
FIND
A Data Cloud Platform for Financial Data Services

Zhicheng Liao, Yun Xiong and Yangyong Zhu
Research Center for Dataology and DataScience, School of Computer Science, Fudan University,

825 Zhangheng Road, Shanghai, China

Keywords: Cloud Computing, Data Cloud, Securities Data Integration, Data Service.

Abstract: In recent years, researchers have paid more interest in dealing with large scale of data. However, it is
difficult to discover patterns from various sources of big data flexibly and efficiently. In this paper, we
design a data cloud platform for financial data services (FIND), and implement a prototype system to
evaluate the performance and usability of the data cloud. FIND consists of a cloud infrastructure, a data
resource center and a data service portal. FIND provides high performance computation capability, high
quality integrated financial data, sophisticated data mining algorithms, and powerful data services.

1 INTRODUCTION

The growth of data is much faster than we can
imagine. Data can be broadly classified into three
types: structured data, unstructured data and semi-
structured data (Buneman, 1997). For most
centralized information system, a user may face to
thousands of data and the manual operation is almost
impossible when he want to get different data from
different systems and merges them together. There
are several approaches to process the big data. Using
a cluster or a distributed system is a better way. By
constructing grid computing and cloud computing
infrastructures in commercial systems, researchers
have found a low-price and high-scalable way to
deal with big data. No matter what method you
choose, it cannot reduce the workloads when users
want to discover some useful information from large
amount of data. Some data providers use a data
warehouse and an ETL tool to integrate multiple
sources of data. Data mining tool is also used to give
a better result to user’s query. If all data is structured
data, it is a good solution. However, if integrating
unstructured data and/or semi-structured data, it may
cause loss of some information in converting them
to structured data.

As discussed above, existed solutions focus on
either processing big data or integrating various
sources of data. In financial industry, the data is
extremely huge and variety. Many financial models
are too complex to run with the big data on an

ordinary server. For most users, the data is too
expensive to get a complete copy, and they also have
no capability to process those big data. Therefore,
we need to provide data services for users instead of
providing data. Users only need to pay for services
they used. We need a financial data service platform
to support processing large amount of financial data,
integrating various types of data, and providing
financial data services. Our contributions include:
 We design a data cloud platform for financial

data services (FIND). It is based on cloud computing
technique. It has capability of integrating huge
amount of hybrid data. FIND provides high quality
integrated financial data and public financial data
services, and users pay for using services on demand
instead of owning data.
 We design several data mining algorithms in

FIND, and build a data mining algorithm library for
user to use the data easily and effectively.
 We implement a prototype system to evaluate the

performance and usability of FIND by experiments.
Experiments show FIND has good performance in
processing big data, integrating various data, and
providing data services.
The rest of the paper is organized as follows.
Section 2 is related work. In section 3, we introduce
the design of a data cloud platform FIND. In section
4, we show a prototype system building with Apache
Hadoop and HBase, and carry out some experiments
to prove the usability of FIND.

117Liao Z., Xiong Y. and Zhu Y..
FIND - A Data Cloud Platform for Financial Data Services.
DOI: 10.5220/0003990701170122
In Proceedings of the International Conference on Data Technologies and Applications (DATA-2012), pages 117-122
ISBN: 978-989-8565-18-1
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

2 RELATED WORK

To manage various types of data in a single database
management system and a uniform data schema,
Google introduced a new simple data model
database management system named Bigtable
(Chang, et al., 2006). It is a distributed scalable non-
relational database. open source projects that
implement Bigtable, such as Apache HBase, Zvents
HyperTable, etc.

Using a super-computer can process large
volumes of data, but the cost is extremely high. So
some researchers are trying to use distributed
computing techniques to provide as high
computation capability, but in a lower cost. Google
first introduced the term “Cloud Computing” in
2006, and gives a chance to process big data in a low
cost. The Apache Hadoop project is a famous open
source software for cloud computing. Amazon Web
Services (AWS) and Google App Engine are typical
commercial cloud computing services.

Some researchers are trying to find new
programming paradigms to process vary large
datasets, especially to solve complex problem in
machine learning, bioinformatics, mathematical
finance, and so on. Dean and Ghemawat (2004)
introduced a novel programming framework named
MapReduce (Dean and Ghemawat, 2004) which
supports distributed computing on large datasets on
clusters of computers. Ghoting et al. (2011) present
the SystemML (Ghoting et al., 2011), which
machine learning algorithms are expressed in a high-
level script language, and subsequently compiled
and executed in Hadoop. Cordeiro, Traina, Junior,
Traina, López, Kang and Faloutsos (2011) give a
new way to use MapReduce for clustering over a
very large moderate-to-high dimensionality dataset
(Cordeiro, et al., 2011). Chen, Wang and Zhu (2006)
had built a Metropolis Shared Research Platform
(SRP) with grid computing infrastructure (Chen, et
al., 2006) to integrate the scientific data, archives
and other objects. Sul and Tovchigrechko (2011)
give a MapReduce version of BLAST algorithm
used in bioinformatics, (Sul et al., 2011). Vecchiola,
Abedini, Kirley, Chu and Buyya (2010) present and
implement a co-evolutionary learning classifier
system on public cloud Amazon EC2 (Vecchiola et
al., 2010).

These researches focus on either processing big
data or integrating single domain-specific data. In
practice, users always hope the system to afford data
as much as possible, provide services as flexible as
possible, and give the results as simple but useful as
possible. Therefore, it is necessary to design and

implement a system that can integrate various types
of data, process the big data, and provide diversified
data services. Aiming at providing financial data
services, we need to design a powerful platform that
has capability of high performance computing and
providing elastic services.

3 ARCHITECTURE DESIGN

Now we present a platform for financial data
services, named FIND, which collects and integrates
financial data from multiple sources, and provide
various public services, such as querying, searching,
statistical analyzing, data mining, etc.

3.1 Architecture

Considering the capability of processing big data
and hybrid data, we choose the cloud computing
technique as the base of FIND. We logically divide
FIND into three parts: a cloud infrastructure, a data
resource center and a data service portal. The cloud
infrastructure gives basic hardware support, such as
host, network device, storage device, etc., and
provides some interfaces to access and manage the
underlying hardware. The data resource center holds
all of data in FIND, i.e. the original data, metadata,
ontologies, and so on. The data service portal faces
to end users, and provides public services of FIND.
The architecture of FIND shows as Figure 1.

Figure 1: The FIND architecture.

The cloud infrastructure and the data resource
center virtually have four internal service layers
shown as follows.
Infrastructure Service Layer (ISL): to provide
hardware support and system software support to
other internal and public services.
Data Service Layer (DSL): to provide data
maintaining and simple statistical analysing such as

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

118

summing, counting, averaging. Other programs store
or retrieve the data via certain interfaces.
Platform Service Layer (PSL): to provide common
programming routines, data mining algorithm
libraries, standard business process procedures,
parametric models, and so on.
Software Service Layer (SSL): to provide well-
defined and easy-to-use applications for end users.
Although the four internal service layers looks like
hierarchical, it does not mean one service layer must
build on another service layer. They are flat. The
data service portal deploys many programs that
provide various types of public financial data
services to end users.

3.2 Data Resource Center

The data resource center consists of a distributed file
system and a distributed scalable non-relational
database. It also contains some standalone relational
databases on the specific hosts. The distributed
scalable non-relational database holds most of data
and the distributed file system stores files. We
retrieve data (including files) from different sources,
for example, crawling from the Web, importing from
external databases, uploading or inputting by users.
And these data are in several subjects, such as
government notice, economy news, market/trade
data, index, forum thread, and so on.

FIND integrates these data in a proper way and
puts them into the distributed scalable non-relational
database. For structured data come from a relational
database, we re-design the schema and transform
tuples by copying or mapping attributes, or simply
import the schema to the distributed scalable non-
relational database by using a column family as the
relation and column qualifiers as attributes in that
relation. The latter is easy to implement but may be
difficult to use. For other structured data that are not
from relational databases, we design some common
column families as subjects, and append attributes of
structured data to the corresponding column family.

For unstructured data, such as a text file or a
multimedia clip, we save the file to the distributed
file system, and save the file name, length, keywords,
and other retrievable embedded attributes (if exists,
such as version information or document variables)
to the non-relational database. For semi-structured
data, we regard it as unstructured data but extract
more attributes and most of contents from it.

The data resource center also has a lot of
component libraries, internal functions and
interfaces that are used in other programs. It
provides following internal functions:

Data Query: to query data from data resource center,
by keyword or certain conditions.
Data Download: to download data that is matched
the conditions.
Data Upload / Save: to support users or programs
upload or save data to the data resource center.
Data Retrieve/Import: to retrieve data from other
data sources, especially from internet or other file
systems. It also supports importing data from an
external relational database or a record file.
Statistical Analytics: to provide some basic
statistical algorithms, such as summing, counting,
maximum / minimum selecting, etc.
Data Integration: to integrate special sets of data (in
most cases they are retrieved from different data
sources), by performs data cleaning, extracting,
translating, loading and other necessary steps.
Data Mining: to provide advanced data analysing
and data mining algorithms libraries. It can perform
more complex statistical analysing and common data
mining algorithms, including pattern matching,
clustering, classification, outlier detection, etc. Other
programs invoke these algorithms and reach their
data mining targets.
Build-in Components: include most of program
libraries and components, parametric models, script
interpreters, etc. Parametric model libraries provide
some sophisticated parametric data processing
models and business models. Programmer only
needs to determine the parameter values, and then
the model will give a good result.
Interfaces: include program interfaces, web service
interfaces and cloud management interfaces.
Program interfaces support to load, run, suspend or
terminate a program. Web service interfaces support
a program to communicate with other services or
programs. Cloud management interfaces support the
most internal managing operations of FIND, such as
job dispatching, task scheduling, message queuing,
intermediate data maintaining, etc.

3.3 Data Service Portal

The data service portal deploys a lot of software and
provides public data services to end users. Users
could use the software without any customization.
Generally depending on the software execution
policy, any user permits to execute software, or only
an authorized user allows executing. Software
implements the basic and common functions that
users want to use, for example, market replaying,
searching, data mining or information publishing.

FIND also provides some business models, for

FIND�-�A�Data�Cloud�Platform�for�Financial�Data�Services

119

example, personalized recommendation mining,
quantitative association rules mining, frequent
pattern mining, public sentiment mining and
monitoring, and so on. These models are based on
the data mining algorithms FIND provides, and
using the data in the data resource center.

If necessary, FIND will provide some “pass-
through” services, and allow specific users to access
data resources directly. For example, data keeping
service allows users to store their private data to the
data resource center and access them everywhere.

The primary workflow of using these public data
services is as following. A user accesses the data
service portal, chooses the software she or he wants
to run, and submits a software execution request. By
the policy of use, the user may pay the usage fee
before executing. If all of the execution conditions
are met, the portal locates the software package,
creates a private execution environment, loads the
software into it and calls the program interface to
run. The portal gathers the result and feedbacks to
the user via the web service interface.

4 PROTOTYPE SYSTEM AND
EXPERIMENTS

We have constructed a prototype system of FIND
with 6 desktop computers, named Cloud001 to
Cloud006. The main hardware of the computer is:
Intel I5-650/3.2GHz CPU, 4GB RAM, 1TB hard
disk drive, 1GB RJ-45 NIC. The operating system is
RedHat Enterprise Linux server 5.5 x86_64-bit
version. We use Hadoop, HDFS and HBase to set up
FIND. The NameNode of FIND is running on
Cloud001, and it is also the master node of HBase.
All PCs link to a Cisco C2960G gigabits switch.

We choose two financial problems as experiment
background. One is an implementation of Monte
Carlo option model (Boyle, 1977) for solving option
valuation problems. It will test out the high
performance processing capability of FIND. The
other experiment is stock index calculation. It will
test out the feasibility of FIND in data integrating,
service workflow and continuous computing.

4.1 Monte Carlo Option Model

We implement the Monte Carlo option model in a
MapReduce program and run it on FIND. The global
parameters for the model are: the initial price
S0=100, the exercise price of the option E=90,
Expiration date that represents in proportion of year
T=0.1, risk free rate per day r=0.12/365 and the

variance rate (given in square root) σ=0.1. We also
assume the probability distribution is Gaussian.

The Map task iterative calculates the option
value on simulating only once per input path. The
Reduce task collects the intermediate results of the
Map task and gives the average value as the final
result. The pseudo-code of the Map task is shown as
following:

Map task: calculate simulation value

Input: <path index, any value> pair
Output: <”option”, payoff>
Global parameters: S0=100, E=90,

T=0.1, r=0.12/365, σ=0.1

1. Δt=1/365;
2. days=T/Δt;
3. st=exp((r –σ*σ/ 2)* Δt);
4. Temp= S0;
5. for d=0, 1, 2...days-1 do
6. Temp=Temp*st*exp(σ*sqrt(Δt)*

 rand.nextGaussian());
7. end for
8. payoff=max(Temp – K, 0)
9. payoff=payoff > 0 ? payoff *

 Math.exp(- r * T) : 0;
10. return <”option”, payoff>;

We use a constant string “option” as the key of

intermediate output data of the Map task. So the
Reduce task will combine all values at once. The
pseudo-code of the Reduce task is shown as
following:

Reduce Task: calculate average value

Input: ”option” and corresponding
payoff[]

Output: average value

1. Sum=0;
2. Count=0;
3. For each v in payoff[] do
4. Sum = Sum + v;
5. Count++;
6. end for
7. return Sum/Count;

For comparing, we run the same job on a server
cluster. The cluster includes two servers. The main
hardware configuration is: Intel Xeon
E5640/2.66GHz*2 CPUs, 32GB RAM, 146GB*3
hard disk drives in RAID 5 mode, 1GB RJ-45
NIC*2. The operating system is RedHat Enterprise
Linux server 5.5 x86_64-bit version with integrated
cluster suite, and the fencing device is the
motherboard integrated Intelligent Platform
Management Interface (IPMI).

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

120

Nu
Th

1
2
8
16
32

We
simulatio
each cas
span from
milliseco
correspo

Figur
is easy t
cluster in
server in
data clou
the natur

Figure 2:

Figur
Because
are not e
a slightly
lines of
acceptab
separated
“random

Fig

T

umber of
hreads

run the mo
on paths inpu
e runs 5 time
m job initializ
ond) and σ is
onding prices.
re 2 shows th
to discover th
n both 1.6M

n the cluster is
ud, but the FIN
re of the cloud

: The running ti

re 3 shows
the generate

exactly same in
y different. W

f 25.6M are
ble reason is
d in 4 compu

m” numbers tha

gure 3: Varianc

Table 1: The run

Running time (
1.6M 25
100897

50252 8
19837 2
17174 2
12945 2

odel with 1.
t on FIND an
s. The runnin

zing to job fin
s the standard

he running tim
hat the FIND
and 25.6M p

s more powerf
ND is advanta
d architecture.

ime compares o

the variance
ed random nu
n each time, th

We have disco
smoother th
job of 25.6M

uters, and the
an on one serv

e comparison o

nning time, pric

(ms)
5.6M 1

- 0.
807257 0.
264827 0.
228186 0.
215037 0.

.6M and 25
nd the cluster,
g time is the t

nished (accurat
d variance of

me of each cas
D runs faster
paths cases. E
ful than PC in
ageous becaus

on number of pa

e of each re
umber sequen
he price woul
overed that re
han 1.6M’s.
M paths are
ey generate m
ver.

of each result.

ce and variance

Option price
.6M 2
.799412
.797454 0
.798513 0
.798680 0
.799242 0

5.6M
 and
time

ate to
five

se. It
than

Each
n the
se of

aths.

esult.
nces
ld be
esult
The
run

more

a m
thre
sim
8, 1
be
exc
We
cho
Tab
is m
Hyp
imp
qua
from

4.2

In
FIN
con
usab

the
gath
extr
sav
(cou
attr
con
cho
list
por
and
The
in b
can
the
serv

The
the
9:30
trad
15:0

e of the multi-th

e The
v5.6M

-
0.798014
0.798132
0.798681
0.798609

We also com
multi-threaded
eaded progra

mulation paths,
16 and 32 thre
run twice in

cept that 25.6M
e record the ru
oose the fast
ble 1. From th
more than th
per-Threading
prove the pe
ad-core CPUs,
m 8 threads to

2 Stock In

this experime
ND in data i
ntinuous comp
bility and elas
The dataset is
web (http://

hering update
racting, trans
ing to HBase
unted at the en
ibutes for eac

ntinuously wh
oose the weigh

of 50 stock
tal submits t

d the list of st
e program iter
background an

n visit a certai
index. We ca

vice and regar
Figure 4 is a

e square point
service. Bec

0 to11:30 an
ding day, the
00, and the va

hreaded program

eoretical
value 1

0.798 0.0
0.798 0.0
0.798 0.0
0.798 0.0
0.798 0.0

mpare the Map
d program.
am in 1.6M
, with separati
eads. The mul
n each combi
M paths with
unning time, p
one as final

hese results, w
he total proce
g) of the serve
erformance. T
, equals 8 core

o 32 threads is

ndex Calcu

ent, we test
integrating, s

puting. The ex
sticity of FIND
s the stock tra
/www.sina.com
ed trade data
forming, inte
 on FIND. Th
nd of this exp
h row. The ne

hen the exper
hted sum inde
ks and corres
the correspon
ocks to the N
ratively calcu
nd saves it to
n web page fr
an regard the
rd the web pag
screenshot of

ts are the inde
ause the auct
nd from 13:0
stock trade da
alue of the ind

m.

σ of price
1.6M 25
001769
000684 0.00
000643 0.00
000852 0.00
001556 0.00

pReduce prog
We run th

M paths and
ing to 1 (1.6M
lti-thread prog
ination of pa
2 threads is

price, and vari
result. It is

when number o
essor cores (
er, it cannot ob
The server h
es, so the runn

s decreased lit

ulation on F

out the feas
service workf
xperiment also
D.
ade data retrie
m.cn). A pr
periodically,

egrating the d
here are 475,

periment), and
ew rows are a
riment is runn
ex service, and
sponding sha

nding service
NameNode, th
ulates the new
o HBase. Ano
from the porta

program as p
ge as accessin
f the index qu
ex values calc
tion trading r
00 to 15:00
ata is not upd
dex is not chan

.6M
-
00018
00165
00853
00763

gram with
he multi-
d 25.6M

M only), 2,
gram will
arameters,
run once.
ance, and
shown in
of threads
including
bservably
have two
ning time
tle.

FIND

ibility of
flow and
o tests the

eved from
ogram is
cleaning,

data, and
407 rows

d about 32
appending
ning. We
d give the
ares. The

program
hen run it.
west index
other user
al to view
providing
ng service.
uery form.
culated by
runs from

in every
ated after
nged too.

FIND�-�A�Data�Cloud�Platform�for�Financial�Data�Services

121

Figure 4: Screenshot of index query.

5 CONCLUSIONS

More algorithms and methods for dealing with large
scale of data are presented in these years. The big
data brings a data “Big Bang”. It becomes important
that how to discover patterns from the big data easily
and quickly. In this paper, we present a data cloud
platform for financial data services (FIND). It can
collect and integrate financial data from various data
sources, search and process information, analyze and
mining patterns. FIND focuses on providing high
performance computing capability, high quality
integrated financial data and elastic data services. By
using cloud computing technique, the FIND has
capability and advantage on processing big financial
data and can provide data services on demand. FIND
helps users to use various sources of big data in an
easy and a flexible way. The security and privacy of
FIND need to study in the future work.

ACKNOWLEDGEMENTS

This work is supported in part by the National
Science Foundation Project of China under Grant
(No. 61170096), Shanghai Leading Academic
Discipline Project under Grant (No. B114), and
National Key Technology R&D Program (No.
2012BAH13F02).

REFERENCES

Boyle, P., (1977). Options: A Monte Carlo approach. In
Journal of Financial Economics, 1977, 4(3):323-338.

Buneman, P., (1997). Semistructured data. In Proceedings
of the sixteenth ACM SIGACT-SIGMOD-SIGART

symposium on Principles of database systems, 117–
121. doi:10.1145/263661.263675

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach,
D. A., Burrows, M., Chandra, T., Fikes, A. and Gruber
R. E., (2006). Bigtable: a distributed storage system
for structured data. In Proceedings of the 7th
symposium on Operating systems design and
implementation (OSDI’06), 205-218.

Chen, Y., Wang Y. Q. and Zhu Y. Y., (2006). Grid-
Enabled Metropolis Shared Research Platform. In
Advanced Web and Network Technologies, and
Applications, Lecture Notes in Computer Science,
2006, Volume 3842/2006, 477-485.
doi:10.1007/11610496_62

Cordeiro, R. L. F., Traina, C., Junior, Traina, A. J. M.,
López, J., Kang, U. and Faloutsos C., (2011).
Clustering very large multi-dimensional datasets with
MapReduce. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge
discovery and data mining, 690-698.
doi:10.1145/2020408.2020516

Dean, J. and Ghemawat, S., (2004). MapReduce:
Simplified Data Processing on Large Clusters. In
Proceedings of the 6th conference on Symposium on
Opearting Systems Design and Implementation
(OSDI’04), 6(6):10.

Ghoting, A., Krishnamurthy, R., Pednault, E., Reinwald,
B., Sindhwani, V., Tatikonda, S., Yuanyuan Tian and
Vaithyanathan, S., (2011). SystemML: Declarative
machine learning on MapReduce. In 2011 IEEE 27th
International Conference on Data Engineering
(ICDE), 231-242, doi:10.1109/ICDE.2011.5767930

Sul, S. J., Tovchigrechko, A., (2011). Parallelizing
BLAST and SOM algorithms with MapReduce-MPI
library. In 2011 IEEE International Symposium on
Parallel and Distributed Processing Workshops and
Phd Forum (IPDPSW), 481-489.
doi:10.1109/IPDPS.2011.180

Vecchiola, C., Abedini, M., Kirley, M., Chu, X. C. and
Buyya, R., (2010). Gene Expression Classification
with a Novel Coevolutionary Based Learning
Classifier System on Public Clouds. In 2010 Sixth
IEEE International Conference on e-Science
Workshops, 92-97. doi:10.1109/eScienceW.2010.24

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

122

