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Abstract: In the paper we recover the static characteristic of Wiener-Hammerstein (sandwich) system from input-
output data. The system is excited and disturbed by random processes with arbitrary distribution. Two 
kernel-based estimates are proposed and compared. It is shown that they can successfully recover the 
system characteristic under small amount of a priori information about the static characteristic and the 
surrounding dynamic blocks. The identified nonlinear function is not parametrized and is not assumed to be 
invertible, which is common restriction in the literature. The orders of linear dynamic blocks are also 
unknown. The convergence of the estimates take place for the points in which the input probability density 
function in positive. The effectiveness of the algorithms is illustrated in simulation example. 

1 INTRODUCTION 

The paper addresses the problem of nonlinearity 
recovering in block-oriented system of the Wiener-
Hammerstein structure (see Fig. 1). It consists of one 
static nonlinear block with the characteristic ()μ , 
surrounded by two linear dynamic components with 
the impulse responses ∞

=0}{ jjλ  and ∞
=0}{ jjγ , 

respectively. Such a structure, and its particular 
cases (Wiener systems and Hammerstein systems), 
are widely considered in the literature because of 
numerous potential applications in various domains 
of science and technology (see e.g. (Giannakis and 
Serpedin, 2001)). The Wiener and Wiener-
Hammerstein models allow for a good 
approximation of many real processes ((Celka, et al., 
2001), (Hunter and Korenberg, 1986), (Vanbeylen, 
et al., 2009), (Vörös, 2007), (Westwick and 
Verhaegen, 1996)). Nevertheless, serious difficulties 
in theoretical analysis force the authors to consider 
only special cases, and to take restrictive 
assumptions on the input signal, impulse response 
and the shape of the nonlinear characteristic. In 
particular, it is commonly assumed that (see e.g. 
(Billings and Fakhouri, 1977), (Greblicki, 1992)-
(Greblicki and Pawlak, 2008), (Pawlak, et al., 2007), 
(Bai and Rayland, 2008), (Bershad, et al., 2000), 

(Lacy and Bernstein, 2003), (Wigren, 1994)): (i) the 
input is a random Gaussian process, a sine wave, or 
a binary signal, (ii) the static nonlinear block is 
invertible, (iii) the linear dynamic blocks have finite 
memory (FIR), and/or, (iv) the parametric 
representation of subsystems is given a priori. 

 
Figure 1: Wiener-Hammerstein (sandwich) system. 

It was noticed in the paper that the nonparametric 
algorithms proposed in (Greblicki, 2010) and 
(Mzyk, 2010b) for a Wiener system, can be adopted, 
without any modification, for a broad class of 
Wiener-Hammerstein (sandwich) systems. All the 
assumptions taken therein remain the same. Both 
algorithms work under poor prior knowledge of 
subsystems and excitations. We emphasize that in 
contrast to earlier papers concerning sandwich and 
Wiener system identification: 
• the input sequence need not to be a Gaussian 

white noise, 
• the nonlinear characteristic is not assumed to 

be invertible, 
• the IIR linear dynamic blocks are admitted, 
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• the algorithm is of nonparametric nature (see 
e.g. (Greblicki and Pawlak, 2008)), i.e. it is not 
assumed that the subsystems can be described 
with the use of finite and known number of 
parameters. In consequence, the estimates are 
free of the possible approximation error, or this 
error can be made arbitrarily small by proper 
selection of tuning parameters. 

In Section 2, the problem is formulated in detail and 
the assumptions imposed on signals and system 
components are discussed. Then, in Section 3 we 
present two nonparametric kernel-based estimates of 
the nonlinearity, and analyse their properties. 
Finally, in Section 4, we illustrate their behaviour in 
simulation example, for various numbers of 
observations and values of tuning parameters. 

2 ASSUMPTIONS 

We consider a tandem three-element connection 
shown in Fig. 1, where ku  and ky  is a measurable 
system input and output at time k  respectively, kz  
is a random noise, ()μ  is the unknown characteristic 
of the static nonlinearity and ∞

=0}{ jjλ , ∞
=0}{ jjγ  - the 

unknown impulse responses of the linear dynamic 
components. By assumption, the interaction signals 

kx  and kv  are not available for measurements. 
The system is described as follows 

kjkj
j

k zvy += −

∞

=
∑γ

0

,   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

∞

=
∑ jkj
j

k uv λμ
0

 (1) 

We assume that: 
(A1) The input }{ ku  is an i.i.d., bounded (

maxuuk < ; unknown ∞<maxu ) random process, and 
there exists a probability density of the input, say 

)( ku uϑ , which is a continuous and strictly positive 
function around the estimation point x , i.e., 

0)( >≥ εϑ xu . 

(A2) The unknown impulse responses ∞
=0}{ jjλ  

and ∞
=0}{ jjγ  of the linear IIR filters are exponentially 

upper bounded, that is 
 , , 11

j
j

j
j cc λγλλ ≤≤  (2) 

some unknown 1c ,where 10 << λ  is an a priori 
known constant. 

(A3) The nonlinear characteristic )(xμ  is a 
Lipschitz function, i.e., it exists a positive constant 

∞<l , such that for each  Rxx ba ∈,    it  holds  that 

.)()( baba xxlxx −≤−μμ  

(A4) The output noise }{ kz  is a zero-mean 
stationary and ergodic process, which is independent 
of the input }{ ku . 

(A5) For simplicity of presentation we also let 
10 =∑= ∞

= jjL λ , 10 =∑= ∞
= jjG γ , and 2

1
max =u . 

The goal is to estimate the unknown 
characteristic of the nonlinearity )(xμ  on the 
interval ),( maxmax uux −∈  on the basis of N  input-
output measurements N

kkk yu 1)},{( =  of the whole 
Wiener-Hammerstein system. 

From (A1) and (A2) it holds that ∞<< maxxxk , 

where jjux λ∑= ∞
=0maxmax . 

Assumption (A5) is of technical meaning only. 
We note that the members of the family of Wiener 
systems composed by series connection of linear 
filters with the impulse responses ∞

== 0}{}{
2 jcj
jλλ  and 

the nonlinearities )()( 2 xcx μμ =  are, for 02 ≠c , 
indistinguishable from the input-output point of 
view. In consequence, from the input-output 
viewpoint, ()μ  can be recovered in general only up 
to some domain scaling factor 2c , independently of 
the applied identification method. 

We emphasize, that in (A2), we do not assume 
parametric knowledge of the linear dynamics. In 
fact, the condition (rlambdaup), with unknown 1c , is 
rather not restrictive, and characterizes the class of 
stable objects. Moreover, observe that, in particular 
case of FIR linear dynamics, Assumption (A2) is 
fulfilled for arbitrarily small 0>λ . 

3 THE ALGORITHMS 

In the paper we propose and compare the following 
two nonparametric kernel-based estimates of the 
nonlinear characteristic ()μ  

∑ ∑
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In (3) and (4) ()K  is a bounded kernel function 
with compact support, i.e., it fulfills the following 
conditions 

1)( =∫
∞

∞−
dxxK  

∞<)(sup xK
x

 (5) 

. some ,for  0)( 00 ∞<>= xxxxK  

The sequence )(Nh  (bandwidth parameter) is such 
that 

. as ,0)( ∞→→ NNh  

The following theorem holds. 
Theorem 1. If )(log)()( NdNdNh λ= , where 

)()( NNNd γ−= , and ( ) wNN −= λγ /1log)( , then for 
each ( )1,2

1∈w  the estimate (3) is consistent in the 
mean square sense, i.e., it holds that 

( ) .0)()(ˆlim 2)1( =−∞→ xxE NN μμ  (6) 

Proof. Let x  be a chosen estimation point of 
)(⋅μ . For a given x  let us define a weighted 

distance between the measurements 121 ,...,,, uuuu kkk −−  
and x  as 
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i.e. xux −= 11 )(δ , λδ xuxux −+−= 122 )( , 
2

1233 )( λλδ xuxuxux −+−+−= , etc., which can 
be computed recursively as follows 

.)()( 1 xuxx kkk −+= −λδδ  (8) 

Making use of assumptions (A5) and (A2) we obtain 

.)(
1

)( xxxx k

k

kk Δ=
−

+≤−
λ

λδ  (9) 

Observe that if in turn 

,)()( Nhxk ≤Δ  (10) 

then the true (but unknown) interaction input kx  is 
located close to x , provided that )(Nh  (further, a 
calibration parameter) is small. If, for each  

∞= ,...,1,0j  and some 0>d , it holds that 

,
jjk

dxu
λ

≤−−  (11) 

then 

.
1

1log
λλ −

+≤− dddxxk  (12) 

The condition (12) is fulfilled with probability 1  for 
each 0jj > , where ⎣ ⎦dj λlog0 =  is the solution of 
the following inequality 

.12 max =≥ ud
jλ

 

On the basis of assumption (A2), analogously as in 
(9), we obtain that 
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which yields (12). For the Wiener-Hammerstein 
(sandwich) system we have 

xulxy iki
i

k −≤− −

∞

=
∑χμ

0

)(  (13) 

where the sequence { }∞=0iiχ  obviously fulfills the 
condition i

i λχ ≤ . Let us denote the probability of 
selection as ( ))()()( NhxPNp k ≤Δ= . To prove (6) 
it suffices to show that (see (19) and (22) in (Mzyk, 
2007)) 

0)( →Nh  (14) 
,)( ∞→NNp  (15) 

as ∞→N . The conditions (14) and (15) assure 
vanishing of the bias and variance, respectively. 
Since under assumptions of Theorem 3 

,0)(0)( →⇒→ NhNd  (16) 

in view of (12), the bias-condition (14) is obvious. 
For the variance-condition (15) we have 

.)()( 2
1

2
1 log)(log ++⋅≤ ελλε NdNdNp  (17) 

By inserting NNNNNd λγγ λ /1log)()( )/1()( −− ==  to (17) 
we obtain 

( ).)( 2
1

/12
1 loglog)()(1 ++−⋅=⋅ εγγ λλε NNNNNpN  (18) 

For ( ) wNN −= λγ /1log)(  and ( )1,2
1∈w  from (18) we 

simply conclude (15) and consequently (6). 
In contrast to )(ˆ )1( xNμ , the estimate )(ˆ )2( xNμ  uses 

the FIR( p ) approximation of the linear subsystems. 
We will show that since the linear blocks are 
asymptotically stable, the approximation of ()μ  can 
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be made with arbitrary accuracy, i.e., by selecting p  
large enough. Let us introduce the following 
regression-based approximation of the true 
characteristic ()μ  

}...|{)( 121 xuuuyExm pkkkkp ===== +−−  (19) 

and the constants 

.    ,
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j
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−

=

−

=

==  

The following theorem holds. 
Theorem 2. If K() satisfy (5) then it holds that 

)()(ˆ )2( xlmx ppN →μ  (20) 

in probability, as ∞→N , at every point x , for 
which 0)( >xuϑ  provided that 

. as ,)(2 ∞→∞→ NNNh p  

Proof. The proof is a consequence of (13) and 
the proof of Theorem 1 in (Greblicki, 2010). 

From (19) we obtain that 
=)(xmp  

⎭
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∑ xuuxE pkkiki

p

i
12

1

0
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where )( ikipi x −
∞
=∑= μγς . Moreover, since 
ξλ +∑= −

−
= jkj

p
jk ux 1

0 , where jkjpj u −
∞
=∑= λξ  it holds 

that 

=− )()( xlxlm ppp μ  

{ } ≤−++ )()( xlxlgE ppp μςξμ  

{ } ≤−++≤ )()( xlxlgE ppp μςξμ  

( ),)(1 kkp xElEug μ+−≤  

and under stability of linear components (see (A2) 
and (A5)) we have  

.1 some ,1 00 <≤− ccg p
p  

Consequently, 

ppN xlx εμμ +→ )()(ˆ )2(  
in probability, as ∞→N , where  

( ) )(maxmax0 xvluc p
p φε +=  , and 1)( ≤xφ . Since 

1lim =∞→ pp l  , and 0lim =∞→ pp ε  we conclude that 
(20) is constructive in the sense that the 
approximation model of ()μ  can have arbitrary 
accuracy by proper selection of p . 

 

Figure 2: The true characteristic and its estimate )(ˆ )1( xNμ . 

Table 1: The errors of the estimates (3) and (4) versus N. 

N  210  310  410  510  610  

( ))(ˆ )1( xERR Nμ  6.1 4.9 0.8 0.5 0.3 

( ))(ˆ )2( xERR Nμ  9.8 8.1 4.4 1.1 0.8 

 

Figure 3: The true characteristic and its estimate )(ˆ )2( xNμ . 

 

Figure 4: The estimation error ))(ˆ( )1( xERR Nμ  versus h. 
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Figure 5: The estimation error ))(ˆ( )2( xERR Nμ  versus h. 

4 NUMERICAL EXAMPLE 

In the computer experiment we generated uniformly 
distributed i.i.d. input sequence ]1,1[−∼Uuk  and the 
output noise ]1.0,1.0[−∼Uzk . We simulated the IIR 
linear dynamic subsystems 

kkk uxx 5.05.0 1 += −  

and 

kkk vyy 5.05.0 1 += − , 

i.e. 15.0 +== j
jj γλ , ∞= ,...,1,0j , sandwiched with 

the not invertible static nonlinear characteristic 
( )xxx 10sin2.0)( +=μ . 

The nonparametric estimates (3) and (4) were 
computed on the same simulated data N

kkk yu 1)},{( = . 
In (A2) we assumed 8.0=λ  and in (19) we took 

3=p . The estimation error was computed 
according to the rule 

( ) ( )∑
=

−=
0

1

2)()( )()(ˆ)(ˆ
N

i

ii
NN xxxERR μμμ  (21) 

where 0
1

)( }{ N
i

ix =  is the grid of equidistant estimation 
points. The result of estimation for 1000=N  are 
shown in Fig. 2 and Fig. 3. The routine was repeated 
for various values of the tuning parameter h . As can 
be seen in Fig. 4 and Fig. 5, according to intuition, 
improper selection of h  increases the variance or 
bias of the estimate. Table 1 shows the errors (21) of 

)(ˆ )1( xNμ  and )(ˆ )2( xNμ . It illustrates advantages of 
)(ˆ )1( xNμ  over )(ˆ )2( xNμ , when the number of 

measurements tends to infinity and the linear 
component in the Wiener system has infinite 
impulse response (IIR). The bandwidth parameters 

was set according to 
( ) ( ) ww NN NNNh

−− −−= λλ
λ

/1/1 loglog log)(  with 75.0=w  in 
(3), and )12/(1)( +−= pNNh  with 5=p  in (4). 

5 FINAL REMARKS 

In the paper, the nonlinear characteristic of Wiener-
Hammerstein system is successfully recovered from 
the input-output data under small amount of a priori 
information. The estimates work under IIR dynamic 
blocks, non-Gaussian input and for non-invertible 
characteristics. Since the Hammerstein systems and 
the Wiener systems are special cases of the 
sandwich system, considered in the paper, the 
proposed approach is universal in the sense that it 
can be applied without the prior knowledge of the 
system structure. 

As regards the limit properties, the estimates 
)(ˆ )1( xNμ  and )(ˆ )2( xNμ  are not equivalent. First of them 

has slower rate of convergence (logarithmic), but it 
converges to the true system characteristic, since the 
model becomes more complex as the number of 
observations tends to infinity. The main limitation is 
assumed knowledge of λ , i.e., the upper bound of 
the impulse response. On the other hand the 
convergence of the estimate )(ˆ )2( xNμ  is faster 
(polynomial), but the estimate is biased, even 
asymptotically. However, the bias can be made 
arbitrarily small by selecting the cut-off parameter 
p  large enough. 

As it was shown in (Hasiewicz and Mzyk, 2009), 
the nonparametric methods allow for decomposition 
of the identification task of block-oriented system 
and can support estimation of its parameters. 
Computing of both estimates )(ˆ )1( xNμ , )(ˆ )2( xNμ  and 
the distance )(xkδ  has the numerical complexity 

)(NO , and can be performed in recursive or semi-
recursive version (see (Greblicki and Pawlak, 
2008)). 

The principal question in Wiener-Hammerstein 
system identification problem is selection of 
adequate method. The scope of application of each 
estimate is limited by a specific set of associated 
assumptions. Most of them requires a priori known 
parametric type of model, Gaussian input, FIR 
dynamics or invertible characteristic. Since the 
general Wiener-Hammerstein system identification 
problem includes many difficult aspects, existence 
of one universal algorithm cannot be expected. In 
the light of this, the nonparametric approach seems 
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to be good tool, which allows for combining selected 
methods (see e.g. (Mzyk, 2010b)), depending on 
specificity of the particular task. Moreover, pure 
nonparametric estimates are the only possible 
choice, when the prior knowledge of the system is 
poor or uncertain. 

Nonparametric approach offers simple 
algorithms, which are asymptotically free of 
approximation error, i.e. they converge to the true 
system characteristics. However, the purely 
nonparametric methods are not commonly exploited 
in practice for the following reasons: (i) they depend 
on various tuning parameters and functions; in 
particular, proper selection of kernel and the 
bandwidth parameter or orthonormal basis and the 
scale factor are critical for the obtained results, (ii) 
the prior knowledge of subsystems is completely 
neglected; the estimates are based on measurements 
only, and the resulting model may be not satisfactory 
when the number of measurements is small, and (iii) 
bulk number of estimates must be computed when 
the model complexity grows large. 
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