
Dynamic Localisation and Automatic Correction of Software Faults
using Evolutionary Mutation Testing

Pantelis Stylianos Yiasemis and Andreas S. Andreou
Department of Computer Engineering and Informatics, Cyprus University of Technology,

31 Archbishop Kyprianou ave., Limassol, Cyprus

Keywords: Mutation Testing, Fault Localization and Correction, Genetic Algorithms.

Abstract: Software testing has recently turned to more “sophisticated” techniques, like automatic, self-adaptive
mutation testing, aiming at improving the effectiveness of the testing process and handling the associated
complexity that increases the level of time and effort spent. Mutation testing refers to the application of
mutation operators on correctly functioning programs so as to induce common programming errors and then
assess the ability of a set of test cases to reveal them. In the above context the present paper introduces a
novel methodology for identifying and correcting faults in Java source code using dynamic slicing coupled
with mutation testing and enhanced by Genetic Algorithms. A series of experiments was conducted to
assess the effectiveness of the proposed approach, using different types of errors and sample programs. The
results were quite encouraging as regards the ability of the approach to localise the faults, as well as to
suggest the appropriate correction(s) to eliminate them.

1 INTRODUCTION

A significant research topic in the area of Software
Engineering is how to increase the productivity and
quality of the software products. A major factor that
affects negatively the aforementioned issues is the
presence of faults. Faults are the source of erroneous
behavior on behalf of a system known as failure.
According to the IEEE standard Glossary of
Software Engineering Terminology failure is defined
as the inability of a system or component to
correctly execute the functions defined by the
required specifications. Fault is an incorrect step,
procedure or data definition in a program, which
summed they lead to failure. They are sometimes
called as problems, errors, anomalies,
inconsistencies or bugs (Patton, 2006).

There are cases in literature where the existence
of faults in software systems of great importance and
cost made the headlines of newspapers. Some
examples of such significant failures include
Disney’s Lion King in 1994-1995, Intel’s Pentium
Floating-Point Division Bug in 1994, NASA’s Mars
Polar Lander in 1999, Patriot Missile Defense
System in 1991, Y2K (Year 2000) Bug originated
decades back - circa 1974 and the Dangerous
Viewing Ahead in 2004 (Patton, 2006).

The software testing process may be divided into
two sub-processes; failure detection, which is
performed during the execution of a program and
debugging, where faults that lead to failure are being
identified and corrected. Most of the developing
firms spend around 50% to 80% of the total
development time in software testing activities,
trying to reduce the number of faults in their source
code. Furthermore, the testing process may be
considered as one of the most demanding, hard and
frustrating set of activities in software development.
The process of actually detecting faults in a software
system takes up to 95% of the whole code
debugging sub-process (Myers, 1979). It is obvious,
therefore, that there is a need to develop highly
effective fault detection methods to improve the
effectiveness and ease the code testing process. This
will subsequently reduce the amount of time code
testing requires, increasing the quality of the code
and the productivity of software developers.

In this study an innovative method is proposed
for detecting and correcting faults in Java code by
combining: Dynamic Code Slicing, Mutation
Testing and Genetic Algorithms (GA). Specifically,
the aim of the paper is to utilize the benefits of
dynamic slicing so as to change the execution flow
of an erroneously behaving program by replacing

15Stylianos Yiasemis P. and S. Andreou A..
Dynamic Localisation and Automatic Correction of Software Faults using Evolutionary Mutation Testing.
DOI: 10.5220/0003992000150026
In Proceedings of the 14th International Conference on Enterprise Information Systems (ICEIS-2012), pages 15-26
ISBN: 978-989-8565-11-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

parts in the particular slice of code that contains one
or more faults. The process of finding the erroneous
line(s) and selecting the correct replacement(s) for
eliminating the faults is a difficult problem with a
large solution space. GA may successfully tackle
this problem by reducing it to a search optimization
problem.

The rest of the paper is organized as follows:
Section 2 presents a short literature overview on
fault localization and mutation testing; this section
also outlines some Computational Intelligence
techniques utilized in this area. Section 3 describes
the technical background behind the algorithms
adopted in the proposed solution. Furthermore, the
basic principles behind Mutation Testing are
introduced along with mutation operations and the
MU Java system. Section 4 describes the aspects of
the proposed methodology, while in section 5, the
application prototype and the experimental results
are presented. This section also demonstrates the
design of the experiments and discusses the
corresponding results. Section 6 provides a critical
stand towards possible limitations of the proposed
approach. Finally, section 7 draws our conclusions
and outlines future research steps.

2 LITERATURE OVERVIEW

Code testing is a time and effort consuming process,
therefore there is a strong need to improve its
effectiveness and reduce the cost associated with
completing its tasks. This led to studies trying to
develop automated code testing methods or/and
tools, which introduce novel algorithmic tasks that
take advantage of computers’ processing power to
reduce human effort. In this context various methods
have been suggested in literature, introducing Delta
debugging, variations of dynamic programming,
failure inducing chops and predicate switching.
Below, we describe a few of these methods that lie
within the area of fault localization and/or program
slicing, as the latter constitutes a very promising
approach that may assist in identifying and isolating
faulty statements.

Fault Localization (FL) is the process of
identifying suspicious code that may contain faults in
the program and then examine it to decide if the
identified code actually contains faults. FL is a
heuristic method using dataflow tests, which supports
execution slicing and dicing based on test cases
(Agrawal, et al., 1995). Agrawal and Horgan (1990)
observed that a fault is located in a slice that
corresponds to a test case which failed during

execution. The search for the fault may then
concentrate on that slice only (dice) and the rest of
the program may be ignored. The results showed that
this method was able to detect some but not every
fault inserted by independent observers, while in
some cases the faults were not even included in the
slices selected. Black et al. (2005) studied the
characteristics of a program’s slices in an attempt to
identify those components that could contain faults.
A slicing profile was formed with slicing metrics and
dependence clusters to investigate if a reliable tool
could be developed so as to identify the more fault
prone components, yielding encouraging preliminary
results. An experimental evaluation using dynamic
slices for fault localization was performed by Zhang
et al. (2005), who proposed a framework for dynamic
slicing of programs with a long execution path. Three
different dynamic slicing algorithms were
implemented and compared, namely data slicing, full
slicing and relevant slicing. The results concluded
that the slices created with data slicing were smaller
than the other two algorithms but they contained on
average less faults. The full slices were larger than
data slices and contained more faults, but were a bit
smaller than the relevant slices which contained even
more faults. Speed-wise data slicing was the fastest
of the three, while relevant slicing the slowest.

Delta debugging is the process of defining the
causes that specify how a program acts by focusing
on the differences (deltas) between the current and
the previous version of that program, as stated by
Gupta in Gupta et al. (2005). Continuing, the method
simplifies and isolates the input that causes the
failure. For isolating and investigating the behavior
of a certain input, delta debugging searches for the
smallest test case scenario that becomes successful
when this input is deleted from the test case. By
utilizing the delta debugging dynamic algorithm, a
method was introduced using the minimal failure
inducing input that delta debugging identifies, to
compute a forward dynamic slice and afterwards
intersect the forward slice with the statements in the
backward slice of the erroneous output to create a
failure-inducing chop, Zhang et al. (2005). The
results showed that these failure-inducing chops may
aid in reducing the size of the search space without
losing the ability to locate the erroneous code.

Mutation Testing (MT) is another technique that
is based on the insertion of faults in a program and
was first introduced in the late 70s by Hamlet (1977)
and Demillo et al. (1978), while nowadays it is
reported in various research studies dealing with
software testing.(e.g. Nica et al. and Harman et al.).
The general idea of MT is that faults commonly

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

16

made by programmers are induced in the initial
programs to create a set of erroneous programs called
mutants, each of them containing a specific change-
fault. The mutants are executed with a set of test
cases and the quality of the set is assessed by
measuring how many faults are detected. Quality is
evaluated using an adequacy score known as
Mutation Score (MS), which is defined as the
number of “killed” mutants (revealed faults) to the
number of the non-equivalent mutants (undetected
faults). Mutation analysis targets at increasing the
mutation score, bringing it closer to 1, so that the set
of test cases used are adequate to detect all the faults
included in the mutants. MT has high computational
costs, as it needs to execute all the test cases on every
mutant, and requires substantial effort on behalf of
the programmers.

Genetic Algorithms (GA) are search algorithms
based on the principles of natural selection and
genetic reproduction (Goldberg, 1989); (Jiang et al.,
2008). Essentially, GA constitute a special class of
optimization techniques that maintain a population of
individuals each of which represents a possible
solution to the problem in hand. The population is
evolved using genetic operators that cross-over and
mutate individuals trying to reach to better solutions
in each generation. The fitness of each individual is
evaluated using a dedicated function. Despite the fact
that GA and program slicing algorithms have been
extensively used in literature, no work has been
reported thus far that combines the two for fault
localization and correction. The work of Jiang et al.
(2008) which describes how software faults may be
localized based on a set of testing requirements and
program slicing inspired the present paper as regards
the encoding of the GA population. The authors
presented an approach to identify dependence
structures in a program that searches a superset of all
possible slices to identify the set of slices that
achieves maximum coverage. The framework yielded
accurate results, showing in practice that it is possible
to express problems of dependency analysis as search
problems and that good solutions can be achieved in
a reasonable time frame by using this technique.

Arcuri and Yao (2008) proposed a framework for
automatic software bug fixing which used co-
evolution where both programs and test cases co-
evolve, aiming at fixing bugs in programs by
influencing each other. The framework requires as
input the faulty program and its formal specification.
The work included some preliminary experiments
that showed its potential applicability for any
implementable program; essentially, it attempts to
evolve the whole program tree, something which

may prove costly and not efficient for large scale
programs. Also, formal specifications are not always
provided, a fact that makes the framework unusable
in these cases.

Genetic Programming (GP) and program analysis
were used by Weimer et al. (2010) in order to repair
off the shelf legacy systems. The GP takes as input
the source code to be repaired, the negative test cases
that exercise the fault as well as several positive test
cases that result in the correct behavior of the system.
It then evolves a modified candidate repair that does
not fail the negative test cases and still passes the
positive test cases. The first candidate that passes all
the negative and positive test cases is called the
primary repair, which is reduced to the minimized
repair after the use of program analysis to get rid of
the irrelevant changes. Using bugs that already
existed in the systems and were not manually
injected provided better conclusions and the study
was the first to work on real programs with real
faults.

3 TECHNICAL BACKGROUND

3.1 Mutation Testing (MT)

As previously mentioned, the general idea behind
MT is that the faults introduced by mutation are
similar to common programming errors. MT is
proven effective in finding a satisfying number of
test cases, which can be used to identify real faults
made by programmers (Hamlet, 1977). The number
of possible faults is quite large, thus traditional MT
targets only those groups of faults which are closer
to the original code. This theory is based on two
hypotheses: Competent Programmer Hypothesis
(CPH) and Coupling Effect (CE). CPH states that
programmers tend to write nearly correct code,
while CE states that test data used to identify simple
faults is sensitive enough to identify complex errors
as well (Offut, 1989). Although there are some
recent studies in literature that deal with high order
mutations, like Harman et al. (2011) and Fraser and
Zeller (2011), this paper focuses only on first order
mutants as these may be considered good enough for
performing adequate testing of program code:
Simple faults may be represented with simple
mutations created with syntactic changes, while
complex faults are being represented with more
complex mutations consisting of more than a single
change in the code.

Traditional MT states that from a program P we
get a set of faulty programs (mutants) after applying

Dynamic�Localisation�and�Automatic�Correction�of�Software�Faults�using�Evolutionary�Mutation�Testing

17

some single syntactic changes on the original code.
The transformation rule that generates a mutant of
the original program is called Mutation or Mutant
Operator (MO). MOs are designed to modify
variables and expressions by replacement, insertion
or deletion (Offutt and Untch, 2001). Before starting
mutation analysis, the original program must be
executed with the test cases to check if it is executed
correctly. Afterwards the set of test cases will be
used to check all the mutants created. If the
execution results of a mutant are different compared
to those of the original program then we may say
that the mutant has been killed, otherwise we say
that it has survived. After execution of all test cases
some mutants may survive, so we need to provide
some additional test data to kill those as well. In the
end, after these additional executions, some mutants
may still have survived as they keep returning the
same results as the original program. These are
called Equivalent Mutants and while they are
syntactically different from the original program
they provide the same functionality.

Testing with mutation methods is completed
with calculating the adequacy score, known also as
Mutation Score (MS), which defines the quality of
the set of test cases given as input to the program.
MS is the analogy of the number of “killed” mutants
against the number of the non-equivalent mutants.
The purpose of mutation analysis is to increase the
mutation score, bringing it closer to 1, which means
that the set of test cases is adequate for detecting all
the faults included in the mutants.

3.2 MuJava and Mutation Operators

A variety of different tools for MT have been
suggested: Mothra (King and Offutt, 1991) is a
versatile environment for FORTRAN, which is the
first full MT software tool. Jester is a simple open
source tool for Java code MT (Binkley et al., 2006)
that is integrated with JUnit, a well-known code
testing environment. Jester does not use any
sophisticated algorithm to accelerate the mutation
process thus resulting in slow performance, while
the number of MO supported is restricted. These
limitations make the use of Jester ineffective and
non-practical for large programs. MuJava (Offutt et
al., 2005) is another system for MT of Java
programs. Its primary objective is to study MO
relevant to Object Oriented programming languages.
At present it is regarded as one of the most complete
tools in terms of MO supported. It offers mutations
for traditional testing, but also for testing at the class
level, by combining two basic technologies, Mutant

Schemata Generation (MSG) and byte-code
translation. Using MSG it creates “meta-mutants” of
the program in at source code level that integrate a
number of mutations. Working directly on the byte-
code means that only two compilations are needed,
the one of the original program and the one of the
meta-mutants that MSG created. This improves the
performance of the tool over other mutation testing
tools that compile all the mutants. Based on the
above useful characteristics, we decided to utilize
MuJava in our study; therefore we outline its basic
features below.

MuJava uses two kinds of MOs, method-level
(Seung and Offutt, 2005) and class-level operators
(Wang and Roychoudhury, 2004). Method-level
operators change the source code by replacing,
deleting and inserting primitive operators. There are
six different primitive operators: arithmetic,
relational, conditional, shift, logical and assignment
operators. Some of these operators consist of a
number of other sub-operators (e.g. binary
arithmetic and shortcuts.

The class mutation operators MuJava uses are
categorized in four different sets based on the
characteristics of the programming language they
affect. These are Encapsulation, Inheritance,
Polymorphism and Java-Specific features.

4 AUTOMATIC,
EVOLUTIONARY MUTATION
TESTING

The goal of the proposed approach is to offer an
efficient, automatic way to define the specific line or
the smaller possible set of lines responsible for a
fault present in a Java program. More to that, the
approach aims at suggesting the necessary
correction(s) that remove the fault. The use of
dynamic slicing enables isolating those lines of a
program that affect a variable at a given point of
interest for certain executions using specific input
values. We set manually the slicing criterion in an
input file which contains the source code file’s name
and the line with the criterion for the creation of the
slice. Also, the normalized version of the initial
source code is fed as input to the dynamic slicing
algorithm. The number of possible corrections,
though, to be performed on the slice for removing a
fault is usually large thus making its manual
processing hard and time consuming. Mutation
testing techniques applied to the code contained in
the slice may be considered as the answer removing

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

18

Figure 1: The proposed hybrid approach for fault localization and correction combining dynamic slicing, mutation testing
and Genetic Algorithms.

a fault is usually large thus making its manual
processing hard and time consuming. Mutation
testing techniques applied to the code contained in
the slice may be considered as the answer to this
problem. Therefore, the proposed approach
combines dynamic slicing with mutation testing,
with the two being further enhanced by the use of
genetic algorithms to evolve mutant solutions for
fault correction (see Fig. 1).

Every possible solution to our problem is
represented as a chromosome of size N, where N is
the number of lines contained in a slice. Each line in
the slice is represented as a gene that may take any
value in the domain [0, K]. K is the maximum
number of supported mutation operators. Any value
different than zero, corresponds to a specific
mutation operation that is applied to that line. The
search space of the genetic algorithm based on our
encoding scheme for a dynamic slice of size N is:

(A1 +1) * (A2 +1) * (A3 + 1) *….* (AN +1) (1)

where Ax is the number of replacements for line x in
the slice. As the case of no replacements is valid as
well, it is necessary to add 1 to each number of
replacements for each line so that the minimum size
of the search space is 1 (i.e. no mutations are applied
on any line).

To drive the algorithm to the best possible
solution we use a Fitness Function that takes into
account the results of the execution of each of the
mutated programs, using a number of predefined

successful and faulty test cases, that is, test scenarios
that execute correctly or not respectively on the
original unmodified program. Then the algorithm
assesses a specific replacement based on two
elements:
• The number of successful test cases that remain
successful after the replacement
• The number of faulty test case scenarios that
become successful after the replacement has taken
place.
The probability of a line to include a fault increases
proportionally to the fitness of its “best”
replacement. A specific solution suggests one or
more lines that contain a fault. The number of lines
contained in each solution affects the fitness of that
specific solution. Specifically, each suggested
solution (chromosome) is evaluated using the
following formula:

() ()

SLWN

FSCFWFSSSCSWSSL

n

F

k
nknn

S

j
njnn

⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+⋅∑ ∑∑=

==
1

1
,

1
, (2)

where:
SSn and FSn are the numbers of successful test case
scenarios that remained successful, and of faulty
scenarios that turned to successful respectively after
replacement n,
SWn and FWn are weights defining the significance
of the successful and faulty test case scenarios
respectively,

Dynamic�Localisation�and�Automatic�Correction�of�Software�Faults�using�Evolutionary�Mutation�Testing

19

Table 1: Mutation Operators used in our algorithm.

Method Level Mutation Operators
AOR - Arithmetic Operator Replacement
AOI - Arithmetic Operator Insertion
AOD - Arithmetic Operator Deletion
ROR - Relational Operator Replacement
COR - Conditional Operator Replacement
COI - Conditional Operator Insertion

COD - Conditional Operator Deletion
SOR - Shift Operator Replacement
LOR - Logical Operator Replacement
LOI - Logical Operator Insertion
LOD - Logical Operator Deletion

Class Level Mutation Operators
IHD - Hiding variable deletion
IOP - Overriding method calling position change
ISI - super keyword insertion
ISD - super keyword deletion
IPC - Explicit call to a parent's constructor deletion
PNC - new method call with child class type
PMD - Member variable declaration with parent class type
PPD - Parameter variable declaration with child class type
PCI - Type cast operator insertion
Polymorphism PCC Cast type change
PCD - Type cast operator deletion
PCC - Cast type change

PRV - Reference assignment with other comparable variable
OAC - Arguments of overloading method call change
JTI - this keyword insertion
JTD - this keyword deletion
JSI - static modifier insertion
JSD - static modifier deletion
JID - Member variable initialization deletion
EOA - Reference assignment and content assignment replacement
EOC - Reference comparison and content comparison replacement
EAM - Acessor method change
EMM - Modifier method change

SSCj,n is a constant score for a specific successful
test case scenario j after replacement n (in case we
want to give a specific successful scenario higher
importance over the others)
FSCj,n is a constant score for a specific faulty test
case scenario j after replacement n (in case we want
to give a specific faulty scenario higher importance
over the others)
SLW is a weight that reflects the importance of the
slice size,
L is the number of lines contained in the proposed
solution, i.e. the number of genes that were graded
with a value different of 0,
S and F are the number of successful and faulty test
scenarios respectively, and N the slice size.
The algorithm terminates if: (i) The predefined
maximum number of generations has been reached,
or, (ii) A chromosome has been evolved that yields
the highest possible fitness score as expressed by
eq.(2) - this is achieved when the chromosome
involves only one line that contains the fault and the
proposed replacement converts all faulty test cases
to successful, or (iii) For the last M generations the
fitness of the best chromosome becomes equal or
lower compared to that of the previous generation
and M exceeds the 25% of the total number of
generations set.

4.1 Application Issues

A dedicated software tool was developed to support

the proposed approach (screenshots are provided in
Fig. 2). First, the user defines the folder that contains
the source files and packages of the Java code under
testing, as well as the mutation operators to be
applied. The operators supported are part of those
provided by the MuJava tool, specifically those that
fit the purposes of this work (see Table 1).

The tool applies the mutation operators on the
selected program and creates a new copy of the
original file for each mutation. When the production
of all code mutation cases is completed, the user sets
the slicing criterion according to which the dynamic
slice will be created, which is basically the line
where a “faulty” result or an erroneous value of a
certain variable is observed. The dynamic slice of
the program is produced through a call to the JSlice
tool (jslice.sourceforge.net). Continuing, the user
executes the algorithm by defining the test cases
files that contain the successful and faulty testing
scenarios to be used, as well as the weights that
involve three decimal numbers defining the grading
weights for the mutations. Next, the definition of the
initial values for the parameters of the Genetic
Algorithm takes place, with the domain value for
each gene being based on the maximum allowable
number of mutations for the line it represents.

5 EXPERIMENTAL RESULTS

This section reports on the results of the

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

20

Figure 2: Screenshots of the supporting software tool.

experimental process. Three series of experiments
were conducted: Category A includes mutant
programs with errors at the level of methods, while
category B involves errors induced at the level of
classes. Category C evaluates the scalability of the
proposed approach on large real-world programs. It
is worth noting that the experiments were performed
on a Dell Inspiron I6000 machine with Intel Pentium
M processor at 1.73GHz and 2.00 GB of RAM.

The initial settings of the GA and its fitness
function were as follows: For every slice FW=3.0,
SW=1.0 and the slice size weight SLW=1.0. The
number of generations was set equal to 200, thus
calculating M to 50. Mutation and crossover
probabilities were set to 0.01 and 0.3 respectively,
while roulette wheel was used as the selection
mechanism. Finally, equal importance was given to
all scenarios, with SSC and FSC being set to the
constant value of 10 for every scenario. The
experimental results reported below for the former
two categories are the average of 25 GA runs.

5.1 Experiment Series A’

This group corresponds to mutations performed at
the method level. More specifically, single errors
producing first order mutations have been induced
for the following operator categories: (i) Arithmetic,
(ii) Relational, (iii) Conditional, (iv) Logical and (v)
Assignment. The latter was performed via a shift
operation thus covering also this specific category of
mutation operators.

The sample programs used in the experiments
correspond to programming solutions to well-known
problems that are usually treated as benchmarks;
these programs are available at http://www.cut.

ac.cy/staff/%20andreas.andreou/files and are briefly
described below.
Credit Card Validation: This sample program reads a
credit card number of x digits and returns its vendor,
which may be one of the following: Visa, AMEX,
Diners/Carte Blanche, JCB and MasterCard (or none
of these). The program may also check the digits of
the card using an algorithm that is suitable for that
particular vendor so as to validate the card number.
Triangle Classification: This program, given the
three sides (lengths) of a triangle, performs
classification in certain categories (e.g. equilateral,
isosceles, scalene etc.).
Base 64: This program receives an input string,
encodes it using a 64-character set representation
and finally decodes it back to string, which returns it
as output.
Table 2 lists the results: the sample program, the
mutation performed and the line where the error was
located are indicated in the first column, while the
subsequent columns include the exact statement(s)
with the proposed correction and the number of
testing scenarios, both successful and unsuccessful,
that were used to guide the evolutionary process.
The selection of these scenarios was performed
automatically by a search-based module of the
supporting tool that parsed the program under test
and recognized the different cases that should be
described through scenarios (success/fail) in order
for the algorithm to identify the correct functioning.
An example of testing scenarios is given in Table 3
for the Credit Card Validation program. Finally, the
last column of Table 2 indicates the time for
execution.

It is worth noting that in all cases the error pre-

Dynamic�Localisation�and�Automatic�Correction�of�Software�Faults�using�Evolutionary�Mutation�Testing

21

Table 2: Results obtained using mutations performed at the method level.

Sample Program Initial Statement Vs Mutated Statement Testing
Scenarios

Time
(sec)

Credit Card
Validation
MO: AOD
LOC: 57

cachedLastFind=i
<vs>

cachedLastFind=i++

2 Success
6 Fail 337

Triangle Classification
MO: ROR
LOC: 30

if ((i + j <= k) || (j + k <= i) || (i + k <= j))
<vs>

if ((i + j == k) || (j + k <= i) || (i + k <= j))

5 Success
1 Fail 136

Credit Card
Validation
MO: COR
LOC: 56

if (ranges[i].low<= creditCardNumber && creditCardNumber<= ranges[i].high)
<vs>

if(ranges[i].low<= creditCardNumber || creditCardNumber<= ranges[i].high)

7 Success
2 Fail 696

Base64
MO: LOR
LOC: 147

combined |= b[i + 2] & 0xff
<vs>

combined |= b[i + 2] | 0xff

2 Success
1 Fail 448

Base64
MO: ASR
LOC: 144

combined <<= 8
<vs>

combined >>= 8

2 Success
3 Fail 191

Table 3: Sample of the testing scenarios used for the Credit Card Validation sample program.

\ m i n d p r o d \ c r e d i t c a r d \ V a l i d a t e C r e d i t C a r d . j a v a 1
F ; 3 7 9 9 9 9 9 9 9 9 9 9 9 9 9 ; v e n d o r _ n a m e . e q u a l s (" A M E X ")
S ; 4 0 0 0 0 0 0 0 0 0 0 0 0 ; v e n d o r _ n a m e . e q u a l s (" V i s a ")
S ; 4 9 9 9 9 9 9 9 9 9 9 9 8 ; v e n d o r _ n a m e . e q u a l s (" V i s a ")
S ; 0 ; v e n d o r _ n a m e . e q u a l s (" E r r : n o e n o u g h d i g i t s ”)
F ; 6 0 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ; v e n d o r _ n a m e . e q u a l s (" A M E X ")

sent was successfully detected and corrected, with
the time-frame of execution ranging from less than
2,5 to almost 12 minutes, depending on how difficult
the error was for the algorithm to locate and provide
the proper correction.

5.2 Experiment Series B’

This group includes programs that were fed with
single errors corresponding to mutations at the class
level. More specifically, the errors induced relate to
special features of the Java programming language
and also to inheritance.

The sample programs used (available at
http://www.cut.ac.cy/staff/%20andreas.andreou/files
) were the following:
Person Sorted List: This program receives a set of
numbers corresponding to the identity card numbers
of persons and sorts them in a list. An object of type
Person is inserted in the list if its ID is not already
part of it. Finally, it returns the number of persons in
the list. The program uses inheritance for different
types of persons like for example employee and
student. This program was modified in line 12 of the
file “Student.java”, using the IHD mutation operator,
which inserted variable id in child class Student so

as to hide the corresponding variable in the parent
class Person. Also, this program was used in another
experiment where line 83 of the file “Person.java”
was modified using operator EOC so as to replace
method equals with the “==” operand thus providing
comparison at the level of reference instead of
content.
Shapes: It is a simple program that receives four
input parameters (numbers) that correspond to the
dimensions of a circle (first parameter – radius), a
square (second parameter – side) and a rectangle
(third and fourth parameters –sides A and B). The
program calculates the area of each shape based on
the input parameters and then it sorts the shapes
using a Splay Tree according to their area. Finally, it
returns the name of the shape with the maximum
area. The “Circle.java” file was modified using the
IOP operator and more specifically, lines 19 and 20
were interchanged so as to call the method that
calculates the area of the shape prior to assigning
values to variables x1 and y1 which correspond to
the sides of the shape.
Graph-Shortest Path: This program receives a file as
input which includes the description of a graph,
along with the cost of each edge. More specifically,
the program requires three input parameters, the first

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

22

Table 4: Results obtained using mutations performed at the class level.

Sample
Program

Initial Statement
vs

Mutated Statement

Testing
Scenarios

Time
(sec)

Person Sorted
List

MO: IHD
LOC: 12

public Student(java.lang.Integer id, java.lang.String n, int
ag, java.lang.String ad,java.lang.String p, double g)

<vs>
public java.lang.Integer id = new java.lang.Integer(0);

public Student(java.lang.Integer id, java.lang.String n, int
ag, java.lang.String ad, java.lang.String p, double g)

<<LINE 12 DELETED>>

3 Success
2 Fail 81

Shapes
MO: IOP

LOC: 19, 20

super.setValues(x1,y1);
Area();
<vs>

Area();
super.setValues(x1,y1);

4 Success
3 Fail 677

Graph
Shortest Path

MO: JTI
LOC: 17

this.cost=cost;
<vs>

cost=cost;

3 Success
2 Fail 392

Graph
Shortest Path

MO: JSD
LOC: 24

public int scratch=0
<vs>

public static int scratch=0

5 Success
3 Fail 778

Person Sorted
List

MO: EOC
LOC: 83

boolean equals = otherId.equals(thisId)
<vs>

boolean equals = otherId == thisId

4 Success
3 Fail 95

Order Set
MO: EAM
LOC: 260

int size2 = s2.getSetLast() + 1;
<vs>

int size2 = s2.getActualSize() + 1;

1 Success
2 Fail 37

two corresponding to the start and end of a certain
route respectively and the third defining the
algorithm which will be used to calculate the
shortest path and its corresponding cost. The
program returns the sequence of nodes which
constitute the shortest path and the cost of that path
according to the input values. The program was
modified in line 17 of the “Edge.java” file so as to
include an error caused by the use of the JTI
mutation operator. More specifically, the keyword
“this” was removed during the assignment of the
local variable cost. Therefore, the value of cost was
assigned to the variable itself instead of the local
variable cost. Also, this program was used in another
experiment, where line 24 of the file “Vertex.java”
was modified using operator JSD so as to insert the
keyword “static” in the definition of variable
scratch, thus causing all instances (objects) of class
Vertex to have the same value for that variable.
Order Set: This program receives two sorted arrays
as inputs and returns a new array which contains
only the elements that are common between the
input arrays (line 260 in file “OrderSet.java” was
modified with the EAM operator by substituting the
call to method getSetLast() with the call to method
getActualSize()).

Table 4 presents the results of the second category of
experiments. Again the number of replacements
(lines) suggested by the GA was always of size 1,
while in all cases the error present was successfully
detected and corrected. The time of execution
ranged from less than 1 to almost 13 minutes, again
depending on the type of the error.

Concluding, the two series of experiments
provided strong indications that the proposed
approach works quite satisfactory, covering a
relatively wide variety of errors, both in terms of
type and complexity, locating and successfully
correcting the erroneous statement in 100% of the
benchmark cases.

5.3 Experiment Series C’

The last series of experiments involved programs
implemented as assignments by a group of
undergraduate students at the University <blinded
for review purposes> enrolled in an Object Oriented
Programming course using Java. The general idea
here was to evaluate the proposed approach with
large, real-world code with actual, not hand-seeded,
faults that are accidentally made while
programming.

Two projects with different functional targets

Dynamic�Localisation�and�Automatic�Correction�of�Software�Faults�using�Evolutionary�Mutation�Testing

23

were assigned to two classes of students; the first
numbered 43 students and the second 38. Therefore,
a total of 81 programs were used in the experiments;
the programs ranged in size from 160 to 1400 lines
of code.

The first project assignment required the
development of a simple library system, which
would allow the user to store, borrow and delete
books. The library was to be implemented using an
array of Book objects. The user would be able to
insert a new book from the main menu by entering
relevant book details. In case the user wanted to
borrow a book, the attribute Free of that Book object
would be changed to false. The deletion of a book
would remove the object from the Library array.
Both Deletion and Borrowing required the book’s
ISBN number.

The second assignment was about a text-based
labyrinth game. Each time the game would start with
a random labyrinth of NxN size, where N was a
user-defined variable entered at the start of the game
execution. The labyrinth structure would be created
as an array of NxN random rooms from the
predefined Room objects, with each room containing
traps that would affect the player when entering that
room. The user would try to escape from the
labyrinth by choosing which door in each room
he/she should enter. The player would win the game
when he/she would reach the exit.

The algorithm was executed on the first version
of each student’s code, i.e. after the first level of
debugging and prior to final testing (proofing). We
observed that the algorithm fixed approximately
80% of the errors present in the programs (an
average of 3 errors in the first assignment and 5 in
the second). For these faults the algorithm correctly
evolved and eventually proposed the correct
repair(s). What differed from the results of the
previous two experiment series was the size of the
resulting slices which was larger in this case. This
was expected due to the fact that, contrary to the
previous experiments where there was only a single
hand-seeded fault in the sample programs, this series
of programs contained more complicated faults
affecting an increased number of lines of code.

The rest 20% of the faults that remained
“uncorrected” were actually not addressed at all by
the tool as they resided in statements that could not
be handled by the parsing module of the supporting
tool, or did not fall in the categories of operators that
MuJava supports. In addition, some of the faults
required repairs in lines that were previously
changed when repairing a former fault in top-down
sequence. This fact is not currently handled by our

approach so the faults remained intact (see next
section for more details). Therefore, in all of the
aforementioned cases we had to skip those particular
faults as practically no input could be fed to the
algorithm, or its execution would have resulted in
regression faults.

Further analysis of the type of errors found and
the repairs applied was not among the targets of this
experimental series as our goal was just to show how
the algorithm scales up with programs of larger size
that contain “real” faults made by the programmers.
In this context the algorithm performed well as it
covered a large amount of the errors and yielded a
reasonable size of slice where the appropriate
corrections were successfully suggested
irrespectively of the total size of the program under
investigation.

6 DISCUSSION ON POSSIBLE
THREATS TO VALIDITY

This section briefly presents and discusses some
considerations:
(i) The programs used in the two first experiment
series were small and contained seeded, not real
faults, and therefore one may argue that this may
affect the validity of the results in some way. This,
actually, does not constitute a threat to the validity
of the proposed approach as: (a) The programs used
in series A and B were of the order of some
hundreds of LOC, which are lower than some
studies reported in the literature (e.g. Harman et al.;
Fraser and Zeller). This size, though, is among the
acceptable average sizes for classes and methods
within classes. Our approach works at the level of
units, therefore the overall size of the program is not
so important, as the proposed algorithm will
concentrate on the smaller, independent parts of the
source code each time. This was exactly the process
followed for the larger programs of series C,
therefore we consider the proposed approach able to
cope with practically any size of code. Additionally,
the faults induced simulate the actual omissions or
mistakes made by programmers, thus we believe that
the impact of the “fakeness” of the errors used in
this study is minimal. (b) A set of programs with
“real” faults was also used in the experimentation
which were implemented by university students at
their final stage before graduating; thus, these
subjects may be considered very close or similar in
skills with young programmers recruited by SMEs in
the software industry and consequently their faults

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

24

may be considered identical to those of professional
programmers.
(ii) As stated above the faults were hand-seeded so it
was easy to know what affected the normal
operation of the program so as to set as the slicing
criterion. Under normal circumstances this would be
hard as the users would have to understand what
could possibly create the fault to include it in the
slicing criterion. This was true for experiment series
A and B. With series C, though, it became evident
that this aspect depends only on the programming
(debugging) skills of developers rather than the
method used. Therefore, this does not threaten the
validity of our results.
(iii) The selection of the testing scenarios was
performed manually, based on the type of the
program and the relevant functional specifications.
The test cases were chosen so as to cover the largest
possible number of different paths of execution and
this is an issue that deserves research in its own
merit; tools that are able assess the quality of the test
cases against the specifications of a program could
be used in order to select the best possible set of test
data automatically, and this is something we plan to
pursue in the future.
(iv) One of our concerns was the fact that a change
being made to a part of the code could influence
other areas of the program possibly creating new
(regression) faults. In this case we may identify two
different scenarios: (a) In the case where the fault
repaired affects a line of code that is below the
changed statements as we move from top to bottom
in sequence of execution then this would not really
be considered a problem as the new fault would be
identified at a subsequent stage in a new slice. (b) If
the algorithm attempted to change a previously
repaired statement that removed a formerly
addressed fault then this would have gone
undetected by the algorithm. At the moment what
we do to handle this problem is that we create a log-
file that contains all previous changes (repairs) made
in the code; a controller module consults this log-file
prior to exercising mutations and prevents the
algorithm from attempting to make any changes to
repaired statements. In this case the algorithm skips
the error, puts it in a separate file with “uncorrected”
faults and continues with the next fault with proper
notification of the user.

7 CONCLUSIONS

Software development suffers from low product
quality and high percentage of project failure. The

presence of faults is one of the major factors
affecting the quality of delivered products; that is
why a high percentage of development time is
devoted to testing. Most of the time spend in
software testing is devoted on actually locating the
faults in the source code instead of correcting them.
It is obvious that there is a strong need to develop a
highly effective method for fault detection so as to
reduce the time required by the testing process and
assist in increasing the quality of the code and the
productivity of software developers.

In this paper we proposed a novel approach that
is able to automatically detect and correct faults in
Java code. The approach utilizes dynamic code
slicing for localising a fault and suggests possible
corrections with the use of Mutation Testing. Jslice
was used for creating the slices, while MuJava was
the tool adopted for applying different mutation
operators selected by the user, both at method, as
well as at class level. The process of fault detection
and correction through statement replacement is a
problem difficult to tackle, with a large solution
space; thus, we resorted in using Genetic Algorithms
so as to reduce it to a search optimization problem.
The GA evolved a number of candidate solutions-
replacements of statements that were assessed by a
dedicated fitness function.

Two series of experiments with hand-seeded
errors were conducted using sample programs
corresponding to well-known problems that are
normally used as benchmarks for testing. Series A’
involved programs with method-level errors,
specifically arithmetical, relational, conditional,
logical and assignment errors, while series B’
included programs containing class-level errors
related to Java features and inheritance. The results
suggested that the proposed approach works quite
satisfactory, covering a wide range of errors, both in
terms of type and complexity, while it always yields
the smallest possible slice containing the error and
suggests the correct replacement that removes the
fault.

A third series of experiments was also
conducted, using two different programming
assignments of undergraduate students delivered in
the context of an O-O Programming course. The
algorithm was applied on the first version of the
code after the first level of debugging and the results
were really encouraging as they showed that the
algorithm scaled up nicely with large programs
containing “real” faults made by programmers and
not hand-seeded ones.

There are quite a few research steps that may be
performed based on the present work: First, we will

Dynamic�Localisation�and�Automatic�Correction�of�Software�Faults�using�Evolutionary�Mutation�Testing

25

attempt to collect more real case examples of
programs so as to have a richer close-to-reality set of
results. Second, a better analysis of the time, results
and performance of the students’ assignments will
be made, as well as assessment of the performance
of the algorithm with respect to different types of
faults, their number per slice and their average
complexity. Third, we plan to investigate the
potentials of integrating a supporting module to the
existing tool that will enable a more “sophisticated”
way for selecting the appropriate test case scenarios
automatically based on pre- and post- conditions that
express the functional specifications of a program.
Fourth, we will address the problem of regression
faults by attempting to provide simultaneous repairs
to more than one fault. To this end we will modify
our Genetic Algorithm so as to support multi-
objective optimization through multithreading and
parallel processing. Fifth, the tool will be upgraded
to include the statements of Java that our current
implementation of the parser does not support so as
to cover an even larger number of errors. Finally,
our future research plans also involve increasing the
set of mutation operators supported, with the
inclusion of more complicated replacement
operators.

REFERENCES

Agrawal, H., Horgan, J.R., 1990. Dynamic program
slicing. In ACM SIGPLAN Conference on
programming Language Design and Implementation,
White Plains, New York, U.S.A., ACM Press, pp.
246-256.

Agrawal, H., Horgan, J. R., London, S., Wong, W. E.,
1995. Fault Localization Using Execution Slices and
Dataflow Tests. In Sixth International Symposium on
Software Reliability Engineering, Volume-Issue: 24-
27, pp. 143 – 151.

Arcuri, A., Yao, X., 2008. A novel co-evolutionary
approach to automatic software bug fixing. In IEEE
Congress on Evolutionary Computation IEEE World
Congress on Computational Intelligence, pp. 162-168

Binkley, D., Danicic, S., Gyimothy, T., Harman, M., Kiss,
A., Korel, B., 2006. Theoretical foundations of
dynamic program slicing. Theoretical Computer
Science, pp.23-41.

Black, S., Counsell, S., Hall, T., Wernick, P., 2005. Using
Program Slicing to identify Faults in Software.
Dagstuhl, Seminar Nº 05451.

DeMillo, R. A., Lipton, R. J., Sayward, F. G., 1978. Hints
on Test Data Selection: Help for the Practicing
Programmer. IEEE Computer 11(4), pp. 34-41.

Fraser, G., Zeller, A., 2011. Generating Parameterized
Unit Tests. In International Symposium on Software
Testing and Analysis (ISSTA’11), July 17-21, Toronto,

Canada.
Goldberg, D. E., 1989. Genetic Algorithms in Search,

Optimization and Machine Learning. Addison-
Wesley.

Gupta, N., He, H., Zhang, X., Gupta, R., 2005. Locating
Faulty Code Using Failure-Inducing Chops. In
IEEE/ACM International Conference On Automated
Software Engineering, Long Beach, CA.

Hamlet, R. G., 1977. Testing Programs with the Aid of a
Compiler. IEEE Transactions on Software
Engineering, 3(4), pp. 279-290.

Harman, M., Jia, Y., Langdon, W. B., 2011. Strong Higher
Order Mutation-Base Test Data Generation. In
ESEC/FSE’11, September 5-9, Szeged, Hungary.

Jiang, T., Gold, N., Harman, M., Li, Z., 2008. Locating
Dependence Structures Using Search Based Slicing.
Journal of Information and Software Technology,
Volume 50, No.12, pp. 1189-1209.

King, K. N., Offutt, J., 1991. A Fortran Language System
for Mutation-Based Software Testing. Software
Practice and Experience, 21(7), pp. 686-718.

Ma, Y.S., Offutt, J., 2005. Description of Method-level
Mutation Operators for Java. http://cs.gmu.edu
/~offutt/ mujava/mutopsMethod.pdf.

Myers, G. J., 1979. The Art of Software Testing. Wiley-
Interscience.

Nica, M., Nica, S., Wotawa, F., 2012. On the use of
mutations and testing for debugging. Software-
Practice and Experience, Article published online.

Offutt, A. J., 1989. The Coupling Effect: Fact or Fiction.
In ACM SIGSOFT '89 - Third symposium on Software
testing, analysis, and verification ACM New York,
NY, USA ACM.

Offutt, A. J., Untch, R. H., 2001. Mutation 2000: Uniting
the Orthogonal. In 1st Workshop on Mutation Analysis
(MUTATION'00), San Jose, California, pp.34-44.

Offutt, J., Ma, Y. S., Kwon, Y. R., 2005. MuJava : An
Automated Class Mutation System. Software Testing,
Verification and Reliability, vol. 15, pp. 97-133.

Patton, R., 2006. Software Testing, Sams Publishing, 2nd
edition.

Wang, T., Roychoudhury, A., 2004. Using compressed
bytecode traces for slicing Java programs. In
ACM/IEEE International Conference on Software
Engineering (ICSE), pp. 512-521.

Weimer, W., Forrest, S., Le Goues, C., Nguyen, T., 2010.
Automatic program repair with evolutionary
computation. Communications of the ACM Research
Highlight 53:5 pp. 109-116.

Zhang, X., He, H., Gupta, N., Gupta, R., 2005.
Experimental Evaluation of Using Dynamic Slices for
Fault Location. In Sixth International Symposium on
Automated and Analysis-Driven Debugging,
Monterey, California.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

26

