
A Mediator Architecture for Context-aware Composition in SOA

Hicham Baidouri, Hatim Hafiddi, Mahmoud Nassar and Abdelaziz Kriouile
IMS Team, SIME Laboratory, ENSIAS, Rabat, Morocco

Keywords: Context, Ubiquitous Computing, Context-aware Service, Context-aware Composite Service, Aspect
Paradigm, Context-Aware Composition, Model Driven Engineering.

Abstract: The emergence of wireless technologies, intelligent mobile devices and service oriented architectures has
enabled the development of the context-aware service oriented systems. This evolution has put the light on a
challenging problem: how to dynamically compose services in SOA based systems to perform more
complicated functionalities and provide richer user experience? As observed from the literature, several
researches focus mainly on context-aware service design and modelling, but few studies have worked on the
composition of this new kind of service to provide more complicated features. In this paper, we aim to
present our proposal of adapting service composition by the integration of context during the composition
process. This dynamic context-aware composition of services is realized through our Mediator Architecture
for Context-Aware Composition (MACAC).

1 INTRODUCTION

Over the last few years, adaptive service
composition has emerged as one of the most desired
features that allow the integration and cooperation
between pre-existing services to bring out new
features. This process, known as contextual service
composition, requires from the composite services to
consider information from the user’s context – such
as location, profile, age, etc – by performing several
adaptations on service behaviour in first stage and
composition technique in second stage. The main
challenge is to operate the most suitable service
combination in order to respond to user expectation
and improve the end-user experience. This
obligation has involved the introduction of a new
type of composite services named Context-Aware
Composite Services (CACS). In order to be context-
aware, composite services need to follow some
requirements in order to resolve the challenges
brought by the context-awareness paradigm. First,
the composition technique of the existing service
should be platform-agnostic, so the used approach
could be projected on any technologies and
implementation tools. Second, the composed service
should be built in dynamic way depending on the
context of use, i.e., the expected service must be
generated at the execution stage. Compared to
traditional service composition approaches, context

aware composition computing emphasizes more
open-endedness in terms of analysis, design and
implementation phases.

CACS development can profit from existing
paradigms and technologies such as process
orchestration language (e.g., BPEL (OASIS, 2007))
and Model Driven Engineering (MDE (Favre,
2004)). Process orchestration languages are very
developed tool that enable the transparency and ease
of use of the creation of composed service aiming at
extending application functionalities. In our
approach, BPEL descriptions of CACS are
dynamically generated, through our MACAC tool,
to provide the most suitable service composition
regarding the current user context. MDE is a model
centric approach for software development, in which
models are used to drive software development life
cycle. In our approach, CACS artefacts meta-models
are provided to guide the design of CACS models,
then, the implementation can be generated
automatically by performing a series of model to
model transformations.

The rest of this paper is organized as follows. We
present in next section a scenario that concerns an E-
tourism system and highlight the context-awareness
challenges. In Sect. 3, we present our context and
context provider metamodels for context
management. Sect. 4 presents our CACS
specification and metamodel. We present, in Sect. 5,

245Baidouri H., Hafiddi H., Nassar M. and Kriouile A..
A Mediator Architecture for Context-aware Composition in SOA.
DOI: 10.5220/0003992502450251
In Proceedings of the 14th International Conference on Enterprise Information Systems (ICEIS-2012), pages 245-251
ISBN: 978-989-8565-11-2
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

our MACAC mediator for context-aware
composition of services. Sect. 6 briefly compares
related work. Finally, we conclude the paper in Sect.
7 with plans for future work.

2 e-TOURISM SCENARIO

The following motivating scenario relates to a
context-aware e-tourism system. It aims to help the
out-of-towners who need some guidance (i.e. tour
planning) on how they will spend their free time in a
foreign city (see Fig. 1).

Figure 1: Involved services in the “Tourism Tour
scenario”.

Let’s say that a tourist wants to discover the
history, culture, monuments, landscapes and
gastronomy of a foreign city. So, he accesses a
context-aware e-tourism system, offered by a local
provider, using his mobile device (e.g., PDA,
Smartphone, Tablet, etc.). This system will suggest a
complete tour of the city for an entire day or just for
a specific period of the day (e.g., morning, evening,
etc.) depending on the tourist free time.
Furthermore, the tour sent back to the tourist will
take into account other context information such as
time and weather parameters (e.g., in summer, the
system will favour beaches over monuments), user
profile (e.g., probably append a party at the end of
the tour if the user has mentioned it in his
preferences) and the used mobile device (e.g.,
configuration, CPU, resolution, etc.) in order to
improve the user experience and sent the most suited
response. Likewise, the system will propose the
transport (i.e., GIS service) between each places of
the proposed tour and display all the possible
alternatives (e.g., subway, bus, taxi, etc.) depending
on the distance, the weather and the tourist needs.

This e-tourism scenario highlights the

fundamental challenges for the development of
context-aware composition of services in context-
aware systems. First, context definition (i.e., which
context information are relevant for an adequate
composition of services) and acquisition is not an
evident process. Second, the composition process
must be realized in a dynamic way depending on the
execution context. By way of illustration, the
previous scenario highlights the two following
dynamic compositions, of the tour planning service,
depending on the user context:

 Suppose that the tourist is visiting the city in
summer, the system should compose the tour
starting with beach in the morning (using a
partner e-tourism service), then propose the
suited restaurant for lunch, program a
monument visit at the evening, and according to
user preference, append a party animation at the
night to the program;

 Assume that another tourist is visiting the city in
spring, the system should propose natural
landscapes instead of beach, and the rest of the
tour could change depending on the user needs,
weather and city transport infrastructure.

3 CONTEXT MANAGEMENT

3.1 Context

Context is the information that characterizes the
interactions between humans, applications, and the
environment (Brezillon, 2003). Several context
definitions were proposed in the literature (e.g.,
(Salber, Dey and Abowd, 1999), (Schmidt, Beigl
and Gellersen, 1999), (Schilit and Theimer, 1994),
(Brown, 1996), (Schmidt et al., 1999), etc.) serving
various domains, however the context definition
given by Dey and Abowd remains the most referred.
In fact, these authors have defined context as “any
information that can be used to characterize the
situation of an entity. An entity is a person, place or
object that is considered relevant to the interaction
between a user and an application, including the
user and applications themselves” (Dey and Abowd,
1999).

In our approach we choose to use the context
metamodel developed in (Hafiddi et al., 2011) for
different reasons. Rather than giving a domain
specific formalization of context this metamodel is
domain and platform independent, and can be
extended, if needed, to support various domains.
This core context metamodel (see Fig. 2) specify a
context as a set of parameters (e.g., language,

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

246

localization, battery, connection mode, etc.) and
entities (e.g., user, device, etc.) that can be
structured on sub contexts. Sub contexts can also be
recursively decomposed into categories. Context
may be constituted of simple parameters (e.g.,
language), derived parameters (i.e., computed from
other parameters; for example a distance parameter
can be computed from two GPS positions) and
complex parameters (e.g., GPS) which have
representations (e.g., DMS (Degrees, Minutes, and
Seconds) and DD (Decimal, Degrees) representation
for the localization parameter).

Figure 2: Core context metamodel.

3.2 Context Providers

The role of context providers is to gather context
information from different sources such as sensors,
web services, databases, etc. the process of
collecting context depends on context parameters
nature and its sources. For instance, the user profile
information is explicitly provided by the user and so
they are characterized by an infrequent change.
However, context parameters collected from sensors
are subject to frequent changes. Its collection
requires interaction with distributed and
heterogeneous software or hardware sensors. Also,
some context parameters may aggregate or use
different context providers to be gathered.

To abstract Context-Aware Applications
developers from sensors and sensed data variety and
complexity, we provide a context provider
specification that abstracts application development
stakeholders from sensors API details.

In our specification (Hafiddi et al., 2011), as
illustrated in figure 3, a context provider (i.e.,
collector of a given service execution context)
aggregates a set of parameters providers (e.g.,
LocationProvider, WethearProvider, etc.) and
entities providers (e.g., UserProvider,
DeviceProvider, etc.). Both of entities providers and

Figure 3: Core context provider metamodel.

parameters providers may dispose of an interface
that specify whether the provider is remote (e.g., a
web service that provides weather) or local (e.g.,
GPS sensor in a mobile device) and what mode of
requests is supported (i.e., query-based or
notification-based). A provider may use or derive
from a set of providers. For example, a weather
provider uses the localization provider to get the
weather information.

4 CONTEXT-AWARE
COMPOSITE SERVICE

In Service Oriented Computing (SOC), a service is
defined as self-describing and platform-agnostic
computational element that supports rapid, low-cost
and easy composition of loosely coupled and
distributed software applications (Papazoglou,
2003). The vision of service as a software
component allows combining several services,
providing a global value-added service, called
composite service. A context-aware composition of
services (i.e., context-aware composite service) is a
composition which is able to present different
configurations according to the execution context
named ContextView (Hafiddi et al., 2011) (see Fig.4)

Figure 4: Core composite service adaptation to its various
ContextViews.

A�Mediator�Architecture�for�Context-aware�Composition�in�SOA

247

In our approach, a context-view composite service
presents the result of an adapted composite service
to a given context view, and the various context-
view composite services for a given composite
service forms the context-aware composite service.

Figure 5 illustrates our Context-Aware
Composite Service metamodel. This metamodel is
based on the following specification:

 Elementary Service, Context-Aware Service,
Composite Service, Context-View Composite
Service (i.e., CVCompositeService) and
Context-Aware Composite Service (i.e.,
CAComposite Service) are specific services;

 A context-aware service is able to adapt
dynamically its behaviour to its several
execution (i.e., use) contexts. In other words, a
context-aware service possesses mechanisms
in purpose to exploit only relevant information
of the execution context and adapt
dynamically its behaviour (refer to (Hafiddi et
al., 2011) for more details about context-
aware services specification);

 A context-aware composite service possesses
a context-aware composition strategy (i.e.,
CACompositionStrategy) which concerns a set
of context views;

 A context-view composite service possesses a
context-view composition strategy (i.e.,
CVCompositionStrategy) which concerns a
given context view;

 A context-aware composition strategy
aggregates a set of context-view composition
strategies;

 For a given context-view composition strategy
and context view, a set of configuration
conditions (i.e., ConfigCondition) is deduced;

 A configuration condition may involve a set of
services configuration;

 For a given context-view composition strategy
and service, a configuration rule (i.e.,
ConfigRule) is associated;

 A context-view composition strategy
aggregates a set of configuration conditions,
configuration rules and services.

In our specification, a context-aware composite
service is seen as a specific composite service with a
number of ContextViews. For each one, we associate
a context-view composition strategy (i.e.,
CVCompostionStrategy) which indicates when (i.e.,
ConfigCondition: classical condition expressed on
ContextView parameters) and how (i.e., ConfigRule:
defines how the configuration (i.e., the execution
chronology and the types of dependencies) must be
realized in the core composition) a set of services
(i.e., Service) cooperates in order to provide the
expected composition regarding the current
execution context. The composition result forms the
context view composite service (i.e.,
CVCompositeService). So, for a given composite
service, the set of its CVCompositeServices
(respectively CVCompositionStrategies) forms the
CACompositeService (respectively
CACompositionStrategy).

As illustrated in figure 6, involved services in the
tour planning composite service may change
depending to the context parameters and their
values.

Figure 5: Core CACS metamodel.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

248

Figure 6: Succinct CACS model for the Tourism Tour
Service.

5 CONTEXT-AWARE
COMPOSITION MECHANISM

5.1 Mediator Architecture

Today, it is very clear that classical approaches for
context-aware composition development present
several limitations. Indeed, designing composite
service variant for each context-view or introducing
all composition scenarios in the same composite is,
deeply, a software engineering anti-pattern (e.g.,
high-cost of maintenance). So, to rationalize the
development and maintenance of context-aware
composite services, we have to resort to a strategy
pattern that allows dynamic composition without
any duplication or regression risks. Our strategy
reposes on a NDC (Notify, Decide and Configure)
pattern which is implemented by the MACAC
mediator.

Figure 7 presents the core components of our
MACAC tool. As an entry point, the RequestNotifier
takes care of each request coming to the platform.

The next step is to check whether the type of the
requested service is elementary or composite using
the ServiceExaminator entity:

 In the case of an elementary service, the
generation process of the context aware
service is similar to the generation mechanism
performed by the A2W tool already described
in (Hafiddi et al., 2011). The ESHandler plays
the same role as the RequestNotifier of the
A2W tool.

 In the case of a composite service, the
CSHandler receives the request (service id
and context data) that will be passed to the
CompositionDecisionMaker responsible of
CSCompositionStrategy recuperation from the
current ContextView. After that, the
CompositionBuilder analyzes each
CSCompositionStrategy and evaluate
eventually the corresponding conditions in
order to extract the best composition
combination of services. Note that, the
CompositionBuilder could invoke the
ESHandler or/and CSHandler to build the
necessary elementary or/and composite
context-aware service for the global service
generation.

5.2 Tools and Frameworks Support

To develop our Context-Aware Composition Builder
tool, we used the Eclipse EDI with the following
frameworks that respond to a specific technical and
architectural purpose in our platform:

 Spring 2.5 (SpringSource, 2007) was used as
IoC (Inversion of Control) container to link all
the components of our framework, also,
transaction is managed by this framework;

Figure 7: MACAC architecture.

A�Mediator�Architecture�for�Context-aware�Composition�in�SOA

249

 Hibernate 3.3 (Red Hat, 2011) is the
framework used in the persistence layer of the
application to map the business model classes;

 CXF 2.2 (Apache CXF, 2011) is the soap
middleware that manage all the
communication purposes in our application
using the web services technology.

 Configuration files written used XML
technology is parsed using the JAXB2 OXM
standard (Oracle, 2006);

 We used Apache ODE (Apache ODE, 2011)
as the BPEL engine in order to generate the
expected composition service. This tool
allows the execution of one or more business
web services expressed using the Web
Services Business Process Execution
Language (WS-BPEL). It principally
communications with services by sending and
receiving messages, manipulating data and
handling exceptions as defined by any given
process. Also, the engine supports the HTTP
WSDL for binding, allowing invocation of
REST-style web services.

6 RELATED WORK

In this section, we will deal with a representative
subset of existing studies that work on context-aware
composition mechanisms to emphasize the
similarities and differences with our approach.

Context aware service composition process is
entangled with several complex features such as
context modelling, context retrieving, service
adaptation and orchestration. The composition
mechanism can happen in different time of the
development process, some existing works consider
the composition logic at the deployment time like
the context aware tool CADeComp (Ayed et al.,
2006). The metamodel used in this project is based
on OMG D&C specifications (OMG, 2003), and
follows MDA specifications. The CADeComp
project describes context aware assemblies of
components and produces target deployment plan.
At the deployment time, a set of adaptation rules is
executed based on the corresponding context
adaptation. Likewise, PLASTIC project (Autili et al.,
2006) presents similar concept to CADeComp
providing several tools and methodologies to
develop service-based context aware applications. In
this work, authors introduced a new metamodel
based on two levels of software description: service
composition as an abstract layer and component
compositions as a concrete layer where deployed

services exist. Context information is mainly utilized
at the service discovery step in order to perform the
expected composite service.

Other context aware composition studies use the
middleware programming paradigm; the expected
composite service is twisted from unitary service
and/or composite service. The MySIM (Ibrahim, Le
Mouël and FreÏnot, 2009) is one of these
middlewares that integrate services in a transparent
way using the OSGi/Felix platform. It uses the
reflexive techniques to do the syntactic interface
matching and ontology online reasoner for the
semantic matching. The technique is interesting but
solutions need to be found to make the spontaneous
service integration scalable to large environments.
Another platform similar to MySIM is the PERSE
project (Ben Mokhtar, 2007). Four modules present
the main essence of this project; however the
Evaluator module responsible of computing the
suited composition combination is the most
developed component of the project. The efficiency
of PERSE has been tested and proved in the cost
evaluation in terms of service matching, service
composition and processing time for service
composition. Most of the middleware context-aware
composition approach presents only two
granularities of services unitary (or classic) service
and component service to generate the expected
behaviour. The re-use of the context aware
composite service at the composition level is not
taken in charge. In concerns with the above
mentioned approaches all the development stages
(analysis, design and implementation) of the system
take care of context in dynamic way. Additionally,
context modelling, retrieving and handling phases
are independents from the base application
functionality. Focus is given only to the service
functional design and application flow that indicates
the order in which services are invoked regarding
the context state.

7 CONCLUSIONS

In this paper, we aimed to propose a specification
for context-aware composition system. So, we
started by presenting our motivating scenario
relative to an e-tourism context-aware system, which
consist of providing a tour guide based on existing
services. Then we presented a generic approach for
modelling and collecting context information, which
presents the basis for the elementary and composite
context-aware service in terms of design and
development.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

250

Furthermore, we focused on proposing a meta-
model for designing context-aware composite
services, this meta-model was defined to enable the
reuse of all the following type of services:
elementary service, elementary composite service,
context-aware service and context-aware composite
service. Finally, we advanced our MACAC tool
based on BPEL technology responsible of the
dynamic generation of the expected composite
service. In our future work, we project to include our
meta-model in the Eclipse Modelling Framework
(EMF). Then use the Graphical Modelling
Framework (GMF) to build a graphical editor that
will allow designers to model context-aware
composite services. Finally, we will implement
transformations using Query/View/Transformation
(QVT) in order to transform from CACS technology
independent models to the specific models, and use
MOF script for generating executable code.

REFERENCES

Apache CXF (2011). http://cxf.apache.org/.
Apache ODE (2011). http://ode.apache.org/.
Autili, M., Cortellessa, V., Marco, A., D. and Inverardi, P.

(2006). A conceptual model for adaptable context-
aware services. In Proceedings of international
Workshop on Web Services Modeling and Testing
(WS-MaTe2006), pp. 15-33, Palermo, Sicily, Italy.

Ayed, D., Taconet, C., Bernard, G. and Berbers, Y.
(2006). An adaptation methodology for the deployment
of mobile component-based applications. In IEEE
International Conference on Pervasive Services
(ICPS’06), pp. 193-202, Lyon, France.

Ben Mokhtar, S. (2007). Semantic Middleware for
Service-Oriented Pervasive Computing. In Ph.D.
thesis, University of Paris 6, Paris, France.

Brezillon, P. (2003). Focusing on context in human-
centered computing. IEEE Intelligent Systems, 18(3),
62-66.

Brown, P., J. (1996). The stick-e document: a framework
for creating context-aware applications. In
Proceedings of the Electronic Publishing, Palo Alto,
pp. 259-272.

Dey, A., K. and Abowd, G., D. (1999). Towards a Better
Understanding of Context and Context-Awareness. In
Technical Report GIT-GVU-99-22, GVU Center,
Georgia Institute of Technology.

Favre, J., M. (2004). Towards a Basic Theory to Model
Driven Engineering. In Workshop in Software Model
Engineering (WISME 2004).

Hafiddi, H., Nassar, M., Baidouri, H., El Asri, B. and
Kriouile, A. (2011). A Context-Aware Service Centric
Approach for Service Oriented Architectures. In the
13th International Conference on Enterprise

Information Systems (ICEIS'11), Beijing, China, June
2011.

Hafiddi, H., Baidouri, H., Nassar, M., El Asri, B. and
Kriouile, A. (2011). A Model Driven Approach for
Context-Aware Services Development. In the 2nd
International Conference on Multimedia Computing
and Systems (ICMCS'11), Ouarzazate, Morocco. IEEE
Computer Society.

Ibrahim, N., Le Mouël, F. and FreÏnot, S. (2009). ìMySIM:
a Spontaneous Service Integration Middleware for
Pervasive Environments. In ACM International
Conference on Pervasive Services (ICPS'2009),
London, UK.

OASIS (2007). Business Process Execution Language
(BPEL) 2.0. Available at: http://docs.oasisopen.
org/wsbpel/2.0/wsbpel-v2.0.html.

Object Management Group (2003). Deployment and
Configuration of Component-based Distributed
Applications. Draft Adopted Specification (ptc/03-07-
02).

Oracle (2006). http://jaxb.java.net/.
Papazoglou, M., P. (2003). Service Oriented Computing:

Concepts, Characteristics and Directions. In
WISE'03, the 4th International Conference on Web
Information Systems Engineering. IEEE Computer
Society, 3-12.

Red Hat (2011). http://hibernate.org/.
Salber, D., Dey, A., K. and Abowd, G., D. (1999). The

Context Toolkit: Aiding the Development of Context-
Enabled Applications. In CHI’99 Conference on
Human Factors in Computing Systems. Pittsburgh,
Pennsylvania, USA.

Schilit, B. and Theimer, M. (1994). Disseminating Active
Map Information to Mobile Hosts. IEEE Network,
8(5), 22–32.

Schmidt, A., Aidoo, K., A., Takaluoma, A., Tuomela, U.,
Laerhoven K., V., and Velde, W., V. (1999).
Advanced Interaction in Context. In HUC’99:
Proceedings of the 1st international symposium on
Handheld and Ubiquitous Computing, pp. 89-101,
London, UK.

Schmidt, A., Beigl, M. and Gellersen, H., W. (1999).
There is more to context than location. Computers and
Graphics Journal, 23(6), 893–902.

SpringSource (2007). http://springsource.org/.

A�Mediator�Architecture�for�Context-aware�Composition�in�SOA

251

