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Abstract: This paper explains how to use an adaptive High-Gain observer in sensor diagnosis problems. This type of
observer allows to switch between a classical Extended Kalman Filter and High-Gain observer according to
an innovation function. Combined with a standard technique of residual generation, this approach is very
efficient to determine fault occurence in the non-linear dynamical systems. We present the obtained results on
a wastewater treatment system.

1 INTRODUCTION

Nowadays, systems are more and more automated in
order to reduce the human intervention. So, these sys-
tems are composed of sensors and actuators. There-
fore, it involves to define a structure enable to detect
a sensor fault or a failing actuator. The aim of such
equipment is the diagnosis of failure to avoid the eco-
nomic losses and/or the environmental risks.

The present work deals the sensor diagnosis with
an observer for non-linear dynamical systems ap-
plied to a wastewater treatment system. There is a
lot of works on the synthesis of non-linear observers
for (bio)chemical processes (Alcaraz-Gonzalez et al.,
2002; Assis and Filho, 2000; Dochain, 2008; Meth-
nani et al., 2011; Nejjari et al., 2008; Sotomayor et al.,
2002). In this study, we choose an adaptive high-
gain observer, developed already as software sensor
(Boizot et al., 2010; Lafont et al., 2011), to solve a
sensor diagnosis problem. Transition from High-Gain
(HG) mode to Extended Kalman Filter (EKF) mode
is performed via an adaptation procedure based upon
the level of innovation. In the context of large transi-
tions, the HG observer guarantees theoretical conver-
gence with arbitrary rate, under certain observability
assumptions. For small enough error of initial esti-
mation, classical EKF is more or less optimal w.r.t.
noise.

Usually a changing coordinates is necessary in or-
der to obtain an observability canonical form. In some
cases, this change of coordinates is very complicated.
To avoid this step, we write our observer in the natural
coordinates. However, the counterpart of this choice

is that the Riccati equation of the Kalman filter has
not the standard form (Lafont et al., 2011).

A such observer is “robust” compared with ini-
tial conditions and measurement noises. Although the
generation of residues is standard, we show the capa-
bility of adaptive HG-EKF observer to detect a sensor
fault.

Section 2 summarizes sensor diagnosis problems
and observer-based residual generation. In Section 3,
we recall the structure of the adaptive high-gain ob-
server, which is the multi-output version developed in
the paper (Boizot et al., 2010). Also, the crucial con-
cept of innovation, which is used in order to switch
between the EKF and HG-EKF modes, is presented.
Section 4 is devoted to the application: A wastewater
treatment plant. Finally, in Section 5, we show simu-
lation results.

2 SENSOR DIAGNOSIS AND
OBSERVER

2.1 Sensor Diagnosis

We are interested at the problem of the bias and the
drift faults. These two faults are the most common
and the most repetitive.

An output with a bias fault is defined by:

yi = yr +b, (1)

with yi is the measured output,yr the real output and
b the constant offset value.
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An output with a drift fault is defined by:

yi = yr +d(t), (2)

with yi is the measured output,yr the real output and
d(t) the time varying offset factor.d(t) can be rep-
resented by the function:d(t) = a t+b with a and b
two constant terms.

2.2 Observer-based Residual
Generation

The main problem for the diagnosis based on ob-
servers is to find the residues. They are neglectable
in the absence of fault and significantly affected when
some faults occur. One difficulty is to make the robust
observer w.r.t. disturbances which are no faults.

So, a non-linear system can be written:

dx
dt = f (x,u) ,
y= h(x) =Cx,

(3)

wherex is the state vector,y the measured outputs
andu the control variables.

The corresponding observer is defined by:

dx̂
dt = g(x̂,u) ,
ŷ= Ĉx̂,

(4)

The output estimation error is used to residual
generation. The residual is analysed to determine
fault occurence. We apply a standard method:

r i = |yi − ŷi| . (5)

The output has a fault ifr i > δi . For each out-
put, we simulate off-line in nominal operating (with-
out fault) to determine the threshold levelδi . Then,
the method is applied on-line.

3 SYSTEMS UNDER
CONSIDERATION AND
OBSERVER EQUATIONS

3.1 The Observability Canonical Form

We consider a smooth non-linear system of the form
(3) which is mapped by a diffeomorphismψ into the
following system:

dξ
dt = F (ξ,u) = A(t)ξ+b(ξ,u) ,
y=Cξ,

(6)

whereξ ∈ Rn is the state vector in observable co-
ordinates (n the system order), whereu are the control
variables belonging to a certain bounded subset ofRp

(p the number of the control variables) and the output
y∈ Rd0 (d0 the number of the outputs).

The matricesA(t), C and the vectorb(ξ,u) have
a following form (all details can be found in (Boizot
et al., 2010)):

A(t) =




0 a2(t) 0 · · · 0

0 0 a3(t)
. . .

...
... · · ·

. . .
. . . 0

... · · · · · · 0 ak(t)
0 0 · · · · · · 0




,

C= (a1(t),0, · · · ,0) = (Id,0, · · · ,0),

(7)

where Id is an identity matrix of orderd0 .

b(ξ,u) =




b1(ξ1,u)
b2(ξ1,ξ2,u)

...
bn(ξ1, · · · ,ξk,u)


 . (8)

The state vectorξ(t) is assumed to have a “block”

structureξ=
(

ξ′

1 ξ′

2 · · · ξ′

k

)′

, whereξi ∈Rdi−1 (di the

size ofi +1th “block”) with d0 ≥ d1 ≥ ·· · ≥ dk−1. The
matricesai (t) have dimensiondi−1×di and belong to
a compact subsetKi of the set ofdi−1×di matrices of
maximum rankdi.

The f (x,u), ai (t) and bi (ξ,u) are assumed
smooth w.r.t. ξ, u and t. The bi depend onξ in a
“block” triangular way and are compactly supported.

3.2 Observer Structure

Let Q (n×n) , R (d0×d0) be symmetric positive
definite matrices. Letθ be the high-gain parameter,
θ ≥ 1. Forθ = 1 the observer will just be an ordinary
EKF.

Set ∆ = BD
(

1, 1
θ , · · · ,

1
θk−1

)
, the block diagonal

matrix with diagonal blocksIdd0,
1
θ Idd1, · · · . SetQθ =

θ∆−1Q∆−1,Rθ = θ−1R.
The equations of the system in observable coordi-

nates are:

dξ
dt = Tψ

(
ψ−1(ξ)

)
f
(
ψ−1(ξ),u

)
,

dξ
dt = F (ξ,u) .

(9)

The equations for the HG-EKF in the observable
coordinates are:

dξ̂
dt

= F(ξ̂,u)+PC
′
R−1

θ (y−Cξ̂), (10)

dP
dt = TF(ξ̂,u) P+P TF(ξ̂,u)′ +Qθ
−PC

′
R−1

θ CP.
(11)
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In the natural coordinates we have ˆx = ψ−1(ξ̂) =
Φ(x̂), where ˆx denotes the estimate ofx. As shown in
(Lafont et al., 2011), the equations for the HG-EKF
become:

dx̂
dt

= f (x̂,u)+ pC
′
(x̂,u)R−1

θ (y−h(x̂)) , (12)

dp
dt = T f(x̂,u)p+ pT f(x̂,u)

′
+qθ(x̂)

−pC
′
R−1

θ Cp

+Tψ(x̂)−1D2ψ(x̂)
{

pC
′
R−1

θ (h(x̂)− y)
}

p

+pD2ψ(x̂)
{

pC
′
R−1

θ (h(x̂)− y)
}′ (

Tψ(x̂)−1
)′

,

(13)
where

p= TΦ
(

ξ̂
)

P TΦ
(

ξ̂
)′

(14)

and

qθ (x̂) = (Tψ(x̂))−1Qθ

(
(Tψ(x̂))−1

)′

. (15)

TF denotes the tangent mapping to the mapping
F : x→ F (x), Rn →Rn i.e. its Jacobian matrix in co-
ordinates. AccordinglyT2F denotes the double tan-
gent, a skew-symmetric bilinear mapping,Rn-valued,
and for anyu∈ Rn we define the matrixD2F (x){u}
by T2F (u,v) = D2F (x){u} ·v.

3.3 Innovation

The functionInd, introduced below, is called the inno-
vation. This function reflects the quality measurement
of the estimation error on a small moving time inter-
val of sized. The strategy is to adapt the High-gain
parameterθ according toInd. Due to the observabil-
ity properties of our system, if the ˆy is far fromy then
θ will increase to High-gain mode. Contrarily, if ˆy
is close toy, the innovation will be small andθ will
decrease to 1 (Kalman filtering mode). For this, the
variableθ will be subject to the differential equation
(19) defined just below.

Let Fo(θ) be defined as follows:

Fo (θ) =
{ 1

∆T θ2 if θ ≤ θ1,
1

∆T (θ−2θ1)
2 if θ > θ1,

(16)

whereθ1 =
1
2θmaxand∆T small enough is a constant.

The valueθmax depends of the studied system and is
obtained by an heuristic approach. It is bounded and
the observer remains stable.

The innovationInd (t), with forgetting horizond,
is:

Ind (t) =
∫ d

t−d
‖y(τ)− ŷ(τ)‖2dτ, (17)

where ŷ(τ) is the prediction from the initial state
x̂(t −d).

Let us define

F (θ, Ind) = µ(Ind)Fo (θ)+ (1−µ(Ind))λ(1−θ) ,
(18)

for a λ > 0 and with µ(Ind) a sigmoid function,
µ : ]−∞;+∞ [→]0;1[ , Ind →

1
1+e−β·(Ind−m) . The equa-

tion for the HG parameterθ is:

θ̇ = F (θ, Ind). (19)

4 APPLICATION

The process under consideration is a real small-size
wastewater treatment plant (WWTP) composed of a
unique aeration tank equipped with surface aerators
which provide oxygen and mix the influent wastewa-
ter with biomass (Figure 1).

Figure 1: Wastewater treatment plant.

The model used is based upon the Activated
Sludge Model N1 (ASM 1) (Henze et al., 1987). Then
the biodegradation model consists of 12 state vari-
ables (Table 1). Actually, we consider only biodegra-
dation.

The state variables describing the total alkalinity
being not included. The values of stoichiometric and
kinetic parameters, as well as the influent concentra-
tions can be found in (Lafont et al., 2011).

The complete set of equations and influent con-
ditions can be found on the International Water As-
sociation task group on benchmarking of control
strategies for wastewater treatment plants website
(http://www.benchmarkwwtp.org/, 2011).

The model is of the form ˙x = f (x,u), where the
control u consists of the stateub of the turbines and
the valueQin of the influent average flow. The input
ub in (20) is a binary sequence switching between 0
and 1 and representing the state of turbines (off/on)
that aerate the plant. We make here the reasonable as-
sumptions of three measurements:SO, SNO andSNH.
Although the WWTP with these three outputs is ob-
servable, it is too complicated for our purpose. We
use a simplified model of lower dimension that has
been developped in (Chachuat, 2001).

4.1 The Reduced Model

The author proceeds as follow:
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Table 1: List of variables.

Definition Notation
1. Soluble inert organic matter SI

2. Readily biodegradable substrate SS

3. Particulate inert organic matter XI

4. Slowly biodegradable substrate XS

5. Active heterotrophic biomass XB,H

6. Active autotrophic biomass XB,A

7. Particulate products arising from biomass decay XP

8. Oxygen SO

9. Nitrate and nitrite nitrogen SNO

10. NH+
4 +NH3 nitrogen SNH

11. Soluble biodegradable organic nitrogen SND

12. Particulate biodegradable organic nitrogen XND

- A single organic compound, denotedXDCO
(DCO for “chemical oxygen demand”), is formed
by adding soluble and particulate organic compound
concentrationsXDCO = SS+XS,

- It is considered that the dynamics ofXBH, XBA
andXND are slow w.r.t. the others.

By removing the three unobservable variablesXP,
XI andSI , we obtain a simplified model with 5 state
variablesSO, SNO, SNH, XDCO and SND. The three
variablesSO, SNO andSNH are observables. All these
simplifications provide the following reduced model:

ṠO = Qin

V

(
Sin

O −SO
)
+α1

XDCO
KDCO+XDCO

· SO
KO,H+SO

+ r̃1 (y)+ub ·kLa ·
(
Smax

O −SO
) (20)

˙SNO = Qin

V

(
Sin

NO−SNO
)
+α3

XDCO
KDCO+XDCO

·
KO,H

KO,H+SO

SNO
KNO+SNO

+ r̃2(y)
(21)

˙SNH = Qin

V

(
Sin

NH −SNH
)
+α5

XDCO
KDCO+XDCO

·
(

SO
KO,H+SO

+ηNO,g
KO,H

KO,H+SO

SNO
KNO+SNO

)

+r̃3 (y)+α6SND

(22)

˙XDCO = Qin

V

(
Xin

DCO− KS
KDCO

XDCO

)

+α7
XDCO

KDCO+XDCO

(
SO

KO,H+SO

+ηNO,g
KO,H

KO,H+SO

SNO
KNO+SNO

)
+α8

(23)

˙SND = Qin

V

(
Sin

ND−SND
)
−α6SND+α9

· XDCO
KND+XDCO

(
SO

KO,H+SO
+ηNO,h

KO,H
KO,H+SO

· SNO
KNO+SNO

) (24)

KDCO = KS
XDCO

SS

KND = KX
XDCO

XS
XB,H

(25)

r̃1 (y) = α2
SNH

KNH,A+SNH

SO
KO,A+SO

r̃2 (y) = α4
SNH

KNH,A+SNH

SO
KO,A+SO

r̃3 (y) =−α4
SNH

KNH,A+SNH

SO
KO,A+SO

(26)

The constantkLa is the oxygen transfer coef-
ficient

(
kLa= 10h−1

)
and Smax

O is the dissolved
oxygen saturation concentration

(
Smax

O = 8 mgl−1
)
.

The volume of the aeration tank(V) is equal to
6000m3. The settler is a cylindrical tank where
the solids are either recirculated to the aeration tank(
Qrs = 18446m3day−1

)
or extracted from the system(

Qw = 385m3day−1
)
. The parameter valuesα1, α2,

α3, α4, α5, α6, α7, α8, α9, KND andKDCO are given
in Table 2.

4.2 Change of Variables

We apply the developed observer to a simplified
model (five states, three outputs). The change of vari-
ablesΨ which relates natural coordinates to observer
coordinates is trivial. It consists of setting just :

X̃DCO =
XDCO

KDCO+XDCO
. (27)

The state vectorx = (SO SNO SNH XDCO SND)
′

is

changed forξ =
(

SO SNO SNH X̃DCO SND

)′

, therefore

our system is almost naturally in observable coordi-
nates. The inverse Jacobian is trivial to compute.

The choice of parameters for the adaptation of in-
novation is presented in Table 3.

5 RESULTS

Simulations with the perturbed outputs are carried
out by an additive Orstein-Uhlenbeck process. The
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Table 2: Constant coefficients.

Coefficient α1 α2 α3 α4 α5 α6 α7 α8 α9 KDCO KND

Value - 5892 - 875 - 1648 191 - 957 150 - 17855 830 561 574 296

Table 3: Parameters for the adaptation.

Parameter value
θmax 300

β 1664π
e

m 1
∆T 0.01
λ 200
δ 0.01
d 0.1

alternative controlub has been chosen: “On” dur-
ing 15 minutes and “Off” during 5 minutes. The
simulations cover 14 days and the value of the in-
put flow rate Qin come from the benchmark file
(http://www.benchmarkwwtp.org/, 2011). We have
three files: One for the dry weather, one for the storm
weather and one for the rain file.

To evaluate the performances of our observer we
have compared an ordinary EKF with our adaptive
HG-EKF presented in (Lafont et al., 2011). Consider-
ing the obtained results for this system, we propose to
use this adaptive HG-EKF observer for the diagnosis.

5.1 Threshold Level for each Output

For each output, we simulate the three files, without
fault, to determine the threshold levelδi (Table 4).

Table 4: Threshold level.

File/Output SO SNO SNH

Dry 0.2505 0.9453 0.2466
Rain 0.2440 0.9306 0.2247
Storm 0.2576 0.9605 0.2200

We have selected one threshold level by output.
ForSO, the taken threshold is 0.3, forSNO, 1.0 and for
SNH, 0.3. These levels must be valid for whatever file.

5.2 Faults

The bias and the drift faults are simulated. The bias
value is equal to 1.5 and 2. The drift fault is simulated
with two curve slopes:(t−t f ) and 2∗(t−t f ), t f is the
fault time andt is the simulation time.

Results are presented in Tables 5 and 6 wheretd is
the detection time. Only the results for the fault time
equal to 3 with the dry file are presented in Table 5.
Indeed, the three files have the same seven first days.

Moreover, Tables 5 and 6 present two interesting re-
sults:

- Whatever the fault timet f , the various faults are
detected,

- If the fault is more important, it is detected
quickly.

6 CONCLUSIONS AND FUTURE
WORKS

6.1 Conclusions

We have shown that an adaptive HG-EKF observer
is efficient to detect sensor faults such as bias and
drift. The proposed method imposes to determine the
threshold levels with no fault. Thanks to the “robust-
ness” (compared with noise and initial conditions) of
this observer and the threshold choice for the residues,
the adaptive HG-EKF observer is an interesting ap-
proach for the sensor diagnosis. Moreover, the resid-
ual generation is very easy.

To improve the method, we can work with the
eigenvalues of the matrixp. The calculation of the
trace permits to give a confirmation:

Trace(p) =
n

∑
i=1

Vi , (28)

whereVi are the eigenvalues. When there is a sensor
fault, the trace has an abrupt change (Figure 2). This
result is a complementary information but it is not sat-
isfactory, because if the valueQin increases, the trace
becomes very big and the algorithm indicates a false
alarm.

2.97 2.98 2.99 3 3.01 3.02 3.03
0

1

2

3x 10
10

Day

T
ra

ce

Figure 2: Trace with a fault attd = 3 days.

6.2 Future Works

To improve this method, we can use the trace prop-
erties. The trace value is compared with the influ-
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Table 5: Faults detection for the dry file.

Fault/Sensor SO SNO SNH
td td td

Bias+1.5, t f = 3 3.0002 3.012 3.0004
Bias+1.5, t f = 12 12.0001 12.158 12.0004

Bias+2, t f = 3 3.0001 3.009 3.0003
Bias+2, t f = 12 12.0001 12.028 12.0002

Drift (t − t f ), t f = 3 3.222 4.455 3.215
Drift (t − t f ), t f = 12 12.150 12.739 12.197

Drift 2 ∗ (t− t f ), t f = 3 3.092 3.539 3.090
Drift 2 ∗ (t− t f ), t f = 12 12.067 12.959 12.115

Table 6: Faults detection for the rain and storm file.

Fault/Sensor SO SNO SNH File
td td td

Bias+1.5, t f = 12 12.0001 12.189 12.0004
Bias+2, t f = 12 12.0001 12.013 12.0003 Rain

Drift (t − t f ), t f = 12 12.176 13.528 12.189
Drift 2 ∗ (t− t f ), t f = 12 12.086 12.933 12.084

Bias+1.5, t f = 12 12.0001 12.201 12.0005
Bias+2, t f = 12 12.0001 12.012 12.0003 Storm

Drift (t − t f ), t f = 12 12.175 13.813 12.203
Drift 2 ∗ (t− t f ), t f = 12 12.089 12.941 12.084

ent flow rate by developing a “black box” (neural net-
works for example) which select the peak level to no-
tify a fault.

REFERENCES

Alcaraz-Gonzalez, V., Harmand, J., Rapaport, A., Steyer, J.-
P., Gonzalez-Alvarez, V., and Pelayo-Ortiz, C. (2002).
Software sensors for highly uncertain wwtps : a new
approach based on interval observers.Water Research,
36:2515–2524.

Assis, A. and Filho, R. (2000). Soft sensors development
for on-line bioreactor state estimation.Computers and
Chemical Engineering, 24:1099–1103.

Boizot, N., Busvelle, E., and Gauthier, J.-P. (2010). An
adaptive high-gain observer for nonlinear systems.
Automatica, 469:1483–1488.

Chachuat, B. (2001).Methodology of dynamic optimisa-
tion and optimal control of small-size activated sludge
wastewater treatment plants. PhD, Institut National
Polytechnique de Lorraine, Nancy.

Dochain, D. (2008). Bioprocess control. volume ISBN
9781848210257. ISTE.

Henze, M., Grady, C., Gujer, W., Marais, G., and Matsuo, T.
(1987). Activated sludge model n1. In IAWQ, editor,
Technical Report 1. London.

http://www.benchmarkwwtp.org/ (2011).
Lafont, F., Busvelle, E., and Gauthier, J.-P. (2011). An

adaptive high-gain observer for wastewater treatment
systems.Journal of Process Control, 21:893–900.

Methnani, S., Gauthier, J.-P., and Lafont, F. (2011). Sen-
sor fault reconstruction and observability for unknown
inputs, with an application to wastewater treatment
plants. International Journal of Control, 84.4:822–
833.

Nejjari, F., Puig, V., Giancristofaro, L., and Koehler, S.
(July 6-11, 2008). Extended luenberger observer-
based fault detection for an activated sludge process.
Proceedings of the 17th World Congress The Interna-
tional Federation of Automatic Control, Seoul, Korea,
pages 9725–9730.

Sotomayor, O., Park, S., and Garcia, C. (2002). Software
sensor for on-line estimation of the microbial activ-
ity in activated sludge systems.ISA Transactions,
41:127–143.

ICINCO�2012�-�9th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

190


