
Lightweight Web Application Framework and Its Application
Helping Improve Community Bus Timetables after Japan Earthquake

Yu Kitano1, Hiroki Suguri2 and Atsushi Togashi2

1Graduate School of Project Design, Miyagi University, 1-1 Gakuen, Taiwa-cho, Kurokawa-Gun, Miyagi, Japan
2School of Project Design, Miyagi University, 1-1 Gakuen, Taiwa-cho, Kurokawa-Gun, Miyagi, Japan

Keywords: Web Application Framework, Lightweight Methodology.

Abstract: We have identified four typical problems in building web applications: High cost of education for engineers;
difficulty of distributed development; scope creep; and coupling of UI and business logic. To solve these
problems, the authors developed lightweight methodology and Perl-based framework for web applications.
In this paper, we discuss effectiveness of our approach compared with existing tools. We have successfully
applied these techniques to development of web application for helping improve community bus timetables,
which illustrates real-world usefulness of the methodology and framework.

1 INTRODUCTION

Northeast region of Japan was severely hit by great
earthquake on 11th March, 2011. Yamamoto City in
Miyagi Prefecture lost two train stations, which were
wiped out by tsunami. Nuclear disaster made it im-
possible to reconstruct the railroads and stations. Peo-
ple who lost their homes were forced to move to tem-
porary dwellings scattered high above hills to keep
away from possible another tsunami. Although bus
routes were restored in downtown, not all hills could
be covered by existing routes and timetables.

Therefore, Yamamoto City rescheduled bus routes
by hand to encompass all habitation areas. How-
ever, the new routes were not welcomed by citizens
because bus stops were placed inconveniently and
timetables failed to match their needs. To solve these
problems, we have collaborated with Yamamoto City
to develop and deploy bus boarding and alighting in-
formation system. By using the system, we were able
to comprehend the bus usage situation and to propose
improved routes and timetables.

The system consists of information gathering sub-
system and information presentation subsystem. The
information gathering subsystem is an iPhone appli-
cation that collects location, time, and number of peo-
ple for boarding and alighting. The data are sent to
server and aggregated there. The presentation subsys-
tem is a web application that displays data analysis
report to decision makers who revise bus routes, and
to citizens who claim improvement of the routes.

Web application is the most popular client-server
model information system today. Standard web
browser is used as the client, which means no addi-
tional component is required to install on the client.
Therefore, both decision makers in the office and citi-
zens in their homes can make use of the application
via the Internet. Consensus between provider and
users of community bus is very important.

In this paper, we focus on the web application,
the framework we developed to build web applica-
tions, and methodology behind the framework. Sec-
tion 2 discusses problems in developing web appli-
cations. Section 3 details out proposed methodology
and framework. In section 4, the application is de-
scribed. We compare our approach with Ruby on
Rails in Section 5. Section 6 concludes the paper
by summarizing the outcome and outlining the future
work.

2 PROBLEMS IN DEVELOPING
WEB APPLICATIONS

Generally speaking, following four challenges must
be overcome for effective development of web appli-
cations.

2.1 Learning Cost

Learning cost is expensive because wide range of exp-

252 Kitano Y., Suguri H. and Togashi A..
Lightweight Web Application Framework and Its Application - Helping Improve Community Bus Timetables after Japan Earthquake.
DOI: 10.5220/0003996402520257
In Proceedings of the 14th International Conference on Enterprise Information Systems (ICEIS-2012), pages 252-257
ISBN: 978-989-8565-11-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



ertise is necessary. In the case of developing web
applications in Java, it is indispensable to under-
stand HTML, JavaScript, web server administration,
and JSP/Servlet in addition to Java language itself.
Session management and security issues specific to
web application also increase learning cost. Usually,
knowledge about frameworks such as Struts and Hi-
bernate is additionally required.

A framework is a set of functionalities commonly
required to build applications. Many frameworks ar-
range large number of components to build feature-
rich applications. However, the initial cost of learning
to start using such heavyweight framework is huge.

2.2 Distribution and Integration

Division of work and integration of system is neces-
sary in developing web applications. Multiple tech-
nologies are involved such as server-side program-
ming, database middleware, and client-side design.
Each technology is complicated by itself, and integra-
tion is much more difficult.

MVC model is a traditional approach to logically
divide the system into three components of Model,
View, and Controller. Each component is assigned
a specific task and communication between the com-
ponents drives the system. MVC model is popular
in modeling and developing web applications (Mit-
suda and Fukuyasu, 2010). However, the model must
be fixed at first. Modeling is an intensive and time-
consuming task that becomes bottleneck early in the
development process before distributing the work to
designers and programmers.

2.3 Requirement Changes

System requirements are getting more and more com-
plicated today. Since web is bleeding edge of busi-
ness, it is common to begin developing systems with-
out fixing the requirements. Even in the middle of de-
velopment, requirements keep changing and the sys-
tem must quickly embrace the changes. Traditional
waterfall project management is no longer effective
in such scope creep situations.

Many web applications are developed using appli-
cation framework that is based on MVC model, such
as Struts. It is true that MVC model is said to resilient
to change. However, it is only true when the model
is kept intact. If the model is forced to change due
to requirement changes, system-wide modification is
likely to occur.

2.4 Coupling of User Interface and
Business Logic

Web application is divided into HTML page design
rendered in client, and background business logic pro-
grammed in server side. Design of user interface
and program of business logic must be strictly distin-
guished, allowing designer and programmer to work
separately. However, in many existing web appli-
cation frameworks, programming logic such as field
repetition and input validation must be coded in page
layout along with HTML. Therefore, changing user
interface design requires programmer’s involvement
as well as UI designer’s work.

3 PROPOSED LIGHTWEIGHT
METHODOLOGY AND
FRAMEWORK

This section explains proposed lightweight method-
ology and framework to solve the four problems dis-
cussed in the previous section. The approach is char-
acterized by the following four advantages: (1) Low
learning cost; (2) Easy distribution and integration of
work; (3) Robustness and flexibility to requirement
changes; and (4) Clear decoupling of view and logic.

The proposed lightweight methodology is targeted
for small- and medium-sized applications. Suggested
number of pages is less than thirty. With such ap-
plications, large framework such as J2EE is unneces-
sary. Larger systems can be built by integrating such
medium-sized applications.

3.1 Lightweight Methodology

3.1.1 Low Learning Cost

Leaning cost is increased by complexity of the pro-
gramming language and complexity of the develop-
ment environment. For the programming language,
we selected Perl. Perl is one of the most popular
lightweight programming languages along with Ruby,
Python, and PHP. Learning Perl is much easier than
learning Java.

For the programming environment, we wanted to
avoid using heavyweight IDE such as Eclipse and
NetBeans. These tools are difficult to learn. Differ-
ence between local debugging environment and re-
mote deployment environment is also problematic.
Instead, we incorporated browser-based development
environment (i.e, file browser, text editor, and debug-

Lightweight�Web�Application�Framework�and�Its�Application�-�Helping�Improve�Community�Bus�Timetables�after�Japan
Earthquake

253



ger) inside the framework, which handles server files
directly.

3.1.2 Distribution and Integration

Web application is divided into two main compo-
nents. One is client page design comprising HTML,
CSS, JavaScript, and media files. The other is server
program and database. The client and the server can
be developed asynchronously. In many cases, end
users want to see client UI before server programming
has been completed. To meet these requirements, our
lightweight methodology abstracts web application as
a set of page transitions. In our approach, MVC is
redefined as follows: Model is a program that corre-
sponds to a page, View is HTML template, and Con-
troller is the web application framework itself. We
call it lightweight MVC model.

With the lightweight MVC model and its imple-
mentation in our framework, page transitions can be
performed on the client without coding the server-side
business logic. Of course, server-side programming is
necessary to complete the application. However, page
design and transitions can be demonstrated to users at
early stage of the development before fixing model
(server program). In addition, scope of responsibili-
ties is made clear by assigning each programmer a set
of pages and programs that correspond to the pages.

3.1.3 Robustness and Flexibility

In our lightweight MVC model, responsibility for
each page is clearly defined. If the user requests speci-
fication changes, only affected page design (view) and
program (model) must be changed. Other views and
models, along with controller (the framework itself)
are kept intact. Therefore, our methodology is flexi-
ble while maintaining robustness.

3.1.4 Decoupling of View and Logic

Most web application frameworks provide HTML
template that displays run-time value of variables em-
bedded in page layout. On the other hand, it is also
common to use page design tools such as Adobe
Dreamweaver to visually design user interface. Thus,
page designers do not have to understand the syntax of
underlying HTML and CSS. Now, the problem is con-
flict between HTML template and design tools. Each
template engine has its own syntax to embed values,
repetitions and control flows, which often cannot be
properly handled by design tools.

Therefore, we came up with minimum extension
to HTML for our template language that does not con-

flict with design tools. In addition, Perl code can be
executed on the template on the server side.

3.2 Lightweight Framework

Figure 1 depicts the structure of lightweight frame-
work. As illustrated in Figure 2, the framework con-
sists of three Perl modules.

Client(Web Browser)

XML Template

Apache (Web Server)

Linux (OS)

Hardware

File Box Entry

Binary Output
XML Output

Perl (CGI)

Web Application Framework

File Box Transaction Module

postgresSQL
SQLite

(DB Server)

HTML Template XML Transaction Module

HTML Output (Excel, etc.)
(JPEG, GIF, etc.)

Figure 1: Structure of lightweight framework.

Debug Information HTML

kw.cgi

Module

Transaction Module
HTML

Template

HTML with

kwdebug.cgi

Module
kwfile.cgi

Module

Binary (jpeg, gif etc.)
XML File etc.

Database
File Box

Database
Session Key

Figure 2: Perl modules.

The module kw.cgi is the core of the framework.
It calls back HTML template and transaction module
supplied by user, then generates HTML output. The
module kwfile.cgi is responsible for binary file output
from file box. The module kwdebug.cgi is a superset
of kw.cgi for debugging purposes. In addition to all
functionalities of kw.cgi, kwdebug.cgi can generate
debugging information to browser. It also provides
simple text editor of server files to browser client.

HTML template embeds data items in page layout.
The data items are defined in the transaction module.
In the HTML template, designer can use special tags
to be replaced with run-time data, which are speci-
fied by hash variable %kw::outparam in transaction
module. Example will be shown in Section 5.

In MVC terms, kw.cgi corresponds to Controller,
HTML template corresponds to View, and transaction
module corresponds to Model. Page transition of the
web application controlled by kw.cgi is handled by
HTML form parameters sm and ss. The parameter
sm specifies transaction module that is executed after

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

254



page transition. The parameter ss designates HTML
template used by the transaction module. If ss is null,
default HTML template is used, which is specified in
the transaction module. In other words, transaction
module run after pressing submit button is determined
by the value of sm, while HTML template is chosen
by the values of sm and ss.

If transaction module is empty, empty application
is generated that only performs page transitions de-
fined by HTML template. This is useful for check-
ing the page transitions before getting to the program-
ming. It is recommended that HTML template (View)
is designed and implemented at first, before transac-
tion module (Model) is designed and implemented.

It is common that web application must deal with
image files, PDF files and Microsoft Office docu-
ments. To output these non-HTML files, file box may
contain arbitrary binary files.

Transaction module may register non-HTML files
with the file box. These files are sent as a part of
HTTP response by specifying the file identifiers in
kwfile.cgi. Especially, XML files can be generated
and registered as easily as HTML templates. This is
useful when the web application produces XML data
files that are used by client applications such as Mi-
crosoft Excel. An example will be presented in the
next section.

Debugging module kwdebug.cgi displays run-
time values of variables. It also offers Adobe Flash-
based text editor for client to edit server files with-
out using local editor and file transfer tools over ssh
or scp. This simplifies the development of web ap-
plication. Especially in Japan, character code set
on server (UTF-8) is different from that of Windows
client (Shift JIS). Programmers must always be very
careful to convert the character set properly, which
is heavy stress. We solved the problem by offering
server-based text editor.

In addition, the framework provides miscella-
neous functions such as numeric formatting and
Japanese Imperial Calendar processing.

4 BUS BOARDING AND
ALIGHTING APPLICATION

Figure 3 shows page transition of bus boarding and
alighting information system. The application starts
from user authentication page, where the user enters
user name and password. Global navigation menu
branches to boarding and alighting summary page,
data analysis page, and map visualization page. The
collected data from information gathering subsystem
can be summarized in tabular format in web browser,

analyzed and graphed in Microsoft Excel via XML
intermediate file, and plotted on Google Maps using
JavaScript.

Figure 3: Page transition of the bus application.

During the development of the application, the re-
quirements from users kept changing. Specifications
revised repeatedly and new features added frequently.
Roughly speaking, we took three steps to develop the
application using our lightweight methodology and
framework.

In the first step, we started from building empty
application that only performs page transitions de-
fined by HTML templates. Then tasks were divided
into page design, programming of server-side logic,
and design of Microsoft Excel output. These tasks
ran concurrently. We used XML template, which is
similar to HTML template, to develop XML output to
Excel. The generated XML file is registered with file
box so that web browser can download the file, which
is then passed to Microsoft Excel.

In the second step, we plotted number of people
boarded and alighted on Google Maps. Complicated
JavaScript programming was necessary to use Google
Maps API. Thanks to our framework, JavaScript pro-
gramming was separated from HTML page design. A
skilled JavaScript programmer, who happened to be
very bad in user interface design, concentrated on the
programming.

In the third step, we refactored many parts of the
application to implement user requests and specifica-
tion changes. When a set of data is analyzed and pre-
sented, users requested to add different features and to
change existing functionalities. Since no heavyweight
MVC structure was adopted, we successfully modi-
fied code and user interface without major problems.
No “pseudo-MVC” problem hindered the refactoring
process.

We are planning to add new features to better ad-
dress the needs of the customers. For example, gath-
ering and visualizing accelerometer data from iPhone
is requested.

5 COMPARISON WITH RUBY ON
RAILS

Ruby on Rails (Hansson, 2004) is a popular
lightweight web application framework written in

Lightweight�Web�Application�Framework�and�Its�Application�-�Helping�Improve�Community�Bus�Timetables�after�Japan
Earthquake

255



Ruby language. Traditional frameworks such as
Struts require massive amount of configuration files,
which leads to low productivity and low quality. On
the other hand, Ruby on Rails emphasizes “conven-
tion over configuration,” reducing the need of config-
uration files and increasing productivity. For exam-
ple, ActiveRecord O/R mapper generates appropriate
class from database schema definition. Ruby on Rails
allows easy development and deployment of web ap-
plication based on MVC model.

In this chapter, we compare our lightweight
framework with Ruby on Rails in terms of the four
problems identified in Section 2: Learning cost; dis-
tribution and integration; requirement changes; and
coupling of user interface and business logic.

5.1 Learning Cost

With our lightweight application framework, no pro-
gramming knowledge is required for page designers.
Our lightweight methodology centers on page tran-
sitions, with each page corresponding to its database
table and business logic. Therefore, heavyweight O/R
mapper such as ActiveRecord is not needed. Heavy-
weight IDE like Eclipse or NetBeans is also unnec-
essary because editing and debugging support is pro-
vided by the lightweight framework itself. As a result,
learning cost of our framework is cheaper than that of
Ruby on Rails.

5.2 Distribution and Integration

It is mandatory to clearly define the scope of respon-
sibilities of each member in web application develop-
ment project. With our approach, the scope is defined
by page. Once page transitions are fixed, each mem-
ber clearly understands what to do. On the other hand,
modeling is essential prerequisite on Ruby on Rails,
which is based on MVC model. Scope of responsibil-
ities are made clear only after the model has been de-
veloped and entire class relationship has been fixed.
This is typical bottleneck of Ruby on Rails project.
Moreover, when it becomes necessary to refactor the
implementation of the model and controller, the cost
is quite expensive.

5.3 Requirement Changes

As discussed in Section 2, requirement change or
scope creep is major reason why it is difficult to main-
tain MVC structure in the course of web application
development project. Ruby on Rails enforces strict
MVC model by “convention over configuration.” Re-
sulting database schema and page transitions must

conform to the model. If requirement specifications
are clear and stable from the beginning of the project
to the end, high efficiency and quality can be ex-
pected.

However, in a project where MVC structure can-
not be distinctively defined at the beginning, or where
requirement changes occur frequently, it is common
that Model, View and Controller are getting mixed
during the course of the development. Since Ruby
on Rails requires code that conforms to the frame-
work convention and MVC structure, major refactor-
ing must be performed when requirements change. In
reality, many projects circumvent the major refactor-
ing and tend to do quick and dirty fix of code, result-
ing in the deterioration of clean MVC structure. This
is sometimes called “pseudo-MVC.”

On the other hand, our lightweight methodology
abstracts web application as a set of page transitions.
In our lightweight framework, MVC is redefined as
follows: Model is transaction module, View is HTML
template, and Controller is the framework itself. We
call it lightweight MVC model. With lightweight
MVC model, scope of responsibilities is made clear
by assigning each programmer a set of pages. In addi-
tion, lightweight MVC model does not prevent devel-
opers from using common libraries or object-oriented
data model.

5.4 Coupling of User Interface and
Business Logic

Now we compare our approach with Ruby on Rails
in terms of how much programmer has to get in-
volved in page design. On Ruby on Rails, page tem-
plate is .rhtml file, which embeds Ruby constructs
into HTML. When page designer edits the .rhtml file
with design tool such as Dreamweaver, the designer is
required to understand the Ruby language and .rhtml
tags. For example, Figure 4 is .rhtml form that dis-
plays patient name, and accepts entry of birthday.

Figure 5 shows Dreamweaver screen editing
the .rhtml file. Even in this simple example,
Dreamweaver is unable to render the form correctly
because it does not understand .rhtml tags.

On the other hand, using our lightweight frame-
work in Perl language, Figures 6 and 7 show the
form code and Dreamweaver screen respectively.
Dreamweaver appropriately renders the form because
unknown tags or tags in HTML comments are not
used.

Since we do not introduce new tags in our HTML
template, page designer can use existing tools like
Dreamweaver. In addition, no knowledge of Perl is
required for the designer.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

256



<body>
Edit birthday
<%form_tag :action => ’edit’,

:id => @patient do %>
<%=render :partial => ’form’ %>
<br>
<%=link_to ’Patient List’,
:controller => ’patient_id’ ,
:action => ’patientList’ ,
:id => @birthday %>
<br><br>
<%=submit_tag ’Edit’ %>
<%end %>
</body>

Figure 4: Example of .rhtml form.

Figure 5: Display of .rhtml in Dreamweaver.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we proposed lightweight methodology
and lightweight framework for developing web ap-
plications. To develop web applications, orthodox
method is to employ highly skilled engineers and
to adopt heavyweight methodology, framework and
IDE. However, another approach is to use lightweight
methodology and lightweight framework with un-
skilled engineers. We have proven that web applica-
tion can be developed with limited financial and hu-
man resources. The outcome of the research is sum-
marized to the following four points.

(1) The lightweight methodology and framework
enabled cost-effective development of web applica-
tion. Compared to Java-based framework and Ruby
on Rails, learning cost is cheap. Even unskilled pro-

<body>
Edit birthday
<form>
<input type=hidden name=sm

value="patientlist" >
<input type=hidden name=ss value="" >
$˜name˜$
<input name=birthdayvalue=$˜birthday˜$ >
<input type="submit" value="Edit">
</form>
</body>

Figure 6: Example of our HTML template.

Figure 7: Display of our HTML template in Dreamweaver.

grammers could take part in the development project
of bus information system.

(2) We made distribution and integration of work-
load effectively by defining scope of responsibilities
for each page. Developers and designers cooperated
smoothly to finish the system in short time.

(3) The proposed framework allowed rapid modi-
fication of the system to satisfy requirement changes
from users.

(4) The framework decoupled page design, ap-
plication logic, and data model thoroughly. Our
lightweight MVC model separates View and Model
distinctively, and framework itself becomes Con-
troller. The application is resilient to requirement
changes.

After successful development and deployment of
applications based on the framework, we also iden-
tified two issues requiring additional work. The first
thing to do is to incorporate test tools in the frame-
work. In unit testing framework such as PerlUnit,
dedicated testing program must be coded. However,
when specifications change, the testing program must
be changed, too. This is not productive. We are plan-
ning to develop unit testing library as a part of our
framework to solve this problem.

Second issue is version control. Tools like CVS,
Subversion, and Git are popular among skilled devel-
opers. However, unskilled programmers are not fa-
miliar with the notion and operation of version con-
trol. In many cases, simple versioning such as those
found in Microsoft Office is sufficient for small- and
medium-sized project. We are designing easy-to-
use versioning tools to incorporate to our lightweight
framework.

REFERENCES

Hansson, D. H. (2004). Ruby on rails. http://
rubyonrails.org/.

Mitsuda, N. and Fukuyasu, N. (2010). Issues behind the use
of web application frameworks.Computer Software,
27(3):3 2–3 12.

Lightweight�Web�Application�Framework�and�Its�Application�-�Helping�Improve�Community�Bus�Timetables�after�Japan
Earthquake

257


