
Improving Browser History using Semantic Information

José Sousa, Marco Pereira and Joaquim Arnaldo Martins
DETI - Department of Electronics, Telecommunications and Informatics, University of Aveiro,

Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
IEETA - Institute of Electronics and Telematics Engineering of Aveiro, University of Aveiro,

Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

Keywords: Web Browser, Web History, Semantic Web.

Abstract: Revisiting web pages is part of the routine of web browser users, yet the use of tools designed specifically
for this function is not widespread. In this paper we describe a browser extension called ”Rdfa History” that
attempts to improve the usefulness of the browser’s history list by enhancing it with semantic information (in
RDFa format) gathered from previously visited pages. The collected semantic information provides a richer
pool of information than the traditional time/url/title fields provided by browsers, allowing users to perform
queries not only by keywords but also by particular topics or entities that appear on previously visited pages.
This extension brings to user’s attention the usually invisible semantic web, and can be used both as tool that
aids to revisit pages as well as a tool that helps to discover new pages related with the ones previously visited.
It can also be used as a digital preservation tool that users can configure to collect and store history lists in
a personal digital repository in order to access them from different browsers or devices, as well as use the
history list as context provider for other documents that they might collect.

1 INTRODUCTION

For the majority of the population, using the In-
ternet is a synonym of web browsing. It is not a
stretch to claim that web browsing (for various pur-
poses) is the most common activity performed when
using a computer, both in number of browsing ses-
sions as in time spent. Multiple studies (Tauscher and
Greenberg, 1997), (Cockburn and Mckenzie, 2001),
(Herder, 2005) have shown that an important part of
the time spent browsing the web is not spent vis-
iting newly discovered pages but instead revisiting
those previously visited. There are several factors
that influence why a given page is revisited (Oben-
dorf et al., 2007), (Adar et al., 2009), (Kumar and
Tomkins, 2010): from the type of page to the expecta-
tion to find new content on the page or to the particular
navigation habits developed by each user.

With so many pages being revisited it would be
reasonable to expect that the tools browsers provide
to assist page revisits would be used often, yet as
another study found out, the browser history list is
hardly used, having originated only 0.2% of all page
requests (Weinreich et al., 2008). Furthermore, when
revisiting a web page users appear to either know the

URL, thus implying familiarity with the page itself
and being able to use another of the modern browser
page revisit helper, the URL auto-complete feature, or
to simply attempt to retrace the steps that lead them
to the intended page. This last scenario can result in
frustration if the user is unable to recall another page
to start the revisit process, or is unable to input (a rea-
sonably close to) the original query in the search en-
gine. This last scenario can result in frustration if the
user is unable to recall another page to start the revisit
process, or is unable to input (a reasonably close to)
the original query in the search engine.

The low use of browser’s history list can be at-
tributed to a combination of factors: the relative low
visibility of this feature contributes for some users not
being aware of its existence at all, and those who ac-
tually use it think of it as a tool of last resort that they
only use it if they are certain it will lead them to the
web page they wish to revisit (Obendorf et al., 2007).
Once the habit of not using in the history list settles
in, it is maintained even if the users switch browsers
and regardless of the history list features. If initially
history lists in browsers provided little more than a
linear list of visited pages (JasonSmith and Cockburn,
2003) sorted by access date (sometimes with precise

305Sousa J., Pereira M. and Arnaldo Martins J..
Improving Browser History using Semantic Information.
DOI: 10.5220/0003996603050311
In Proceedings of the 14th International Conference on Enterprise Information Systems (ICEIS-2012), pages 305-311
ISBN: 978-989-8565-11-2
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



Table 1: Comparison of browser’s history list features.

Se
ar

ch

Full-text ! ! # # !

URL ! ! ! ! !

Title ! ! ! ! !

Other # # ![1] ![2] #

So
rt

in
g/

G
ro

up
in

g Date/Time # ! # ! !

Date/URL ! # # ! #

Date/Title # # # ! #

Only Date ! # # # #

Only URL ! # # # #

Only Title # # # # #

Other # # # ![2] #
[1]Frequently visited URLs
[2]User defined tags.

time discarded) and page title or URL, nowadays they
are much more powerful, with default implementa-
tion on some browsers offering full text search of the
visited page’s contents, as summarised in 1. Being
able to perform full text searches in the contents of a
previously visited web page is an important step for-
ward to increase the odds a user has to find a specific
page, yet there are scenarios where it might fail to fil-
ter enough previously visited pages to be of any use.
Full text search might not even be helpful in scenarios
where the user remembers the topic of the page (or of
something in the page) he wishes to revisit, but not
any exact word contained in the page. To deal with
these scenarios we propose to enhance the history
list using semantic metadata in the RDF-in-attributes
(RDFa) format (Adida and Birbeck, 2008) collected
from the visited pages, a proposal implemented as an
extension to the Chrome web browser. We also pro-
pose to use this extension as an entry point to long
term browser history list preservation, using an hy-
brid local/cloud based personal digital repository that
extends the amount of browsing information stored
without affecting browser performance.

2 RELATED WORK

Supporting web page re-visitation is a research topic
that throughout the years has been approached from
two complementary perspectives: one attempted
to study browser user’s habits and create new re-
visitation tools to support their habits, while the other
attempted to improve the visibility and usefulness of
existing re-visitation tools. The work of (Kawase
et al., 2011) follows the first approach and introduces
PivotBar, a Firefox based toolbar that provides dy-
namic contextual recommendations. These recom-

mendations attempt to remind the user about previ-
ously visited pages (supplied by Firefox’s history list)
that might be related with the page currently being
visited and are selected using an algorithm derived
from the study of a set of browser users habits.

The work of (Shirai et al., 2006) introduces the
concept of history-centric browsing, which is sup-
ported by a tool (demonstrated in Internet Explorer)
that allows the user to obtain information about pre-
viously visited pages related with the current page.
Initially it displays an overlay near the top of the page
with three controls that can be used to obtain infor-
mation about previous visited pages using a temporal
criterion (like the one used in traditional browser his-
tory list), a url proximity criterion (that allows to track
down navigation within a given site) or a content simi-
larity criterion (based on similarity between the words
in the page title). Once the user chooses one of these
criteria a semi-transparent overlay is used to display
further informations, including thumbnail versions of
the previously visited pages. The use of page thumb-
nails is also proposed in the work of (Won et al., 2009)
as a way to improve the usefulness of traditional his-
tory lists. The work focused on increasing the visibil-
ity of the browser’s history list with the produced pro-
totypes being effectively an alternative implementa-
tion of this feature in the Firefox browser. One of the
prototypes addresses the scenario where users attempt
to retrace their steps using a search engine by display-
ing links to previously visited pages (along with their
thumbnails) near the top of the search engine results
page.

3 RDFa HISTORY EXTENSION

Semantic markup in its various forms (be it RDFa,
microformats (Khare and Çelik, 2006) or industry ini-
tiatives1) appears to have a slow yet steady increase
adoption rate, driven primarily by the need to op-
timise web pages for search engines’ ranking algo-
rithms (Davis, 2006), (Yu, 2011). When used, se-
mantic markup is an intrinsic part of a page’s un-
derlying code that is transferred to a user’s browser.
While some forms of semantic markup (such as the
correct use of header tags) have a direct visual im-
pact on the page’s presentation, most forms of seman-
tic markup are not directly used by web browsers.
These forms are silently ignored, and users are not
aware of the presence of extra information in the vis-
ited pages. We propose that instead of discarding
this extra information, a browser can use it to help

1http://schema.org/

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

306











 









 



 

 

Figure 1: RDFa history extension architecture.

users revisit pages by making it accessible in the con-
text of the browser’s history list. This has the ef-
fect of giving access to users to one of the criterion
search engines can use to discover web pages and to
allow users to actually discover related information
that they might have missed when a given page was
visited for the first time. In order to gather and ex-
pose semantic information we have created an exten-
sion for the Chrome web browser (whose architecture
can be seen in 1). Chrome extensions are bundles that
contain web pages, images and JavaScript code that
can be used to alter the behaviour of the browser and
have access to both browser specific and standard web
APIs. While Chrome extensions can use native code
(using NPAPI), the created extension avoids its use
in order to be a cross-platform extension. It should
also be noted that the created extension respects the
browser’s private mode (incognito mode) and does not
collect any information when the browser is used in
this mode. The extension also supports disabling his-
tory collection from local files, secure http addresses
or even individual pages.

To gather semantic information from visited pages
the extension injects in each page a content script to
access the page’s DOM. The content script uses a
modified version of W3C’s RDFa in Javascript library
(Adida et al., 2007) to extract semantic information in
the RDFa format. The extracted information is sent
to a background process (a background HTML page
that is never displayed to the user) that acts as a me-
diator and serialises requests from the content script
and user interface to an underlying indexed database
(Mehta et al., 2011). Using an indexed database
to store semantic information instead of a dedicated
triple store helps the extension to be self contained
by avoiding the need to use native code to communi-
cate with an external database, yet it also prevents the
extension from perform any reasoning over the col-
lected semantic data or the use of a semantic query
language such as SPARQL. The user interface has
four components: a button placed on Chrome’s main
user interface (2a), an omnibar (Chrome’s address
and search bar) integration module (2b), an options

page for extension configuration and the semantic his-
tory list page itself (2c). The button placed on the
user interface acts both as a non-intrusive indicator
that reports if the current page contains valid RDFa
(the number of statements found is shown in the but-
ton’s tooltip) and the status of the parsing/storage
of those statements in the indexed database; when
pressed it allows the user to perform quick searches.
The omnibar module is an alternative search method
that is activated (or suggested to the user) by typing
the string ”rdfa” in the address bar. This module is
able to provide suggestions (from the semantic his-
tory list) to users as they type, thus providing a more
”guided” approach to history search. The semantic
history list page is designed to mimic Chrome’s na-
tive history list while offering more focused query
options. While Chrome’s native history list is able
to perform a full text search and displays the results
sorted by date/time, forcing users that know the ap-
proximated time the page they want to revisit was ac-
cessed to manually search within the results, the ex-
tension’s history list allows users to specify the date
range where the search should be performed, as well
as fragments of the triples that might have been col-
lected. This means that a user can search for pages
that mention the title of a song without knowing the
exact song title or the artist that performs it, and ob-
tain as results pages containing song titles instead of
pages that have the word title in it.

When displaying results the extension attempts to
represent the vocabularies used in a human friendly
form. The vocabulary to which a term belongs is iden-
tified by an icon, the term description is highlighted
while the actual URI that identifies the term is down-
played (as seen in 2c). This representation is applied
to recognised vocabularies (currently only FOAF2,
Dublin Core3, Open Graph Protocol4 and Creative
Commons5). Each recognised vocabulary is imple-
mented as a module, and might have vocabulary-
specific actions (accessed by clicking on the vocab-
ulary icon), such as displaying the licences under
which a resource falls in the Creative Commons vo-
cabulary, showing other related information like use
guidelines and other associated licensing details.

4 IMPACT ON THE BROWSER

As was described in the previous section, each time a
page is loaded by the browser, the extension injects in

2http://xmlns.com/foaf/spec/
3http://dublincore.org/documents/dces/
4http://ogp.me
5http://wiki.creativecommons.org/RDFa

Improving�Browser�History�using�Semantic�Information

307



(a) Main interface button. (b) Omnibar module.

(c) Semantic history page.

Figure 2: Interface elements.

it a content script, that is responsible for parsing and
extracting semantic information from the page. The
extracted semantic information is then relayed to the
background page that manages the actual creation and
storage of an history list entry in the indexed database.
Content scripts are executed in the visited page’s ren-
der process, and therefore can affect user’s perception
of how responsive the page (and the browser) is when
using an extension. This extension’s content scripts
are injected (but not executed) by the browser imme-
diately after the page’s CSS file but before the DOM
is constructed or any of the page’s own scripts are ex-
ecuted. As such the extension introduces an increase
in page loading time, yet since this increase is related
to script initialisation and happens while other page
scripts and elements are still being transferred to the
browser its impact can be said to be negligible. The
content scripts are executed in response to two DOM
events, DOMContentLoaded and DOMSubtreeModi-
fied, that correspond respectively to when the visited
page DOM has finished loading (but other elements
such as images might still be loading) and when part
of the DOM is modified. Since content scripts are
executed in the same thread responsible for perform-
ing rendering actions needed by the page and to exe-
cute the page’s own scripts, they might have a visible
impact on user perception of browse responsiveness.
The history list entry creation, although performed by
the background page in another process, can also have
an indirect impact in browser responsiveness percep-
tion, since each time an history list entry needs to be
saved there is a temporary increase in CPU and mem-

ory usage.
To assess the impact of the of the content script

and of the background page entry creation, we have
measured the time taken by each of these operations
when visiting a set of pages. The test was repeated
10 times for each page, with the average results dis-
played in 2. Looking at the time taken to parse a page
we can see that the number of statements present in
the page, while important, is not the decisive factor
that increases parse time. Instead parse time increases
with the complexity of the page’s (X)HTML code,
which means that complex pages such as Amazon
or DeviantArt will require more time to parse even
though they yield relatively few statements. Since
(depending on the actual page) the content script will
run while any images present are still being loaded
the impact of the extension is masked by image load-
ing time, with pages with multiple images or a single
large image increasing this effect. As such although
some of the parsing times are high we consider them
to be acceptable and not overly intrusive. Regarding
the entry creation time we can see that the time taken
to create an entry scales near linearly with the num-
ber of statements extracted from the visited page, with
entries for MusicBrainz taking nearly 1 second to be
created. This operation is performed in its own back-
ground process and as such the user will not be di-
rectly aware of these processing times, yet if for some
reason the browser is closed, any pending entry cre-
ation operations will be aborted and there will be a
corresponding loss of information. Since history list
entry creation operations are serialised by the back-

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

308



Table 2: Time taken to parse a web page and to store se-
mantic information in the indexed database.

Number of
statements

Parse
(ms)

Storage
(ms)

Shopforia 3 51,3 67,2
Amazon 10 667,5 156,7
DeviantArt 10 439,9 123,2
Popular
Mechanics

15 272,3 141,1

BBC 32 186,8 266,8
MusicBrainz 217 130,3 1024,8

ground page this issue can affect multiple pages at the
same time if the user opens in quick succession multi-
ple tabs with distinct pages that possess a large num-
ber of statements and then close the browser. A possi-
ble solution would be to have the extension listen to a
browser close event and at least write a minimum his-
tory entry on that case, yet Chrome does not provide
such an event in spite of being a common request6.

5 LONG TERM HISTORY

In order to prevent performance issues browsers limit
the number of entries held by the history list. Opera
keeps the last 1000 visited pages, Firefox determines
the number of entries to keep based on computer spec-
ifications7 and Chrome keeps an unlimited number of
entries, yet it removes them automatically 10 weeks
after the visit date. While this makes sense from a
performance perspective it discards part of the user’s
on-line interactions, and can prevent the history list
from helping users revisit a page if they are trying to
look for a page visited either a long time ago or if the
users happen to visit a large number of pages each
day. Additionally since each page a user visits has the
potential to provide a clue about that particular user’s
interests at a given point in time, letting this infor-
mation disappear can contribute to user’s ”personal
digital dark age”.

Instead of letting entries in the history list fade
away with time (or sheer number of visited pages)
we propose an hybrid solution: store older entries in
online personal digital repositories and when an ex-
plicit query is issued by the user include in the re-
sults relevant entries from both the local history and
those stored in the personal digital repository. This
approach has the advantage of preserving the entire
history list for future use while still being compatible
with browser’s performance oriented policies. If this

6http://code.google.com/p/chromium/issues/detail?id=3
0885

7https://bugzilla.mozilla.org/show bug.cgi?id=674210

extension is implemented in other browsers, users will
gain access to their history list in a different browser
or device. Furthermore in a personal digital reposi-
tory the history entries can be associated with other
types of information, for example documents, photos,
music or emails, allowing users to construct a more
precise image of why they visited a given page at that
particular time. The downside of this approach is that
the extension is no longer completely self-contained
(since it requires access to an external server). To
counter this downside the extension makes this func-
tionality completely optional and requires users to ac-
tivate and configure it (opt-in).

After configuring the extension to act as a long
term preservation tool, the extension’s configuration
page can be used to manually export the entire (or part
of the) local history to the personal digital repository.
The extension can also be configured to automatically
export the history list entries that are older than a
given temporal criterion (by default one month). Con-
versely users can manually import part (or the entire)
remote history list, or configure the extension to auto-
matically import to local history either a set number
of entries or any number of entries based on a tem-
poral criterion (by default pages visited in the last
month). When exporting the local history list it is
the personal digital repository’s responsibility to en-
sure that no duplicate entries are added to the cloud
based history list, while when importing it is the ex-
tension’s responsibility to deal with any duplicates it
might receive. When the personal digital repository
receives an export message it parses it and store both
the semantic information as well as actual history en-
tries in a triple store, enabling the use of reasoners to
derive additional information and of SPARQL to per-
form complex queries. Queries to the personal dig-
ital repository can take the form of import requests
or search requests: in an import query the extension
merges entries received from the repository with the
local history while on a search request the extension
merges entries received from the repository with local
search results to create a unified history list page.

6 CONCLUSIONS

In this paper we described the Rdfa History extension
to Chrome web browser, an extension that aims to in-
crease the visibility and usefulness of the browser’s
history list by enhancing it with the semantic infor-
mation collected from visited web pages and by pro-
viding a tool that when coupled with a personal dig-
ital repository can serve as a gateway to long term
history preservation. The extension is self-contained

Improving�Browser�History�using�Semantic�Information

309



and created using only standard (or working drafts)
of interfaces available in HTML and Javascript. It al-
ters Chrome’s default interface by placing a button on
the browser’s main interface that serves the dual pur-
pose of increasing the visibility of the history list and
notifies users that the page they are currently visit-
ing has semantic information available. It also inte-
grates with the browser’s address bar in order to pro-
vide users the opportunity to search in the history list
as if they were navigating to a web page. Both of
these interface modifications allow the user to per-
form quick searches that attempt to match the expres-
sion in any available fields, and display the results in
a new browser tab. Results are presented to users fol-
lowing a layout as close as possible to the default lay-
out of Chrome’s native history list. Accessing the se-
mantic history page allows users to perform advanced
searches where they are able to construct queries that
can limit the results by a specific triple pattern in ad-
dition to traditional date/time and title fields. The ex-
tension can be configured to act as a digital preser-
vation tool by storing entries of the history list that
would marked by the browser as expired and removed
from local history list in a personal digital repository.
These entries can then be taken into account in any
future queries performed by users, even though they
are not part of the local browser history list. It should
be noted that this feature is experimental and not en-
abled by default. Users must choose to use it, and by
choosing to use it they have the option to send the en-
tire (or part of the) local history list to the personal
digital repository, or to import to the local history list
part (or the entire) list from the personal digital repos-
itory using the extension’s configuration page.

The Rdfa History extension is still an early pro-
totype and as such there are improvements that can
be made. One possible improvement is the inclusion
of a thumbnail of each visited page in the history list
page. Previous works (Won et al., 2009), (Aula et al.,
2010) have shown that combining visual with textual
clues provides better results than using any of those
by themselves and can offer the visual context (at the
epoch it was captured) when dealing with entries in
the long term history list. Yet adding a thumbnail
will result in a more pronounced visual distinction
between the extension’s history list implementation
and the browser’s default implementation, and will in-
crease storage requirements. Early tests show that the
impact of having to re-parse the entire visited page
to extract semantic information appears to be lim-
ited by performing this task while loading other pages
components, and since storage of history entries is
done in a background process the impact of having
to store a variable amount of information per visited

page does not have a direct impact on the perception
of browser’s responsiveness. While being able to en-
hance history list entries with semantic information
without having a major impact on the browsing ex-
perience is important, usability tests are required in
order to determine if the functionalities this extension
introduces provide additional support for users trying
to re-visit pages or even if it encourages users to in-
crease their usage of the browser history feature.

ACKNOWLEDGEMENTS

This work was funded in part by the Portuguese
Foundation for Science and Technology grant
SFRH/BD/62554/2009

REFERENCES

Adar, E., Teevan, J., and Dumais, S. T. (2009). Resonance
on the web: web dynamics and revisitation patterns.
In Proceedings of the 27th international conference on
Human factors in computing systems, CHI ’09, pages
1381–1390, New York, NY, USA. ACM.

Adida, B. and Birbeck, M. (2008). RDFa Primer:
Bridging the Human and Data Webs. W3C.
http://www.w3.org/TR/xhtml-rdfa-primer/.

Adida, B., Yergler, N., and Tennison, J.
(2007). RDFA in Javascript. W3C.
http://www.w3.org/2006/07/SWD/RDFa/impl/js/.

Aula, A., Khan, R. M., Guan, Z., Fontes, P., and Hong,
P. (2010). A comparison of visual and textual page
previews in judging the helpfulness of web pages. In
Proceedings of the 19th international conference on
World wide web, WWW ’10, pages 51–60, New York,
NY, USA. ACM.

Cockburn, A. and Mckenzie, B. (2001). What do web users
do? an empirical analysis of web use. Int. J. Hum.-
Comput. Stud., 54:903–922.

Davis, H. (2006). Search engine optimization: building
traffic and making money with seo. O’Reilly, first edi-
tion.

Herder, E. (2005). Characterizations of user web revisit
behavior. In LWA 2005, Lernen Wissensentdeck-
ung Adaptivität, pages 32–37, Saarland University,
Saarbrücken, Germany. German Research Center for
Artificial Intelligence (DFKI).

JasonSmith, M. and Cockburn, A. (2003). Get a way back:
evaluating retrieval from history lists. In Proceedings
of the Fourth Australasian user interface conference
on User interfaces 2003 - Volume 18, AUIC ’03, pages
33–38, Darlinghurst, Australia, Australia. Australian
Computer Society, Inc.

Kawase, R., Papadakis, G., Herder, E., and Nejdl, W.
(2011). Beyond the usual suspects: context-aware re-
visitation support. In Proceedings of the 22nd ACM

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

310



conference on Hypertext and hypermedia, HT ’11,
pages 27–36, New York, NY, USA. ACM.

Khare, R. and Çelik, T. (2006). Microformats: a pragmatic
path to the semantic web. In Proceedings of the 15th
international conference on World Wide Web, WWW
’06, pages 865–866, New York, NY, USA. ACM.

Kumar, R. and Tomkins, A. (2010). A characterization of
online browsing behavior. In Proceedings of the 19th
international conference on World wide web, WWW
’10, pages 561–570, New York, NY, USA. ACM.

Mehta, N., Sicking, J., Graff, E., Popescu, A., and Or-
low, J. (2011). Indexed Database API. W3C.
http://www.w3.org/TR/IndexedDB/.

Obendorf, H., Weinreich, H., Herder, E., and Mayer, M.
(2007). Web page revisitation revisited: implications
of a long-term click-stream study of browser usage.
In Proceedings of the SIGCHI conference on Human
factors in computing systems, CHI ’07, pages 597–
606, New York, NY, USA. ACM.

Shirai, Y., Yamamoto, Y., and Nakakoji, K. (2006). A
history-centric approach for enhancing web browsing
experiences. In CHI ’06 extended abstracts on Hu-
man factors in computing systems, CHI EA ’06, pages
1319–1324, New York, NY, USA. ACM.

Tauscher, L. and Greenberg, S. (1997). How people revisit
web pages: empirical findings and implications for the
design of history systems. Int. J. Hum.-Comput. Stud.,
47:97–137.

Weinreich, H., Obendorf, H., Herder, E., and Mayer, M.
(2008). Not quite the average: An empirical study of
web use. ACM Trans. Web, 2:5:1–5:31.

Won, S. S., Jin, J., and Hong, J. I. (2009). Contextual web
history: using visual and contextual cues to improve
web browser history. In Proceedings of the 27th inter-
national conference on Human factors in computing
systems, CHI ’09, pages 1457–1466, New York, NY,
USA. ACM.

Yu, L. (2011). A Developers Guide to the Semantic Web.
Springer Publishing Company, Incorporated, 1st edi-
tion.

Improving�Browser�History�using�Semantic�Information

311


