and Acheroy, 2008). However, 

most of the literature employs the so-called 

probabilistic SLAM solutions (Thrun, Burgard and 

Fox, 2005), using different combinations of sensors, 

such as laser scanner and CCD camera (Castellanos, 

et al., 1998) or two sonars and six infrared sensors 

(Vazquez and Malcolm, 2005). Many other sensor 

combinations may be found in the literature. 

Figure 2 shows a graphic representation of the 

two main forms of probabilistic SLAM problems 

(Thrun et al., 2005): online SLAM and full SLAM. 

In the solution of the SLAM problem the robot poses 

and environment map are unknown estimated 

variables (X and m, respectively) that must be 

computed at every time step t, and the accuracy of 

one variable is important to best estimate the other. 

This fact is referred in the literature as the “chicken 

and egg” problem. 

This article uses a version of a particle filter 

known as Rao-Blackwellized or FastSLAM, where 

samples (particles) are employed to hold hypothesis 

of the robot poses along the EKF (Extended Kalman 

Filter) to estimate each feature extracted by the 

proposed sensor data fusion algorithm. Moreover, 

the choice for FastSLAM version 1.0, instead of 

version 2.0, is due to the high quality odometry  

 

Figure 2: Forms of SLAM problems. 

(Thrun et al., 2005) shown by the SLAMVITA robot 

in the experiments. 

3 PROPOSED SENSOR DATA 

FUSION ALGORITHM 

A single sensor hardly ever can provide enough 

information about the environment because of its 

limited field-of-view. The solution to overcome such 

shortcomings requires the use of two or more 

sensors whose information must be fused. Three-

level architecture for robot sensor data fusion is 

presented by (Visser, 1999) in which three methods 

of data fusion may be applied: a) cooperative; b) 

competitive; and c) complementary. 

The proposed sensor data fusion algorithm only 

uses competitive and complementary methods. In a 

competitive fusion each sensor produces its own 

estimated parameters, which are combined to 

generate a single set of parameters (in this case, the 

distance and the angle of the measured object). An 

example of competitive fusion occurs when the 

visual and infrared sensors measure the same object 

in the environment. Complementary fusion is 

applied when each sensor has only partial 

information about the environment. It aims to 

overcome the incompleteness of sensors being a 

classical example the array of several sonars 

attached around a mobile robot. 

 

Figure 3: Measurement parameters (d, Ɵ) provided by the 

SLAMVITA sensors: (a) visual, (b) sonar and (c) infrared. 
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The SLAMVITA sensors are assembled on a 

panning turret located at top of the robot (Figure 3). 

The turret and the robot vertical axis are aligned and 

the turret can be turned around its axis to execute an 

180° scan procedure. 

The parameters supplied by the sensors are the 

distance (d) and angle (Ɵ) of the object measured 

(details in Figure 3). These sensors were chosen in 

function of the complementary information provided 

by them. Due to their operating principles, the visual 

and infrared sensors provide reliable directional 

information (angle of the object), while the sonar is 

mainly a distance sensor, because of its accuracy in 

distance measurement (Ivanjko et al., 2009; Vazques 

and Malcolm, 2005). 

The visual sensor employed in SLAMVITA 

robot uses active triangulation with calibration 

targets proposed by (Nguyen and Blackburn, 1995) 

and has never been used in the robotic literature for 

mapping purpose. The operating principle (laser 

center on image calculated in subpixel resolutions) 

and experimental results performed in distance 

measurements by the visual sensor are presented in 

(Buonocore et al., 2010). 

The proposed sensor data fusion algorithm is 

informally described next to facilitate its 

comprehension, which flowchart is shown in Figure 

4. It is based on the following considerations: 

 It is assumed that the robot environment is 

composed of walls (they are always orthogonal  

 

Figure 4: Flowchart of the proposed sensor data fusion 

algorithm. 

to the floor but not necessarily to each other), 

and these walls can have openings (such as 

doors). Most structured indoor environments are 

composed by walls, doors, etc. that may be used 

as line segments into a compact map 

representation (Yap and Shelton, 2009). 

 The occupancy grid (OG) and feature-based 

mapping techniques are employed to represent 

the environment in two dimensions. 

 The RANSAC algorithm (Zuliani, 2009) is used 

to extract straight line segments from the 

directional (visual and IR) maps. 

 The sonar measurements available in OG map 

(OGs) and in its vector raw data are used to 

eliminate noises in the directional OG maps and 

to adjust the feature distances in the directional 

fused feature-base map, respectively. 

 The distance parameters in the visual and IR 

sensors are considered to have the same weights 

to compute the straight line segments to be fused. 

The input data (ID) shown in Figure 4 are the 

distance/angle contained in each sensor raw data 

acquired in an 180
o
 scan, at each robot pose, with 

1.8
o
 angular resolution. The algorithm generates the 

features extracted (output data, OD) as parameter-

zed lines. The proposed fusion algorithm is com-

posed by 4 specific algorithms and 3 fusion rules. 

These rules (R1, R2 and R3) implement the data 

fusion method while the specific algorithms (A1 to 

A4) prepare the data to feed the rules. The pseudo-

codes for these procedures are available at ftp: 

//labattmot.ele.ita.br/ele/luciano/My_Publications. 

The basic concept in R1 rule is as follows: no 

object detected by the sonar cone must be perceived 

by the other two directional sensors. The application 

of R1 rule justifies the use of the OG representation, 

where the inverse sonar model is employed (Thrun 

et al., 2005). Due to the surface reflection that is not 

normal to the sonar acoustic wave, the sonar raw 

data must be pre-processed before being employed 

to remove these wrong data, keeping only those ones 

that mainly reveal the true RCD (Region of Constant 

Depth), reporting for walls in the environment 

(Pandey et al., 2007). 

To extract line segments from directional maps, 

the proposed algorithm converts the OGv and OGir 

internal representation (after applying R1 rule) to x-y 

coordinates, which are held in separated vectors. 

Then, the RANSAC method is used in A4 algorithm 

to extract straight line segments (features) from 

those vectors, one map at a time. For each 

directional    map,   the   A4   algorithm  performs an 

interpretation    on    the    data   vector  to break it in 
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Figure 5: Comparison between OG maps computed from 

each sensor raw data and one generated by the proposed 

fusion algorithm. 

segments that have significant variance in its data 

that point to different straight line slope or also gaps 

that may appear between line segments 

(environment openings). All vector segments are 

submitted to RANSAC trying to extract straight 

lines that represent the section features of the 

processing directional map. 

The line segments extracted for each map are 

combined in R2 rule, applying competitive or 

complementary method. The competitive fusion is 

selected if both sensors have data at specific angular 

area. Otherwise, the complementary fusion takes 

place, such as the case in which the visual sensor is 

unable to define the laser spot at the camera image. 

The R3 rule adjusts, if possible, the feature 

distances of the fused directional map (after 

applying R2 rule), searching for RCD in the angular 

area that contains the normal straight line of each 

feature in the map. Whenever the RCD is found, the 

feature distance is adjusted using the sonar 

measurement (RCD distance). 

Figure 5 shows the geometrical representation of 

the actual environment (photo), which in comparison 

with each OG sensor map is more consistent and 

noise free. The error obtained in this mapping 

experiment was less than 1.5%. It is important to 

notice that the map constructed in this experiment is 

represented as full OG maps, instead of feature-base 

ones. However, in SLAM applications, the features 

for each robot pose must be processed and the 

environment representation outputted by the 

algorithm changed to feature-based map because of 

its computational cost in the particle filter. 

4 AUTONOMOUS 

EXPLORATION ALGORITHM 

The robot ability to explore an environment without 

human intervention ensures its real autonomy. The 

proposed sensor data fusion algorithm is nicely 

complemented by an autonomous exploration 

algorithm that uses the same environment map 

representation. The autonomous exploration 

algorithm developed in this article, from now on 

denoted by AEA, is based on concepts presented by 

(Newman, Bosse and Leonard, 2003) where 

hallways were mapped using two basic action 

criteria: a) goal generation and b) goal selection. 

Other concepts, such as visibility evaluation, were 

regarded in the AEA implementation. 

It is important to note if no feature is extracted 

for a specific robot pose, the uncertainty in the 

estimated robot pose by the particle filter increases. 

The AEA deals with this case by using incremental 

exploration, avoiding the space-free analysis 

approach (e.g., Voronoi diagrams). 

Figure 6 shows the flowchart of the proposed 

AEA. In the proposal presented in this article, only 

local context is relevant for the goal chosen, while in 

(Newman, Bosse and Leonard, 2003) local and 

global context are considered to goal selection. In 

the proposed AEA switching from local to global 

context is necessary only to define the goal that is 

located in the environment opening, which allows 

the robot to reach the selected global goal. This 

modification is necessary because the SLAMVITA 

robot must acquire the sensor measurements when it 

is stopped, after executing the movements between 

consecutive poses. Local to global context switches, 

such as presented in (Newman, Bosse and Leonard, 

2003) would cause a large increase in the time 

necessary to finish the exploration task. In other 

words, the goals reached by the SLAMVITA robot 

are localized either locally (local context) or in an 

environment opening (global context evaluated). 

Besides the definition of the best goal to explore 

in the environment, another important resource that 

the AEA performs is the decision of finishing the 

mapping task. 
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5 EXPERIMENTS AND RESULTS 

Several experiments in distinct small environments 

were carried out, with or without AEA. In this 

Section, two of the experiments that use the same 

environment are presented, differing in the 

exploration forms (manual or autonomous). Figure 7 

shows the environment (8.8 m x 2.80 m or 24.64m
2
), 

where the two loops show the trajectory traveled by 

the robot when the exploration was manually 

planned. In this environment and with the robot 

starting at same pose, the second experiment was 

performed using AEA. 

 

Figure 6: Flowchart of the proposed featured-based 

Autonomous Exploration Algorithm (AEA). 

 

Figure 7: Indoor environment for the SLAM experiments. 

Figure 8(a) shows the estimated map with the 

robot poses manually planned, while Figure 8(b) 

shows the estimated map using AEA. Table I 

informs the quantitative absolute difference between 

the estimated and real robot poses relative to both 

experiments. Some important considerations that can 

be mentioned in the experiment results, shown in 

Figure 8(a, b) and Table I are: 

 

Figure 8: SLAM experiments with the robot using: (a) 

manually planned movements; and (b) autonomous 

exploration. 

a) The absolute differences between the estimated 

and real robot poses (ΔX, ΔY and ΔƟ) in both 

experiments are kept small, less than 2%. 

However, in some robot poses, mainly in the 

experiment with AEA, the difference increased 

up to 3.5% (e.g., poses 32 and 33). The reason 

for this is the accuracy of the features acquired 

in some estimated poses where the robot made 

its measurements, that is, they were not 

associated with the proposed AEA. 

b) The number of poses where the measures were 

taken is more than 50%, when using AEA (36 

poses). Six robot poses (from 26 to 31 in Figure 

8(b)) can be avoided, just evaluating the 

opening that has potential exploration to justify 

the movement of the robot to them. It is the 

case of two goals selected at environment 

opening in the experiment with AEA that led 

the robot to move in their directions. 

c) The path followed by the robot in the 

experiment with AEA is not based in loop 

closing. The criterion in AEA is based just in 

goal scoring (locally and environment opening, 

the last using a global context). 

d) The estimated maps for both experiments are 

consistent with the real environment contour for 

navigation  purposes. Some segments are out of 
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Table I: Absolute differences between estimated and real 
robot poses (ΔX and ΔY in cm, ΔƟ in degree). 

 Without AEA With AEA 

POS ΔX ΔY ΔƟ ΔX ΔY ΔƟ 

01 0.00 0.00 0.00 0.00 0.00 0.00 

02 0.00 0.00 0.00 0.00 0.00 0.00 

03 -1.00 -0.32 -2.00 0.51 0.15 1.85 

04 -2.48 4.52 0.00 0.84 -2.72 1.47 

05 -1.01 1.36 0.00 0.84 -2.72 1.42 

06 -1.65 0.44 0.00 -3.29 -5.23 1.00 

07 -3.33 0.81 -2.00 -0.21 0.85 2.98 

08 1.85 -1.51 -3.04 -0.21 0.85 3.58 

09 6.69 -1.63 0.00 -0.51 3.83 -1.85 

10 2.86 -2.26 0.00 1.94 1.97 0.24 

11 2.53 -0.20 -2.00 0.94 2.97 -0.24 

12 2.94 1.92 3.00 0.28 2.96 -2.15 

13 0.00 0.01 0.00 0.64 2.47 0.00 

14 -0.67 1.99 0.00 0.64 2.47 0.00 

15 -0.19 -0.70 -2.00 0.56 2.57 0.71 

16 0.97 -4.01 0.00 0.56 2.57 0.10 

17 2.86 -3.73 0.00 0.92 0.17 0.00 

18 4.72 -2.97 0.00 0.92 0.17 1.00 

19 4.50 -2.43 -1.00 2.36 3.77 3.03 

20 0.07 0.05 0.43 2.36 3.77 1.77 

21 -1.09 -0.04 -2.00 -1.76 4.84 2.99 

22 1.36 -3.61 -1.84 -1.76 4.84 2.93 

23    -2.39 2.91 3.12 

24    -2.39 2.91 0.27 

25    5.02 -1.83 0.99 

26    6.35 -1.50 -0.06 

27    4.44 -0.79 0.80 

28    3.51 -2.20 -0.80 

29    4.07 -4.05 3.39 

30    1.62 3.22 3.13 

31    -0.58 1.86 4.97 

32    2.19 10.89 2.34 

33    2.19 10.89 0.91 

34    0.94 9.74 0.00 

35    -1.43 7.67 0.99 

36    -1.43 7.67 0.72 

the actual environment area and others can be 

viewed more length than the respective walls 

inside the environment (Figure 8(b)). Once 

again, this is not associated to employing AEA 

and a possible solution to remove this mistakes 

is evaluating feature crossing (inside and on 

borders of the environment) based on the 

estimated robot poses. If the segment 

augmented in the feature crossing cannot be 

perceived in any estimated robot pose (border 

situations) or even if it occludes the previous 

ones that were viewed in other estimated robot 

poses (feature inside the environment), the 

feature excess may be removed accordingly. 

Although the estimated map without AEA 

(Figure 8(a)) presents to be closer to the actual 

environment than the one with AEA (Figure8(b)), 

the fundamental reason to use the SLAM solution 

with AEA approach is the robot´s autonomy, 

avoiding human interventions as much as possible. 

With some data produced in the experiment 

without AEA (robot commands and sensor raw data 

acquired in 22 position), one of the three sensors 

available in SLAMVITA was “withdrawn”, just not 

involving its data in the fusion algorithm. So, the 

data (commands and raw data of the two “remained” 

sensors) are used to verify if it is possible to validate 

the solution to SLAM problem. 

The experiments conducted for all combinations 

of two SLAMVITA sensors with the total features 

extracted by the proposed fusion algorithm 

considering the robot real poses are shown in Figure 

9(a), while the estimated map outputted by the 

particle filter after the first six poses are presented in 

 

Figure 9: (a) The total feature acquired by two 

SLAMVITA sensors for all real robot  poses; and (b) the 

estimated map by the filter until robot pose #6 (1-visual 

and sonar; 2- visual and infrared; and 3-infrared and 

sonar). (b) Just few poses were sufficient to show that the 

filter diverge for all cases. 

When using the infrared and visual sensors (case 

2, and so, not applying R1 and R3 rules) the overall 

features appears with some distortions of the real 

environment (Figure 9(a)), but with less feature 

mistakes related to the others sensors combinations. 

However, in all cases tested, the estimated map 

(Figure 9(b)) is not consistent with the real one. In 

the seventh robot pose the estimated and real ones 

presented larger difference, leading the filter to 
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begin diverge for all tested cases. These experiments 

cannot be made using AEA, because it is based in an 

incremental way which would lead the robot to 

collide with the walls in the environment. 

These experiments were important to show that 

the SLAMVITA sensors disposition in the panning 

turret and its simple types (visual, infrared and 

sonar) allow solving the SLAM problem using a 

low-cost mobile robot. 

The proposed solution presented in this article in 

comparison to others works that deal with indoor 

SLAM using low-cost mobile robot, such as 

presented by (Vazquez and Malcolm, 2005), does 

not have restriction to navigate the robot nearby the 

environment walls in function of the short 

measurement range of the infrared sensors to build 

the mapping environment. Moreover, only 4 sensors 

are employed in SLAMVITA robot, and due to 

theirs different principle of operations, the measure 

noises can be solved by the proposed sensor data 

fusion algorithm, mainly considering the 

complementary fusion method. This is the case were 

one of two directional sensor (vision or infrared) has 

not measures at a specific angular area of the scan. 

6 CONCLUSIONS  

The environment mapping is an important task for 

many purposes that the mobile robots might 

perform, normally requiring sensor data fusion. A 

mobile robot was constructed employing three 

different sensor types: visual (wireless camera and 

laser pointer), infrared (two units) and sonar. 

This paper presents the tests of three software 

modules that run in a cooperative way to solve the 

indoor SLAM problem: a) a sensor data fusion 

algorithm; b) a version of particle filter (FastSLAM 

1.0); and c) an autonomous featured-based 

exploration algorithm. 

The results experiments presented show that 

there are no significant differences when the 

environment exploration task is performed with or 

without autonomous exploration. In other word, 

choose better positions to acquire the environment 

measures are solved by proposed autonomous 

algorithm. The estimated maps constructed by the 

filter, which represent the environment, are 

consistent for robot navigation purpose. 

Currently the solution for a larger environment, 

around 80 meters in length with some loop situations 

is under development with satisfactory partial 

results. The experiments in larger environments aim 

to consistently validate all software modules 

developed in this research. Both the estimated poses 

and map must hold the consistency obtained in the 

experiments presented in this article. 

The main contribution of this research is to solve 

the indoor SLAM problem using a low-cost mobile 

platform that requires low computational load using 

the overall system intelligence running in a PC 

computer and embedded in the robot constructed 

with simplified hardware and software. 
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