Static Parameter Binding Approach for Web Service Mashup
Modeling

Eunjung Lee and Hyung-Joo Joo

Department of Computer Science, Kyonggi University, Suwom, South Korea

Keywords:

Abstract:

Service Composition, Multiple Parameters, Parameter Binding, Mashup.

The most essential aspect of integrating web services to create mashups is determining parameter bindings

for the connected requests. However, binding multiple parameters from a large and complicated xml tree is
something that has not been discussed in the literature. In this paper, we presented a multi-parameter
binding algorithm for repeated and nested xml trees. Moreover, we are interested in context-based
parameter bindings, for scenarios where the user selects a certain context node. The proposed binding
approach allows for the automatic integration of methods, even when the binding data is inside a repeated
group or deep in the nested level. As a result, we can generate navigation menus depending on the contexts
for the bound methods. In addition, we present a method for generating navigation codes (context menus)
for the mashup views, using the parameter bindings. To demonstrate the usability of the proposed approach,
we present an example of a course registration system.

1 INTRODUCTION

Service compositions and mashups have become one
of the most important technologies in the
development of new web applications and services.
With the increasing availability of web services and
the dynamic nature of these services, user-centric
client-side mashups have attracted considerable
attention (Pietschmann, 2010). On the other hand, a
difficulty of client-side mashup pages is that they
often have to interact with many services and
resources.

To support a dynamic service environment, it is
necessary to support the automatic generation of
codes from a given set of service methods. In
addition, the design of the client mashup page
navigation may be complicated when it comes to
handling several service requests and responses. To
support the generation of navigational code for a
mashup page, this paper aims to detect possible
service compositions for a method’s output data, as
well as data bindings for the corresponding
parameter passing.

In a previous paper (Lee, 2010), we introduced
the concept of parameter binding the process of

This work was supported by the GRRC program (GRRC
Kyonggi 2012B03) of Gyeonggi province.

Lee E. and Joo H..
Static Parameter Binding Approach for Web Service Mashup Modeling.
DOI: 10.5220/0003991101950199

deciding data elements for parameters of the next
request. We also introduced the concept of repeat
binding, i.e., deterministic binding for the current
context of the repeated part of the output tree.
However, evaluating bindings for a context node is
challenging if the tree has a complicated and nested,
repeated structure.

This paper focuses on an algorithm for
evaluating the parameter bindings of a nested,
repeated structure xml tree. We introduce a top-
down binding approach, using xml schema
definitions, for the static evaluation of all possible
bindings.

As an extension of the previous paper’s code
generation system, we implemented context menu
generation for the multiple parameter bindings of
each output view. Our approach can identify a useful
set of mashup menus for a given client page context,
minimizing user interactions. To the best of our
knowledge, previous studies have not considered
user interface issues that arise from such
compositions.

This paper is organized as follows. Section 2
discusses related studies and provides background.
Section 3 describes our models and introduces the
concept of repeated bindings. Section 4 presents
proposed method for context dependent XML
parameter bindings. Section 5 briefs the

195

In Proceedings of the 14th International Conference on Enterprise Information Systems (ICEIS-2012), pages 195-199

ISBN: 978-989-8565-10-5

Copyright ¢ 2012 SCITEPRESS (Science and Technology Publications, Lda.)

ICEIS 2012 - 14th International Conference on Enterprise Information Systems

implementation of the parameter bindings as an
extension of the code generation system. Section 6
concludes the paper.

2 RELATED WORKS

Service composition involves integrating services by
connecting and relaying data. Mashups and data
integration have recently been studied in depth
(Pietschmann, 2010). In this paper, we are interested
in service composition methods and user interface
development.

There have been many pieces of research on user-
interface development approaches for service
compositions. Recently, several client-side service
composition and execution frameworks have been
published. MashArt is a framework that is intended
to act as a component-based development tool for
mashups, integrating all three layers of application,
data, and presentation. Nestler et al. proposed a
model-driven approach to develop a user interface
for service compositions. Several main research
frameworks have been compared and discussed, in
terms of their application composition at the
presentation layer (Pietschmann and Waltsgott,
2010). Lastly, the authors' of this work have
published a previous paper that presented a code
generation approach for client-side service
navigation (Lee, 2010).

The most essential aspect of integrating web
services to create mashups is determining parameter
bindings for the connected requests. However,
binding multiple parameters from a large and
complicated xml tree is something that has not been
discussed in the literature. There have been several
studies on XML schema inclusion tests (Hosoya,
2003). In this paper, we presented a multi-parameter
binding algorithm for repeated and nested xml trees.
Moreover, we are interested in context-based
parameter bindings, for the case when the user
selects a certain context node.

3 MODELS AND SCENARIOS

In this paper, we are interested in finding parameter
values for issuing requests to other service methods,
from a given output xml tree. For an xml tree 7" and
a method m, identifying parameter bindings in T
means mapping values from 7 to the method
parameters. Therefore, by binding parameters, a
method becomes callable, since parameters are then

196

ready to be provided. Computing a parameter
binding is not straightforward if the number of
parameters is more than one and if the xml tree has
many repeated nodes and a complicated nested
structure. In addition, our main concern is to
consider the context of a selected node.

The running example in this paper is a course
schedule xml tree, as shown in Figure 1, and a set of
search methods for the courses and schedules and
create/delete registration methods.

For example, in Figure 1, there are several
repeated nodes in the tree, including grade, course,
class, and slot. When a classcode node is selected,
then department, year, course, and class are bound
for the given context. Therefore, a user can request
SearchClasses(dept, lecturer) and AddRegister(st id,
classcode) in that context. On the other hand, when
the slot node is selected, we can find parameter
bindings for SearchClasses(dept, day) or
SearchClasses(dept, room), as shown in Figure 1.

Figure 2 shows the xml schema of the course
schedule xml tree, which includes five repeated
nodes, nested in depth. In this example, we assume
some global values, such as student id and today's

date.

semester dpt courses

G

cTass
” h B & e

ZE712 Iecturer code Iecturer

l:m.

.

Figure 1: Tree instance and the available requests.

Static Parameter Binding Approach for Web Service Mashup Modeling

course_list

e

courses

\‘ semester

course

classes

course_id || ccode || credit hours | ctype lab

class

class
code

class_id lecturer || times

slot

‘ day H time room ‘

Figure 2: Schema of the xml tree in Figure 1.

4 CONTEXT-DEPENDENT XML
PARAMETER BINDINGS

Composing methods by relaying output data to input
parameters is an important technique in the
implementation of web service mashups. For a
complex, structured xml tree, it is difficult to find
the corresponding parameter bindings for request
methods. Moreover, dynamic parameter bindings for
a selected node require inspections of every terminal
element under the current context. Therefore, we
object to present methods that can identify the
context-dependent parameter bindings, statically.

4.1 Repeated Trees

When a schema definition is given, we can extract
repeated tree structures (Lee, 2006), as shown in
Figure 3. A repeated tree consists of repeated nodes;
a repeated node is a node that is defined more than
once in the xml schema. For computational
convenience, the root node is considered a repeated
node. Also, terminal nodes are grouped into repeated
nodes, where each repeated node includes direct
terminal descendants. Therefore, for a given
repeated node r, the set of direct terminal
descendants and the path from the parent repeated
node are denoted by direct terminals(r) and
rel_path(r), respectively. In the example in Figure 4,
repeated nodes are course_list, grade, course, class,
and slot. For the class repeated node, the parent
repeated node is course and the child is slot.
Moreover, direct terminals(class) = {classcode,
lecturer} and rel path(class) = course_classes/. Note

that @st_id and @today are global static values.
4.2 Parameter Bindings

For the example in Figure 4, we present our
approach of parameter bindings with following
service methods:

- m1 = SearchCourses(dept, syear)

- m2 = SearchCourses(dept, ctype)

- m3 = SearchClasses(dept,lecturer)

- m4 = AddRegister(user_id, classcode)

- m5 = SearchClasses(dept, lecturer, day).

At each repeat node, we can find parameter
mappings using direct terminals. For a given method
m and its parameters, a binding table for m, denoted
as btable(m), is defined as a tuple of elements as
many as m’s parameters. For the example of Figure
4, btables are shown in Table 1.

1
* course_list ‘ /classes/
semester r4 class
dpt
classcode
/courses/ lecturer
2 gradg | ./times/
syear r5 slot
[day
r3 course time
room
ccode
cname
credit
|

Figure 3: The repeat tree of the course schedule schema.

For each method, we can find the repeat node
where the parameter binding is completed during a
top down traverse. This repeated node is called “a
base context node.” For the above example,
parameter bindings of m1 and m2 are finished at r2
and r3, respectively. Therefore, m1 and m2 have r2
and r3 as the base nodes, respectively.

Then, the binding path for each parameter is
computed from the base context node. For the
example m3, the binding paths for the parameters
are [//course-list/dept, ./lecturer].
Now, we define parameter_bindings for a method m
as follows.

Definition. Let m € Methods and r be a repeated
node in output(im). Moreover, let m have input
parameter types /p;, ps, ..., pi/- Then, the parameter
bindings for m are defined as follows:
parameter_bindings(m) = {(r, [7, 7, ..., m] | ris
a base context node of m in output(m), and 7;is a
relative path of the node which is mapped to p;}.

197

ICEIS 2012 - 14th International Conference on Enterprise Information Systems

Algorithm 1: Top-down computing of XML parameter bindings.

Input: Methods = [m;, mj, ..., my].
params(m;) = [pi1, Pz, .., Pnif, 1; 1S the number of parameters of i-th method ;.
RT: the repeat tree of the output type schema tree, root: the root node of RT.
Output: parameter_bindings
1 Procedure findAllParamsBindings(root):
2 V1<i<k,
3 Let btable[i] = [b,, b,, ..., b/, b; = null, I <j <n,.
4 parameter_bindings(m;) = null.
5 Call bind_repeat(root).
6 Procedure bind_repeat(r):
7 V'm; € Methods, let btable[i] = [b;, b,, .., b,;] and binding of m; is not finished,
8 V' p, s.t. x-th parameter of m; where b, = null, I <x <n,
9 Ft; € direct_terminals(r), s.t. t;~ px,
10 b, = t). // s the base current node of bindings(m;)
11 If btable[i] is filled at this level, //binding is now finished,
12 for I <x<m;, letb, = (' t;), r=r'
13 m; = arelative path of (+', ;) from the current repeated node 7,
14 Let parameter _bindings(m;) < add (v, [7;, w3, ..., 75,])-
15 If there is any method where binding is not finished,
16 Vr' erepeat_child(r),
17 call bind_repeat(r').

Table 1: Binding tables on each repeated node of Figure 3.

rl 12 r3 r4 r5
ml dpt)
syear 0
o dpt 0
ctype 0
m3 dpt 0
lecture 0
md user_id @st id
classcode (0]
dpt ()
m5 lecturer 0
day [0)

For the example of Figure 3, parameter bindings

for methods m1 to m5 are as follows:

- parameter_bindings(m1) = {(r2, [../../dpt, ./year])}

- parameter_binding(m2)={(r3, [../../../dpt, ./ctype])}

- parameter_bindings(m3) = {(r3, [./cname])}

- parameter_bindings(m4)= {(r4, [../../../../dpt, ./lecturer])}
- parameter_bindings(m5)={(r4, [@st_id, ./classcode])}

Now, we are ready to present the parameter
binding algorithms using the notations introduced
thus far.

Algorithm 1 traverses the xml schema tree from
top to bottom, to identify the mapping of data
elements for the parameters of methods in Methods.
The algorithm visits repeated nodes through their
parent-child relations (line 17), gathering the node
paths that are matched to method parameters (line
9). If the binding is completed at the repeated node r
(line 11), then, r is the binding context base. Once

198

we find the base context node of m, we evaluate the
paths of the matched nodes (line 13) and parameter
binding is completed for the method. The top down
recursive call is continued while methods remain to
be bound and while there are more descendants to
visit.

4.3 Generating Context Menus

The parameter_bindings(m) refer to the parameters
that are ready when the repeated node is bound.
Therefore, the method m is callable when a user
selects one of the repeated nodes. Context popup
menus include all callable method requests for the
selected context. Therefore, we need to compute all
methods bound to a given repeated node from
Methods, a set of available methods. Thus, we can
define a set of callable methods for a given repeated
node r as follows:

callable(r) = {m | m € Methods, (v, pb) €
parameter_bindings(m) for some
pb}.

For example, the schema and the parameter
bindings in Figure 3 show that callable(r4) = {m3,
m4}. On the other hand, the repeated node represents
a repeated level, so if any of the terminal values at
this level are selected, then the corresponding
methods can be called. For example, selecting a
node ccode determines the repeated node course
and its direct terminal descendants.

For a given xml tree, we have an output view

Static Parameter Binding Approach for Web Service Mashup Modeling

rendered with terminal nodes, as shown in Figure 5.
The context menu is provided for a request call for
the bound method.

S IMPLEMENTATION

In this section, we introduce the implementation result
of the top down parameter binding methods by
Algorithms 1 and 2, introduced in Section 4. In a
previous study, the authors introduced the
MashupBench system (Lee, 2010), which is a
platform providing service selection, data mapping,
and mashup code generation. Figure 4 shows the
overall architecture of the system. In this paper, we
extended the analyzer and the code generator allows
multiple parameter bindings for complicated and
repeated xml tree structures. We also enhanced the
popup menu-generating algorithm to efficiently
generate javascript code.

The system takes WADL (Web Application
Description Language) files, which is.the standard
for describing REST style services (WADL, 2006),
as service description inputs to specify the available
services. Schema files are read by the analyzer to
identify parameter bindings for the service methods.

To enable efficient code generation, we construct
all popup menus when the view is created at the time
of output data response. Since we statically
computed parameter bindings beforehand, only
menu visibility and event handling run dynamically.

‘ g s
. . mapping

i relations :

......... i

Analyzer

Repeat

fiorpig Binding
Checker

v
Code popup.js
Generator ’

Analyzer

main.html

request.js

handler.js

Figure 4: Architecture of code generation system using the
proposed approach.

Output Search seme

semesters courses dasses =
semester : 2011-2
dpt : Computer Science | Output Search semesters
year : 1 semester : 2011-2

dpt : Computer Science

ccode : DD104

gt | vear : 1

5| ccode : DD104
& | cname : Computer programing

cty ab
¢ ih Read_course(course_id)
day ftir

0842 Lee THU|1Z
FRI |3
[day til
0843 bae [THU:
ik sz bee [E2fRESSD

Figure 5: Static-time generated popup menus for the same
repeated node.

6 CONCLUSIONS

In this paper, we presented a multi-parameter
binding algorithm for repeated and nested xml trees.
Moreover, we are interested in context-based
parameter bindings, for scenarios where the user
selects a certain context node.

The proposed binding approach allows for the
automatic integration of methods, even when the
binding data is inside a repeated group or deep in the
nested level. As a result, we can generate navigation
menus depending on the contexts for the bound
methods. In addition, we presented a method for
generating navigation codes (context menus) for the
mashup views, using the parameter bindings.

Since current mapping approaches do not consider
nested repeat structure, our methods could be
applied to service mashup frameworks to enhance
the mashup connections. We are working on
implementing the incremental computation of the
parameter bindings.

REFERENCES

Stefan Pietschmann, et al., 2010. A Thin-Server Runtime
Platform for Composite Web Applications. ICIW '10.

Florian Daniel, et al., 2009. Hosted universal composition:
models, languages and infirastructure in MashArt.
ER’2009.

Eunjung Lee and Kyong-Jin Seo, 2010. Designing Client
View Navigations Using Rest Style Service Patterns.
WEBIST 2010.

Web application description language (WADL), http://
www.w3.org/Submission/wadl.

Eunjung Lee, 2006. Inline binding of XML data. Proc. Of
ICMOCCA’06.

Haruo Hosoya, 2003. Boolean operations and inclusion
test for attribute-element constraint, /CIAA°03.

199

