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Abstract: Software testing has recently turned to more “sophisticated” techniques, like automatic, self-adaptive 
mutation testing, aiming at improving the effectiveness of the testing process and handling the associated 
complexity that increases the level of time and effort spent. Mutation testing refers to the application of 
mutation operators on correctly functioning programs so as to induce common programming errors and then 
assess the ability of a set of test cases to reveal them. In the above context the present paper introduces a 
novel methodology for identifying and correcting faults in Java source code using dynamic slicing coupled 
with mutation testing and enhanced by Genetic Algorithms. A series of experiments was conducted to 
assess the effectiveness of the proposed approach, using different types of errors and sample programs. The 
results were quite encouraging as regards the ability of the approach to localise the faults, as well as to 
suggest the appropriate correction(s) to eliminate them. 

1 INTRODUCTION 

A significant research topic in the area of Software 
Engineering is how to increase the productivity and 
quality of the software products. A major factor that 
affects negatively the aforementioned issues is the 
presence of faults. Faults are the source of erroneous 
behavior on behalf of a system known as failure. 
According to the IEEE standard Glossary of 
Software Engineering Terminology failure is defined 
as the inability of a system or component to 
correctly execute the functions defined by the 
required specifications. Fault is an incorrect step, 
procedure or data definition in a program, which 
summed they lead to failure. They are sometimes 
called as problems, errors, anomalies, 
inconsistencies or bugs (Patton, 2006).  

There are cases in literature where the existence 
of faults in software systems of great importance and 
cost made the headlines of newspapers. Some 
examples of such significant failures include 
Disney’s Lion King in 1994-1995, Intel’s Pentium 
Floating-Point Division Bug in 1994, NASA’s Mars 
Polar Lander in 1999, Patriot Missile Defense 
System in 1991, Y2K (Year 2000) Bug originated 
decades back - circa 1974 and the Dangerous 
Viewing Ahead in 2004 (Patton, 2006). 

The software testing process may be divided into 
two sub-processes; failure detection, which is 
performed during the execution of a program and 
debugging, where faults that lead to failure are being 
identified and corrected. Most of the developing 
firms spend around 50% to 80% of the total 
development time in software testing activities, 
trying to reduce the number of faults in their source 
code. Furthermore, the testing process may be 
considered as one of the most demanding, hard and 
frustrating set of activities in software development. 
The process of actually detecting faults in a software 
system takes up to 95% of the whole code 
debugging sub-process (Myers, 1979). It is obvious, 
therefore, that there is a need to develop highly 
effective fault detection methods to improve the 
effectiveness and ease the code testing process. This 
will subsequently reduce the amount of time code 
testing requires, increasing the quality of the code 
and the productivity of software developers. 

In this study an innovative method is proposed 
for detecting and correcting faults in Java code by 
combining: Dynamic Code Slicing, Mutation 
Testing and Genetic Algorithms (GA). Specifically, 
the aim of the paper is to utilize the benefits of 
dynamic slicing so as to change the execution flow 
of an erroneously behaving program by replacing 

15Stylianos Yiasemis P. and S. Andreou A..
Dynamic Localisation and Automatic Correction of Software Faults using Evolutionary Mutation Testing.
DOI: 10.5220/0003992000150026
In Proceedings of the 14th International Conference on Enterprise Information Systems (ICEIS-2012), pages 15-26
ISBN: 978-989-8565-11-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



 

parts in the particular slice of code that contains one 
or more faults. The process of finding the erroneous 
line(s) and selecting the correct replacement(s) for 
eliminating the faults is a difficult problem with a 
large solution space. GA may successfully tackle 
this problem by reducing it to a search optimization 
problem. 

The rest of the paper is organized as follows: 
Section 2 presents a short literature overview on 
fault localization and mutation testing; this section 
also outlines some Computational Intelligence 
techniques utilized in this area. Section 3 describes 
the technical background behind the algorithms 
adopted in the proposed solution. Furthermore, the 
basic principles behind Mutation Testing are 
introduced along with mutation operations and the 
MU Java system. Section 4 describes the aspects of 
the proposed methodology, while in section 5, the 
application prototype and the experimental results 
are presented. This section also demonstrates the 
design of the experiments and discusses the 
corresponding results. Section 6 provides a critical 
stand towards possible limitations of the proposed 
approach. Finally, section 7 draws our conclusions 
and outlines future research steps. 

2 LITERATURE OVERVIEW 

Code testing is a time and effort consuming process, 
therefore there is a strong need to improve its 
effectiveness and reduce the cost associated with 
completing its tasks. This led to studies trying to 
develop automated code testing methods or/and 
tools, which introduce novel algorithmic tasks that 
take advantage of computers’ processing power to 
reduce human effort. In this context various methods 
have been suggested in literature, introducing Delta 
debugging, variations of dynamic programming, 
failure inducing chops and predicate switching. 
Below, we describe a few of these methods that lie 
within the area of fault localization and/or program 
slicing, as the latter constitutes a very promising 
approach that may assist in identifying and isolating 
faulty statements.  

Fault Localization (FL) is the process of 
identifying suspicious code that may contain faults in 
the program and then examine it to decide if the 
identified code actually contains faults. FL is a 
heuristic method using dataflow tests, which supports 
execution slicing and dicing based on test cases 
(Agrawal, et al., 1995). Agrawal and Horgan (1990) 
observed that a fault is located in a slice that 
corresponds to a test case which failed during 

execution. The search for the fault may then 
concentrate on that slice only (dice) and the rest of 
the program may be ignored. The results showed that 
this method was able to detect some but not every 
fault inserted by independent observers, while in 
some cases the faults were not even included in the 
slices selected. Black et al. (2005) studied the 
characteristics of a program’s slices in an attempt to 
identify those components that could contain faults. 
A slicing profile was formed with slicing metrics and 
dependence clusters to investigate if a reliable tool 
could be developed so as to identify the more fault 
prone components, yielding encouraging preliminary 
results. An experimental evaluation using dynamic 
slices for fault localization was performed by Zhang 
et al. (2005), who proposed a framework for dynamic 
slicing of programs with a long execution path. Three 
different dynamic slicing algorithms were 
implemented and compared, namely data slicing, full 
slicing and relevant slicing. The results concluded 
that the slices created with data slicing were smaller 
than the other two algorithms but they contained on 
average less faults. The full slices were larger than 
data slices and contained more faults, but were a bit 
smaller than the relevant slices which contained even 
more faults. Speed-wise data slicing was the fastest 
of the three, while relevant slicing the slowest. 

Delta debugging is the process of defining the 
causes that specify how a program acts by focusing 
on the differences (deltas) between the current and 
the previous version of that program, as stated by 
Gupta in Gupta et al. (2005). Continuing, the method 
simplifies and isolates the input that causes the 
failure. For isolating and investigating the behavior 
of a certain input, delta debugging searches for the 
smallest test case scenario that becomes successful 
when this input is deleted from the test case. By 
utilizing the delta debugging dynamic algorithm, a 
method was introduced using the minimal failure 
inducing input that delta debugging identifies, to 
compute a forward dynamic slice and afterwards 
intersect the forward slice with the statements in the 
backward slice of the erroneous output to create a 
failure-inducing chop, Zhang et al. (2005). The 
results showed that these failure-inducing chops may 
aid in reducing the size of the search space without 
losing the ability to locate the erroneous code.  

Mutation Testing (MT) is another technique that 
is based on the insertion of faults in a program and 
was first introduced in the late 70s by Hamlet (1977) 
and Demillo et al. (1978), while nowadays it is 
reported in various research studies dealing with 
software testing.(e.g. Nica et al. and Harman et al.). 
The general idea of MT is that faults commonly 
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made by programmers are induced in the initial 
programs to create a set of erroneous programs called 
mutants, each of them containing a specific change-
fault. The mutants are executed with a set of test 
cases and the quality of the set is assessed by 
measuring how many faults are detected. Quality is 
evaluated using an adequacy score known as 
Mutation Score (MS), which is defined as the 
number of “killed” mutants (revealed faults) to the 
number of the non-equivalent mutants (undetected 
faults). Mutation analysis targets at increasing the 
mutation score, bringing it closer to 1, so that the set 
of test cases used are adequate to detect all the faults 
included in the mutants. MT has high computational 
costs, as it needs to execute all the test cases on every 
mutant, and requires substantial effort on behalf of 
the programmers. 

Genetic Algorithms (GA) are search algorithms 
based on the principles of natural selection and 
genetic reproduction (Goldberg, 1989); (Jiang et al., 
2008). Essentially, GA constitute a special class of 
optimization techniques that maintain a population of 
individuals each of which represents a possible 
solution to the problem in hand. The population is 
evolved using genetic operators that cross-over and 
mutate individuals trying to reach to better solutions 
in each generation. The fitness of each individual is 
evaluated using a dedicated function. Despite the fact 
that GA and program slicing algorithms have been 
extensively used in literature, no work has been 
reported thus far that combines the two for fault 
localization and correction. The work of Jiang et al. 
(2008) which describes how software faults may be 
localized based on a set of testing requirements and 
program slicing inspired the present paper as regards 
the encoding of the GA population. The authors 
presented an approach to identify dependence 
structures in a program that searches a superset of all 
possible slices to identify the set of slices that 
achieves maximum coverage. The framework yielded 
accurate results, showing in practice that it is possible 
to express problems of dependency analysis as search 
problems and that good solutions can be achieved in 
a reasonable time frame by using this technique. 

Arcuri and Yao (2008) proposed a framework for 
automatic software bug fixing which used co-
evolution where both programs and test cases co-
evolve, aiming at fixing bugs in programs by 
influencing each other. The framework requires as 
input the faulty program and its formal specification. 
The work included some preliminary experiments 
that showed its potential applicability for any 
implementable program; essentially, it attempts to 
evolve the whole program tree, something which 

may prove costly and not efficient for large scale 
programs. Also, formal specifications are not always 
provided, a fact that makes the framework unusable 
in these cases. 

Genetic Programming (GP) and program analysis 
were used by Weimer et al. (2010) in order to repair 
off the shelf legacy systems. The GP takes as input 
the source code to be repaired, the negative test cases 
that exercise the fault as well as several positive test 
cases that result in the correct behavior of the system. 
It then evolves a modified candidate repair that does 
not fail the negative test cases and still passes the 
positive test cases. The first candidate that passes all 
the negative and positive test cases is called the 
primary repair, which is reduced to the minimized 
repair after the use of program analysis to get rid of 
the irrelevant changes. Using bugs that already 
existed in the systems and were not manually 
injected provided better conclusions and the study 
was the first to work on real programs with real 
faults. 

3 TECHNICAL BACKGROUND 

3.1 Mutation Testing (MT) 

As previously mentioned, the general idea behind 
MT is that the faults introduced by mutation are 
similar to common programming errors. MT is 
proven effective in finding a satisfying number of 
test cases, which can be used to identify real faults 
made by programmers (Hamlet, 1977). The number 
of possible faults is quite large, thus traditional MT 
targets only those groups of faults which are closer 
to the original code. This theory is based on two 
hypotheses: Competent Programmer Hypothesis 
(CPH) and Coupling Effect (CE). CPH states that 
programmers tend to write nearly correct code, 
while CE states that test data used to identify simple 
faults is sensitive enough to identify complex errors 
as well (Offut, 1989). Although there are some 
recent studies in literature that deal with high order 
mutations, like Harman et al. (2011) and Fraser and 
Zeller (2011), this paper focuses only on first order 
mutants as these may be considered good enough for 
performing adequate testing of program code: 
Simple faults may be represented with simple 
mutations created with syntactic changes, while 
complex faults are being represented with more 
complex mutations consisting of more than a single 
change in the code. 

Traditional MT states that from a program P we 
get a set of faulty programs (mutants) after applying 
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some single syntactic changes on the original code. 
The transformation rule that generates a mutant of 
the original program is called Mutation or Mutant 
Operator (MO). MOs are designed to modify 
variables and expressions by replacement, insertion 
or deletion (Offutt and Untch, 2001). Before starting 
mutation analysis, the original program must be 
executed with the test cases to check if it is executed 
correctly. Afterwards the set of test cases will be 
used to check all the mutants created. If the 
execution results of a mutant are different compared 
to those of the original program then we may say 
that the mutant has been killed, otherwise we say 
that it has survived. After execution of all test cases 
some mutants may survive, so we need to provide 
some additional test data to kill those as well. In the 
end, after these additional executions, some mutants 
may still have survived as they keep returning the 
same results as the original program. These are 
called Equivalent Mutants and while they are 
syntactically different from the original program 
they provide the same functionality. 

Testing with mutation methods is completed 
with calculating the adequacy score, known also as 
Mutation Score (MS), which defines the quality of 
the set of test cases given as input to the program. 
MS is the analogy of the number of “killed” mutants 
against the number of the non-equivalent mutants. 
The purpose of mutation analysis is to increase the 
mutation score, bringing it closer to 1, which means 
that the set of test cases is adequate for detecting all 
the faults included in the mutants. 

3.2 MuJava and Mutation Operators 

A variety of different tools for MT have been 
suggested: Mothra (King and Offutt, 1991) is a 
versatile environment for FORTRAN, which is the 
first full MT software tool. Jester is a simple open 
source tool for Java code MT (Binkley et al., 2006) 
that is integrated with JUnit, a well-known code 
testing environment. Jester does not use any 
sophisticated algorithm to accelerate the mutation 
process thus resulting in slow performance, while 
the number of MO supported is restricted. These 
limitations make the use of Jester ineffective and 
non-practical for large programs. MuJava (Offutt et 
al., 2005) is another system for MT of Java 
programs. Its primary objective is to study MO 
relevant to Object Oriented programming languages. 
At present it is regarded as one of the most complete 
tools in terms of MO supported. It offers mutations 
for traditional testing, but also for testing at the class 
level, by combining two basic technologies, Mutant 

Schemata Generation (MSG) and byte-code 
translation. Using MSG it creates “meta-mutants” of 
the program in at source code level that integrate a 
number of mutations. Working directly on the byte-
code means that only two compilations are needed, 
the one of the original program and the one of the 
meta-mutants that MSG created. This improves the 
performance of the tool over other mutation testing 
tools that compile all the mutants. Based on the 
above useful characteristics, we decided to utilize 
MuJava in our study; therefore we outline its basic 
features below.  

MuJava uses two kinds of MOs, method-level 
(Seung and Offutt, 2005) and class-level operators 
(Wang and Roychoudhury, 2004). Method-level 
operators change the source code by replacing, 
deleting and inserting primitive operators. There are 
six different primitive operators: arithmetic, 
relational, conditional, shift, logical and assignment 
operators. Some of these operators consist of a 
number of other sub-operators (e.g. binary 
arithmetic and shortcuts. 

The class mutation operators MuJava uses are 
categorized in four different sets based on the 
characteristics of the programming language they 
affect. These are Encapsulation, Inheritance, 
Polymorphism and Java-Specific features. 

4 AUTOMATIC, 
EVOLUTIONARY MUTATION 
TESTING 

The goal of the proposed approach is to offer an 
efficient, automatic way to define the specific line or 
the smaller possible set of lines responsible for a 
fault present in a Java program. More to that, the 
approach aims at suggesting the necessary 
correction(s) that remove the fault. The use of 
dynamic slicing enables isolating those lines of a 
program that affect a variable at a given point of 
interest for certain executions using specific input 
values. We set manually the slicing criterion in an 
input file which contains the source code file’s name 
and the line with the criterion for the creation of the 
slice. Also, the normalized version of the initial 
source code is fed as input to the dynamic slicing 
algorithm. The number of possible corrections, 
though, to be performed on the slice for removing a 
fault is usually large thus making its manual 
processing hard and time consuming. Mutation 
testing techniques applied to the code contained in 
the slice may be considered as the answer removing 
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Figure 1: The proposed hybrid approach for fault localization and correction combining dynamic slicing, mutation testing 
and Genetic Algorithms. 

a fault is usually large thus making its manual 
processing hard and time consuming. Mutation 
testing techniques applied to the code contained in 
the slice may be considered as the answer to this 
problem. Therefore, the proposed approach 
combines dynamic slicing with mutation testing, 
with the two being further enhanced by the use of 
genetic algorithms to evolve mutant solutions for 
fault correction (see Fig. 1). 

Every possible solution to our problem is 
represented as a chromosome of size N, where N is 
the number of lines contained in a slice. Each line in 
the slice is represented as a gene that may take any 
value in the domain [0, K]. K is the maximum 
number of supported mutation operators. Any value 
different than zero, corresponds to a specific 
mutation operation that is applied to that line. The 
search space of the genetic algorithm based on our 
encoding scheme for a dynamic slice of size N is: 

(A1 +1) * (A2 +1) * (A3 + 1) *….* (AN +1) (1)
 

where Ax is the number of replacements for line x in 
the slice. As the case of no replacements is valid as 
well, it is necessary to add 1 to each number of 
replacements for each line so that the minimum size 
of the search space is 1 (i.e. no mutations are applied 
on any line). 

To drive the algorithm to the best possible 
solution we use a Fitness Function that takes into 
account the results of the execution of each of the 
mutated programs, using a number of predefined 

successful and faulty test cases, that is, test scenarios 
that execute correctly or not respectively on the 
original unmodified program. Then the algorithm 
assesses a specific replacement based on two 
elements: 
• The number of successful test cases that remain 
successful after the replacement 
• The number of faulty test case scenarios that 
become successful after the replacement has taken 
place. 
The probability of a line to include a fault increases 
proportionally to the fitness of its “best” 
replacement. A specific solution suggests one or 
more lines that contain a fault. The number of lines 
contained in each solution affects the fitness of that 
specific solution. Specifically, each suggested 
solution (chromosome) is evaluated using the 
following formula: 
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where: 
SSn and FSn are the numbers of successful test case 
scenarios that remained successful, and of faulty 
scenarios that turned to successful respectively after 
replacement n, 
SWn and FWn are weights defining the significance 
of the successful and faulty test case scenarios 
respectively,

Dynamic�Localisation�and�Automatic�Correction�of�Software�Faults�using�Evolutionary�Mutation�Testing

19



Table 1: Mutation Operators used in our algorithm. 

Method Level Mutation Operators 
AOR - Arithmetic Operator Replacement 
AOI - Arithmetic Operator Insertion 
AOD - Arithmetic Operator Deletion 
ROR - Relational Operator Replacement 
COR - Conditional Operator Replacement 
COI - Conditional Operator Insertion 

COD - Conditional Operator Deletion 
SOR - Shift Operator Replacement 
LOR - Logical Operator Replacement 
LOI - Logical Operator Insertion 
LOD - Logical Operator Deletion 
 

Class Level Mutation Operators 
IHD - Hiding variable deletion 
IOP - Overriding method calling position change 
ISI - super keyword insertion 
ISD - super keyword deletion 
IPC - Explicit call to a parent's constructor deletion 
PNC - new method call with child class type 
PMD - Member variable declaration with parent class type 
PPD - Parameter variable declaration with child class type 
PCI - Type cast operator insertion 
Polymorphism PCC Cast type change 
PCD - Type cast operator deletion 
PCC - Cast type change 

PRV - Reference assignment with other comparable variable 
OAC - Arguments of overloading method call change 
JTI - this keyword insertion 
JTD - this keyword deletion 
JSI - static modifier insertion 
JSD - static modifier deletion 
JID - Member variable initialization deletion 
EOA - Reference assignment and content assignment replacement 
EOC - Reference comparison and content comparison replacement 
EAM - Acessor method change 
EMM - Modifier method change 

 
SSCj,n is a constant score for a specific successful 
test case scenario j after replacement n (in case we 
want to give a specific successful scenario higher 
importance over the others)  
FSCj,n is a constant score for a specific faulty test 
case scenario j after replacement n (in case we want 
to give a specific faulty scenario higher importance 
over the others)  
SLW is a weight that reflects the importance of the 
slice size, 
L is the number of lines contained in the proposed 
solution, i.e. the number of genes that were graded 
with a value different of 0, 
S and F are the number of successful and faulty test 
scenarios respectively, and N the slice size. 
The algorithm terminates if: (i) The predefined 
maximum number of generations has been reached, 
or, (ii) A chromosome has been evolved that yields 
the highest possible fitness score as expressed by 
eq.(2) - this is achieved when the chromosome 
involves only one line that contains the fault and the 
proposed replacement converts all faulty test cases 
to successful, or (iii) For the last M generations the 
fitness of the best chromosome becomes equal or 
lower compared to that of the previous generation 
and M exceeds the 25% of the total number of 
generations set. 

4.1 Application Issues 

A dedicated software tool was developed to support 

the proposed approach (screenshots are provided in 
Fig. 2). First, the user defines the folder that contains 
the source files and packages of the Java code under 
testing, as well as the mutation operators to be 
applied. The operators supported are part of those 
provided by the MuJava tool, specifically those that 
fit the purposes of this work (see Table 1).  

The tool applies the mutation operators on the 
selected program and creates a new copy of the 
original file for each mutation. When the production 
of all code mutation cases is completed, the user sets 
the slicing criterion according to which the dynamic 
slice will be created, which is basically the line 
where a “faulty” result or an erroneous value of a 
certain variable is observed. The dynamic slice of 
the program is produced through a call to the JSlice 
tool (jslice.sourceforge.net). Continuing, the user 
executes the algorithm by defining the test cases 
files that contain the successful and faulty testing 
scenarios to be used, as well as the weights that 
involve three decimal numbers defining the grading 
weights for the mutations. Next, the definition of the 
initial values for the parameters of the Genetic 
Algorithm takes place, with the domain value for 
each gene being based on the maximum allowable 
number of mutations for the line it represents.  

5 EXPERIMENTAL RESULTS 

This section reports on the results of the
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Figure 2: Screenshots of the supporting software tool. 

experimental process. Three series of experiments 
were conducted: Category A includes mutant 
programs with errors at the level of methods, while 
category B involves errors induced at the level of 
classes. Category C evaluates the scalability of the 
proposed approach on large real-world programs. It 
is worth noting that the experiments were performed 
on a Dell Inspiron I6000 machine with Intel Pentium 
M processor at 1.73GHz and 2.00 GB of RAM. 

The initial settings of the GA and its fitness 
function were as follows: For every slice FW=3.0, 
SW=1.0 and the slice size weight SLW=1.0. The 
number of generations was set equal to 200, thus 
calculating M to 50. Mutation and crossover 
probabilities were set to 0.01 and 0.3 respectively, 
while roulette wheel was used as the selection 
mechanism. Finally, equal importance was given to 
all scenarios, with SSC and FSC being set to the 
constant value of 10 for every scenario. The 
experimental results reported below for the former 
two categories are the average of 25 GA runs. 

5.1 Experiment Series A’ 

This group corresponds to mutations performed at 
the method level. More specifically, single errors 
producing first order mutations have been induced 
for the following operator categories: (i) Arithmetic, 
(ii) Relational, (iii) Conditional, (iv) Logical and (v) 
Assignment. The latter was performed via a shift 
operation thus covering also this specific category of 
mutation operators.  

The sample programs used in the experiments 
correspond to programming solutions to well-known 
problems that are usually treated as benchmarks; 
these programs are available at http://www.cut. 

ac.cy/staff/%20andreas.andreou/files and are briefly 
described below.  
Credit Card Validation: This sample program reads a 
credit card number of x digits and returns its vendor, 
which may be one of the following: Visa, AMEX, 
Diners/Carte Blanche, JCB and MasterCard (or none 
of these). The program may also check the digits of 
the card using an algorithm that is suitable for that 
particular vendor so as to validate the card number. 
Triangle Classification: This program, given the 
three sides (lengths) of a triangle, performs 
classification in certain categories (e.g. equilateral, 
isosceles, scalene etc.).  
Base 64: This program receives an input string, 
encodes it using a 64-character set representation 
and finally decodes it back to string, which returns it 
as output. 
Table 2 lists the results: the sample program, the 
mutation performed and the line where the error was 
located are indicated in the first column, while the 
subsequent columns include the exact statement(s) 
with the proposed correction and the number of 
testing scenarios, both successful and unsuccessful, 
that were used to guide the evolutionary process. 
The selection of these scenarios was performed 
automatically by a search-based module of the 
supporting tool that parsed the program under test 
and recognized the different cases that should be 
described through scenarios (success/fail) in order 
for the algorithm to identify the correct functioning. 
An example of testing scenarios is given in Table 3 
for the Credit Card Validation program. Finally, the 
last column of Table 2 indicates the time for 
execution. 

It is worth noting that in all cases the error pre-
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Table 2: Results obtained using mutations performed at the method level. 

Sample Program Initial Statement Vs Mutated Statement Testing 
Scenarios 

Time
(sec) 

Credit Card 
Validation 
MO: AOD 
LOC: 57 

cachedLastFind=i 
<vs> 

cachedLastFind=i++ 

2 Success 
6 Fail 337 

Triangle Classification 
MO: ROR 
LOC: 30 

if ((i + j <= k) || (j + k <= i) || (i + k <= j)) 
<vs> 

if ((i + j == k) || (j + k <= i) || (i + k <= j)) 

5 Success 
1 Fail 136 

Credit Card 
Validation 
MO: COR 
LOC: 56 

if (ranges[i].low<= creditCardNumber && creditCardNumber<= ranges[i].high) 
<vs> 

if(ranges[i].low<= creditCardNumber || creditCardNumber<= ranges[i].high) 

7 Success 
2 Fail 696 

Base64 
MO: LOR 
LOC: 147 

combined |= b[i + 2] & 0xff 
<vs> 

combined |= b[i + 2] | 0xff 

2 Success 
1 Fail 448 

Base64 
MO: ASR 
LOC: 144 

combined <<= 8 
<vs> 

combined >>= 8 

2 Success 
3 Fail 191 

Table 3: Sample of the testing scenarios used for the Credit Card Validation sample program. 

\ m i n d p r o d \ c r e d i t c a r d \ V a l i d a t e C r e d i t C a r d . j a v a  1 
F ; 3 7 9 9 9 9 9 9 9 9 9 9 9 9 9 ; v e n d o r _ n a m e . e q u a l s ( " A M E X " )  
S ; 4 0 0 0 0 0 0 0 0 0 0 0 0 ; v e n d o r _ n a m e . e q u a l s ( " V i s a " )  
S ; 4 9 9 9 9 9 9 9 9 9 9 9 8 ; v e n d o r _ n a m e . e q u a l s ( " V i s a " )  
S ; 0 ; v e n d o r _ n a m e . e q u a l s ( " E r r : n o  e n o u g h  d i g i t s ” )  
F ; 6 0 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ; v e n d o r _ n a m e . e q u a l s ( " A M E X " ) 

 
sent was successfully detected and corrected, with 
the time-frame of execution ranging from less than 
2,5 to almost 12 minutes, depending on how difficult 
the error was for the algorithm to locate and provide 
the proper correction. 

5.2 Experiment Series B’ 

This group includes programs that were fed with 
single errors corresponding to mutations at the class 
level. More specifically, the errors induced relate to 
special features of the Java programming language 
and also to inheritance.  

The sample programs used (available at 
http://www.cut.ac.cy/staff/%20andreas.andreou/files
) were the following:  
Person Sorted List: This program receives a set of 
numbers corresponding to the identity card numbers 
of persons and sorts them in a list. An object of type 
Person is inserted in the list if its ID is not already 
part of it. Finally, it returns the number of persons in 
the list. The program uses inheritance for different 
types of persons like for example employee and 
student. This program was modified in line 12 of the 
file “Student.java”, using the IHD mutation operator, 
which inserted variable id in child class Student so 

as to hide the corresponding variable in the parent 
class Person. Also, this program was used in another 
experiment where line 83 of the file “Person.java” 
was modified using operator EOC so as to replace 
method equals with the “==” operand thus providing 
comparison at the level of reference instead of 
content.  
Shapes: It is a simple program that receives four 
input parameters (numbers) that correspond to the 
dimensions of a circle (first parameter – radius), a 
square (second parameter – side) and a rectangle 
(third and fourth parameters –sides A and B). The 
program calculates the area of each shape based on 
the input parameters and then it sorts the shapes 
using a Splay Tree according to their area. Finally, it 
returns the name of the shape with the maximum 
area. The “Circle.java” file was modified using the 
IOP operator and more specifically, lines 19 and 20 
were interchanged so as to call the method that 
calculates the area of the shape prior to assigning 
values to variables x1 and y1 which correspond to 
the sides of the shape. 
Graph-Shortest Path: This program receives a file as 
input which includes the description of a graph, 
along with the cost of each edge. More specifically, 
the program requires three input parameters, the first
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Table 4: Results obtained using mutations performed at the class level. 

Sample 
Program 

Initial Statement 
vs 

Mutated Statement 

Testing 
Scenarios 

Time 
(sec) 

Person Sorted 
List 

MO: IHD 
LOC: 12 

public Student( java.lang.Integer id, java.lang.String n, int 
ag, java.lang.String ad,java.lang.String p, double g) 

<vs> 
public java.lang.Integer id = new java.lang.Integer(0); 

public Student( java.lang.Integer id, java.lang.String n, int 
ag, java.lang.String ad, java.lang.String p, double g) 

<<LINE 12 DELETED>> 

3 Success 
2 Fail 81 

Shapes 
MO: IOP 

LOC: 19, 20 

super.setValues(x1,y1); 
Area(); 
<vs> 

Area(); 
super.setValues(x1,y1); 

4 Success 
3 Fail 677 

Graph 
Shortest Path 

MO: JTI 
LOC: 17 

this.cost=cost; 
<vs> 

cost=cost; 

3 Success 
2 Fail 392 

Graph 
Shortest Path 

MO: JSD 
LOC: 24 

public int scratch=0 
<vs> 

public static int scratch=0 

5 Success 
3 Fail 778 

Person Sorted 
List 

MO: EOC 
LOC: 83 

boolean equals  = otherId.equals(thisId) 
<vs> 

boolean equals = otherId == thisId 

4 Success 
3 Fail 95 

Order Set 
MO: EAM 
LOC: 260 

int size2 = s2.getSetLast() + 1; 
<vs> 

int size2 = s2.getActualSize() + 1; 

1 Success 
2 Fail 37 

 
two corresponding to the start and end of a certain 
route respectively and the third defining the 
algorithm which will be used to calculate the 
shortest path and its corresponding cost. The 
program returns the sequence of nodes which 
constitute the shortest path and the cost of that path 
according to the input values. The program was 
modified in line 17 of the “Edge.java” file so as to 
include an error caused by the use of the JTI 
mutation operator. More specifically, the keyword 
“this” was removed during the assignment of the 
local variable cost. Therefore, the value of cost was 
assigned to the variable itself instead of the local 
variable cost. Also, this program was used in another 
experiment, where line 24 of the file “Vertex.java” 
was modified using operator JSD so as to insert the 
keyword “static” in the definition of variable 
scratch, thus causing all instances (objects) of class 
Vertex to have the same value for that variable. 
Order Set: This program receives two sorted arrays 
as inputs and returns a new array which contains 
only the elements that are common between the 
input arrays (line 260 in file “OrderSet.java” was 
modified with the EAM operator by substituting the 
call to method getSetLast() with the call to method 
getActualSize()). 

Table 4 presents the results of the second category of 
experiments. Again the number of replacements 
(lines) suggested by the GA was always of size 1, 
while in all cases the error present was successfully 
detected and corrected. The time of execution 
ranged from less than 1 to almost 13 minutes, again 
depending on the type of the error. 

Concluding, the two series of experiments 
provided strong indications that the proposed 
approach works quite satisfactory, covering a 
relatively wide variety of errors, both in terms of 
type and complexity, locating and successfully 
correcting the erroneous statement in 100% of the 
benchmark cases. 

5.3 Experiment Series C’ 

The last series of experiments involved programs 
implemented as assignments by a group of 
undergraduate students at the University <blinded 
for review purposes> enrolled in an Object Oriented 
Programming course using Java. The general idea 
here was to evaluate the proposed approach with 
large, real-world code with actual, not hand-seeded, 
faults that are accidentally made while 
programming. 

Two projects with different functional targets 
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were assigned to two classes of students; the first 
numbered 43 students and the second 38. Therefore, 
a total of 81 programs were used in the experiments; 
the programs ranged in size from 160 to 1400 lines 
of code.  

The first project assignment required the 
development of a simple library system, which 
would allow the user to store, borrow and delete 
books. The library was to be implemented using an 
array of Book objects. The user would be able to 
insert a new book from the main menu by entering 
relevant book details. In case the user wanted to 
borrow a book, the attribute Free of that Book object 
would be changed to false. The deletion of a book 
would remove the object from the Library array. 
Both Deletion and Borrowing required the book’s 
ISBN number.  

The second assignment was about a text-based 
labyrinth game. Each time the game would start with 
a random labyrinth of NxN size, where N was a 
user-defined variable entered at the start of the game 
execution. The labyrinth structure would be created 
as an array of NxN random rooms from the 
predefined Room objects, with each room containing 
traps that would affect the player when entering that 
room. The user would try to escape from the 
labyrinth by choosing which door in each room 
he/she should enter. The player would win the game 
when he/she would reach the exit. 

The algorithm was executed on the first version 
of each student’s code, i.e. after the first level of 
debugging and prior to final testing (proofing). We 
observed that the algorithm fixed approximately 
80% of the errors present in the programs (an 
average of 3 errors in the first assignment and 5 in 
the second). For these faults the algorithm correctly 
evolved and eventually proposed the correct 
repair(s). What differed from the results of the 
previous two experiment series was the size of the 
resulting slices which was larger in this case. This 
was expected due to the fact that, contrary to the 
previous experiments where there was only a single 
hand-seeded fault in the sample programs, this series 
of programs contained more complicated faults 
affecting an increased number of lines of code. 

The rest 20% of the faults that remained 
“uncorrected” were actually not addressed at all by 
the tool as they resided in statements that could not 
be handled by the parsing module of the supporting 
tool, or did not fall in the categories of operators that 
MuJava supports. In addition, some of the faults 
required repairs in lines that were previously 
changed when repairing a former fault in top-down 
sequence. This fact is not currently handled by our 

approach so the faults remained intact (see next 
section for more details). Therefore, in all of the 
aforementioned cases we had to skip those particular 
faults as practically no input could be fed to the 
algorithm, or its execution would have resulted in 
regression faults.  

Further analysis of the type of errors found and 
the repairs applied was not among the targets of this 
experimental series as our goal was just to show how 
the algorithm scales up with programs of larger size 
that contain “real” faults made by the programmers. 
In this context the algorithm performed well as it 
covered a large amount of the errors and yielded a 
reasonable size of slice where the appropriate 
corrections were successfully suggested 
irrespectively of the total size of the program under 
investigation. 

6 DISCUSSION ON POSSIBLE 
THREATS TO VALIDITY 

This section briefly presents and discusses some 
considerations: 
(i) The programs used in the two first experiment 
series were small and contained seeded, not real 
faults, and therefore one may argue that this may 
affect the validity of the results in some way. This, 
actually, does not constitute a threat to the validity 
of the proposed approach as: (a) The programs used 
in series A and B were of the order of some 
hundreds of LOC, which are lower than some 
studies reported in the literature (e.g. Harman et al.; 
Fraser and Zeller). This size, though, is among the 
acceptable average sizes for classes and methods 
within classes. Our approach works at the level of 
units, therefore the overall size of the program is not 
so important, as the proposed algorithm will 
concentrate on the smaller, independent parts of the 
source code each time.  This was exactly the process 
followed for the larger programs of series C, 
therefore we consider the proposed approach able to 
cope with practically any size of code. Additionally, 
the faults induced simulate the actual omissions or 
mistakes made by programmers, thus we believe that 
the impact of the “fakeness” of the errors used in 
this study is minimal. (b) A set of programs with 
“real” faults was also used in the experimentation 
which were implemented by university students at 
their final stage before graduating; thus, these 
subjects may be considered very close or similar in 
skills with young programmers recruited by SMEs in 
the software industry and consequently their faults 
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may be considered identical to those of professional 
programmers.  
(ii) As stated above the faults were hand-seeded so it 
was easy to know what affected the normal 
operation of the program so as to set as the slicing 
criterion. Under normal circumstances this would be 
hard as the users would have to understand what 
could possibly create the fault to include it in the 
slicing criterion. This was true for experiment series 
A and B. With series C, though, it became evident 
that this aspect depends only on the programming 
(debugging) skills of developers rather than the 
method used. Therefore, this does not threaten the 
validity of our results. 
(iii) The selection of the testing scenarios was 
performed manually, based on the type of the 
program and the relevant functional specifications. 
The test cases were chosen so as to cover the largest 
possible number of different paths of execution and 
this is an issue that deserves research in its own 
merit; tools that are able assess the quality of the test 
cases against the specifications of a program could 
be used in order to select the best possible set of test 
data automatically, and this is something we plan to 
pursue in the future.  
(iv) One of our concerns was the fact that a change 
being made to a part of the code could influence 
other areas of the program possibly creating new 
(regression) faults. In this case we may identify two 
different scenarios: (a) In the case where the fault 
repaired affects a line of code that is below the 
changed statements as we move from top to bottom 
in sequence of execution then this would not really 
be considered a problem as the new fault would be 
identified at a subsequent stage in a new slice. (b) If 
the algorithm attempted to change a previously 
repaired statement that removed a formerly 
addressed fault then this would have gone 
undetected by the algorithm. At the moment what 
we do to handle this problem is that we create a log-
file that contains all previous changes (repairs) made 
in the code; a controller module consults this log-file 
prior to exercising mutations and prevents the 
algorithm from attempting to make any changes to 
repaired statements. In this case the algorithm skips 
the error, puts it in a separate file with “uncorrected” 
faults and continues with the next fault with proper 
notification of the user. 

7 CONCLUSIONS 

Software development suffers from low product 
quality and high percentage of project failure. The 

presence of faults is one of the major factors 
affecting the quality of delivered products; that is 
why a high percentage of development time is 
devoted to testing. Most of the time spend in 
software testing is devoted on actually locating the 
faults in the source code instead of correcting them. 
It is obvious that there is a strong need to develop a 
highly effective method for fault detection so as to 
reduce the time required by the testing process and 
assist in increasing the quality of the code and the 
productivity of software developers. 

In this paper we proposed a novel approach that 
is able to automatically detect and correct faults in 
Java code. The approach utilizes dynamic code 
slicing for localising a fault and suggests possible 
corrections with the use of Mutation Testing. Jslice 
was used for creating the slices, while MuJava was 
the tool adopted for applying different mutation 
operators selected by the user, both at method, as 
well as at class level. The process of fault detection 
and correction through statement replacement is a 
problem difficult to tackle, with a large solution 
space; thus, we resorted in using Genetic Algorithms 
so as to reduce it to a search optimization problem. 
The GA evolved a number of candidate solutions-
replacements of statements that were assessed by a 
dedicated fitness function.  

Two series of experiments with hand-seeded 
errors were conducted using sample programs 
corresponding to well-known problems that are 
normally used as benchmarks for testing. Series A’ 
involved programs with method-level errors, 
specifically arithmetical, relational, conditional, 
logical and assignment errors, while series B’ 
included programs containing class-level errors 
related to Java features and inheritance. The results 
suggested that the proposed approach works quite 
satisfactory, covering a wide range of errors, both in 
terms of type and complexity, while it always yields 
the smallest possible slice containing the error and 
suggests the correct replacement that removes the 
fault. 

A third series of experiments was also 
conducted, using two different programming 
assignments of undergraduate students delivered in 
the context of an O-O Programming course. The 
algorithm was applied on the first version of the 
code after the first level of debugging and the results 
were really encouraging as they showed that the 
algorithm scaled up nicely with large programs 
containing “real” faults made by programmers and 
not hand-seeded ones.  

There are quite a few research steps that may be 
performed based on the present work: First, we will 
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attempt to collect more real case examples of 
programs so as to have a richer close-to-reality set of 
results. Second, a better analysis of the time, results 
and performance of the students’ assignments will 
be made, as well as assessment of the performance 
of the algorithm with respect to different types of 
faults, their number per slice and their average 
complexity. Third, we plan to investigate the 
potentials of integrating a supporting module to the 
existing tool that will enable a more “sophisticated” 
way for selecting the appropriate test case scenarios 
automatically based on pre- and post- conditions that 
express the functional specifications of a program. 
Fourth, we will address the problem of regression 
faults by attempting to provide simultaneous repairs 
to more than one fault. To this end we will modify 
our Genetic Algorithm so as to support multi-
objective optimization through multithreading and 
parallel processing. Fifth, the tool will be upgraded 
to include the statements of Java that our current 
implementation of the parser does not support so as 
to cover an even larger number of errors. Finally, 
our future research plans also involve increasing the 
set of mutation operators supported, with the 
inclusion of more complicated replacement 
operators. 
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