
Database Schema Elicitation to Modernize Relational Databases

Ricardo Pérez-Castillo1, Ignacio García Rodríguez de Guzmán1, Danilo Caivano2 and Mario Piattini1
1Instituto de Tecnologías y Sistemas de Información (ITSI), University of Castilla-La Mancha,

Paseo de la Universidad 4, 13071, Ciudad Real, Spain
2Department of Informatics, University of Bari, Via E. Orabona, 4, 70126 Bari, Italy

Keywords: Database Modernization, Legacy Systems, ADM, KDM, SQL, Metamodel, Model Transformations, QVT.

Abstract: Legacy enterprise systems mainly consist of two kinds of artefacts: source code and databases. Typically,
the maintenance of those artefacts is carried out through re-engineering processes in isolated manners.
However, for a more effective maintenance of the whole system both should be analysed and evolved
jointly according to ADM (Architecture-Driven Modernization) approach. Thus, the ROI and the lifespan of
the legacy system are expected to improve. In this sense, this paper proposes the schema elicitation
technique for recovering the relational database schema that is minimally used by the source code. For this
purpose, the technique analyses database queries embedded in the legacy source code in order to remove the
dead parts of the database schema. Also, this proposal has been validated throughout a real-life case study.

1 INTRODUCTION

Today, many organizations have huge legacy
systems supported by relational databases (Blaha,
2001), and these systems are not immune to software
ageing (Visaggio, 2001). Nevertheless, the erosion
not only affects the source code, but also databases
age gradually. For instance, in order to adapt the
system to new requirements, new tables and/or
columns are added to the schema of the database;
other tables are modified and even discarded without
erasing them from the database; and so on. These
changes over time generate problems related to
inconsistency, redundancy and integrity among
others.

Therefore, organizations must address
maintenance processes in their legacy information
systems. The entire replacement of these systems
has a great impact in technological and economic
terms (Sneed, 2005). So that, maintenance based on
evolutionary reengineering processes has typically
been carried out (Bianchi et al., 2003). Moreover,
the typical re-engineering process has been shifted to
the so-called Architecture-Driven Modernization
(ADM) (Ulrich and Newcomb, 2010) in the last
years. ADM advocates carrying out re-engineering
process following the principles of model-driven
development: taking into account all involved
artefacts as models and implementing

transformations between them.
The increasing cost of maintaining legacy

systems along with the need to preserve business
knowledge has turned the modernization of legacy
systems into an important research field (Lewis et
al., 2010). ADM provides several benefits such as
ROI improvement to existing information systems,
reducing development and maintenance cost and
extending the life cycle of the legacy systems.

This paper proposes the elicitation of database
schemas, a reverse engineering technique that
follows the model-driven principles to recover a
minimal relational schema from the queries
embedded in the legacy source code. The reverse
engineering technique to elicit relational database
schema consists of two key stages:
(i) Static analysis of source code, which examines
the Legacy source code and looks for SQL
(Structure Query Language) statements embedded in
the code. In this task, a model of SQL sentences is
built according to a metamodel of DML (Data
Manipulation Language) of SQL.
(ii) Model transformation, which obtains a model of
the relational schema from the previous SQL
sentences model. This transformation is based on a
set of rules that elicits the minimal schema of the
underlying database.
The objective of this proposal is to discover the
minimal subset of relational elements of the legacy

126 Pérez-Castillo R., García Rodríguez de Guzmán I., Caivano D. and Piattini M..
Database Schema Elicitation to Modernize Relational Databases.
DOI: 10.5220/0003980801260132
In Proceedings of the 14th International Conference on Enterprise Information Systems (ICEIS-2012), pages 126-132
ISBN: 978-989-8565-10-5
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

database in order to improve the database to use it in
the ADM process. Thus, the proposed technique
rebuilds the database schema and removes the dead
parts based on the embedded SQL sentences. This
mechanism eradicates duplicated or unused tables,
removes unused columns, and discovers new
referential constraints. In this way, the software of
legacy systems does not evolve in an isolated
manner, but takes into account its relational
databases.

The remainder of this paper is organized as
follows. Section 2 summarizes related works in the
database reengineering field as well as the state-of-
the-art about ADM. Section 3 explains the proposed
schema induction technique in detail. Section 4
presents a case study to validate the proposal.
Finally, Section 5 addresses the conclusions of this
work.

2 STATE-OF-THE-ART

2.1 Related Work

Research about re-engineering on applications and
databases jointly is usually addressed in literature.
Reus (Reus et al., 2006) presents a reverse
engineering process based on MDA (Model-Driven
Architecture) for recovering UML (Unified
Modeling Language) models from PL/SQL code.
Fong (Fong, 1997) and Ramanathan et al.
(Ramanathan and Hodges, 1997) transform the
relational models into object-oriented (OO) models
to integrated them with OO applications. Also,
Cohen et al. (Cohen and Feldman, 2003) convert
parts of the application logic from the procedural
style of the legacy systems to the declarative style of
SQL in order to integrate them with relational
databases. Hainaut et al. (Hainaut et al., 1996)
proposes a reverse engineering process for
recovering the design of relational databases and Wu
et al. (Wu et al., 2008) discover topical structures of
relational databases. Moreover, Pérez-Castillo et al.
(Pérez-Castillo et al., 2009) propose a wrapping
technique to extract Web services from relational
databases that manage the data access. Finally, Polo
et al. (Polo et al., 2007) have studied building
database-driven applications.

However, related works do not address some key
challenges for modernizing relational databases: (1)
those works do not follow a model-driven approach
in all phases of the reengineering process and (2)
recovered database knowledge is not managed in an
integrated and standardized manner. ADM is a

potential solution for dealing with the first challenge
while KDM (Knowledge Discovery Metamodel)
enables optimal knowledge management for
relational databases within the ADM processes, the
second challenge.

2.2 Standards Involved: ADM, KDM
and QVT

The reengineering processes and MDA principles
converge in ADM, an OMG standard for
modernizing legacy systems (Khusidman and
Ulrich, 2007). ADM is the concept of modernizing
existing systems with a focus on all aspects of the
current systems architecture and the ability to
transform current architectures to target architectures
(Pérez-Castillo et al., 2011).

The ADM Task Force in OMG led to several
standards (OMG, 2009). The cornerstone of this set
of standards is KDM (Knowledge Discovery Meta).
KDM allows standardized representation of
knowledge extracted from legacy systems by means
of reverse engineering. In addition, KDM has been
recently recognized as the standard ISO 19506
(ISO/IEC, 2009). The KDM metamodel provides a
common repository structure that makes it possible
to interchange information about software artefacts
in legacy systems. KDM makes it possible to
represent the PIM models in the horseshoe model.
KDM can be compared with the UML standard:
while UML is used to generate new code in a top-
down manner, the ADM processes that involving
KDM starts from the existing code and builds a
higher level model in a bottom-up manner (Moyer,
2009).

The KDM metamodel (ISO/IEC, 2009) is
divided into four layers (each one based on a
previous layer) representing both physical and
logical software assets of information systems at
several abstraction levels. This work focuses on (i)
program element layer, which provide a language-
independent intermediate representation for various
constructs determined by common programming
languages; and (ii) runtime resource layer, which
enables representation of high-value knowledge
about legacy systems such as databases.

3 SCHEMA ELICITATION

The proposed ADM process is organized into three
stages. The first stage of the modernization process
aims to obtain, through reverse engineering, a set of
PSM models representing each software artefact of

Database�Schema�Elicitation�to�Modernize�Relational�Databases

127

the legacy system. This task involves using a
specific metamodel for each artefact. After that, in
the second stage, a KDM model is built (using
model transformations) from the PSM models
recovered from the legacy system. In this case, the
KDM model plays the role of a PIM model.
Therefore, this model abstracts any technology-
specific aspect of the legacy system. It should be
borne in mind that obtaining KDM models does not
end in the restructuring stage, because it is possible
to restructure the KDM model itself. For example,
transformations can be tailored between KDM
layers. Finally, the forward engineering stage
accomplishes building new and improved
information systems. This stage involves PSM
models to represent specific aspects related to the
technological nature of each target system. In this
way, the modernization process is completed
according to the horseshoe model.

The aim of this modernization process is to
modernize legacy systems focused on code and
database as exclusive software artefacts. These
artefacts undoubtedly determine three KDM models
that must be obtained in the reverse engineering
stage of this modernization process: (i) KDM
Inventory Model is based on the Source Package of
KDM. It enumerates physical artefacts of the legacy
system and defines the mechanism of traceability
links between all the KDM elements and their
original representation in the legacy source code. (ii)
KDM Code Model supports both Code Package and
Action Package. This model aims to represent
program elements and their associations at the
implementation level. It includes elements supported
by several programming languages such as
sentences, operators, conditions, associations,
control and data flows. (iii) KDM Data Model
represents data manipulation in legacy systems.
Data Model is based on Data Package and uses the
foundations provided by Code Model related to the
representation of simple data types. Also, this model
can depict the relational databases used by the
legacy system.

In addition to these models, the schema
elicitation technique involves other models in the
reverse engineering stage of this ADM process (see
the shaded part of Figure 1). The database schema is
elicited from the SQL embedded in the source code
by means of the proposed technique, and thus it
generates an SQL Sentences Model by means of the
static analysis of legacy source code. The static
analysis activity also produces the Inventory Model
and Code Model. After that, the Database Schema
Model, a model that represents the minimal schema

of the database, is obtained through the model
transformation from the SQL Sentences Model.
Finally, the needed KDM Data Model is obtained
from the Database Schema Model.

At this point, both the source code and the
database are represented according to KDM.
Therefore the restructuring and forward engineering
stages can be carried out in order to generate the
modernized version of the legacy systems (see
Figure 1).

Figure 1: Schema elicitation technique based on ADM.

In order to obtain the SQL Sentences Model the
technique analyses the legacy source code for
embedded SQL sentences by means of a parser. This
parser is a syntactical analyser that exhaustively
scans source code. When the parser finds an SQL
sentence, it translates that sentence into a model
according to a metamodel of the DML (Data
Manipulation Language) of SQL-92 that has been
developed.

The metamodel modeling the syntax of the SQL-
92 DML (ISO/IEC, 1992). It can represent the SQL
operations such as Insert, Select, Update and Delete
together with search conditions.

After obtaining the SQL Sentences Model
through static analysis, the Database Schema Model
must be obtained by mean of a model
transformation. These models of relational database
schemas are represented through a metamodel
according to the SQL-92 standard (ISO/IEC, 1992).
Deductions of the minimal database schema are
based on a set of rules developed specifically for this
purpose. These rules recover only a subset of the
database schema elements that are handled by the
SQL sentences embedded in the source code.
Rule 1. The tables that appear in any SQL sentence
(Insert, Select, Update or Delete) as either source or
target clauses (From, Set, Into, and so on) are
created as tables in an induced database scheme.
Rule 2. The columns that are selected, added,
deleted or updated in the SQL sentences are created
in the corresponding tables. These tables have

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

128

previously been created through the application of
Rule 1. Rule 3. The columns depicted through the
table alias in sentences (As clause) are created in the
table related to this alias. This table was created
previously by means of Rule 1. Rule 4. The data
type associated with each column can be deduced
through the kind of expressions where these columns
appear. For example, Like expressions ‘string’
data type; arithmetic expressions ‘integer, decimal
or numeric’ data type, and so on. Rule 5. The Select
sentences structured in Join mode suggest potential
primary keys and foreign keys according to the
pattern expressed in Figure 2. While the source
column(s) of join select is/are related to the
column(s) within the foreign key, the target
column(s) of join select is/are related to the
column(s) within the primary key. Rule 6. After
applying the previous rules, it is possible that some
tables are created without a primary key. In this
case, a new column is attached to these tables as its
primary key. This column is a sequential number
that is generated automatically.

Figure 2: Pattern “join select to foreign key”.

4 CASE STUDY

The case study addresses a modernization project
that is currently being carried out. The subject
legacy system of this project is the intranet of the
Computer Science Faculty at the University of
Castilla-La Mancha. This intranet was developed
five years ago by several people.

The structure of the intranet consists of five
modules: (i) the Main module is the major module of
the intranet and has the standard functionalities; (ii)
the Administration module is in charge of
administrative and office tasks; (iii) the Old Students
module manages information related to students who
were members of the faculty; (iv) the Management
module is a module for the setup of the intranet; and

finally, (v) the Quality module measures and reports
on the quality of the faculty.

The intranet has a typical Web architecture
separated into three layers: presentation, business
and persistence. The technology used to develop the
presentation layer was JSP (Java Server Pages),
JAVA for business layer and ORACLE together with
JDBD-ODBC for the persistence layer. The total
size of this legacy system is 72.68 KLOC.

The case study establishes two research
questions to analyse the Database Schema Models
obtained through the proposal:
Q1. Are the output models complete?
Q2. Are the output models minimal with regards to
the original database schema?
The question Q1 aims to assess the completeness of
the obtained database schema. A specific schema is
complete when: (i) all tables in this schema model
have a primary key; (ii) there are no tables without
columns; and (iii) the schema model does not have
any duplicated elements. Moreover, the question Q2
takes into account the minimization of the database
schema. The minimization is measured by means of
the size of the obtained schema regarding the size of
the source database schema. In order to measure the
gain between the previous and current sizes, we use
two variables: the gain related to the number of
tables (1) and the gain related to the number of
columns in each table (2). In these formulas, T0 is
the number of tables in the legacy database schema
and C0{Ti} represents the number of columns of Table
i in the legacy database. Moreover, T represents the
number of tables in the improved database schema
and C{Ti} is the number of columns in Table i in the
obtained database schema. ்ܩ = ଴ܶ − ܶ଴ܶ (1)

஼{்೔}ܩ = ଴{்೔}ܥ − ଴{்೔}ܥ{೔்}ܥ (2)

The execution of the case study was carried out by
means of a tool based on the Eclipse platform that
was developed to support the elicitation schema
technique. A QVT (Queries / Views /
Transformations) (OMG, 2008) model
transformation is tailored in the tool from the
proposed rules. The tool accomplishes several SQL
Statements Models, a model for each source code
file. Table 1 summarizes the models obtained from
the legacy source code.

After that, the QVT transformations are executed
through the tool using these models as input models

Select
SUB-TABLE.*

From
SUPER-TABLE, SUB-TABLE

Where
SUB-TABLE.FK-column = SUPER-TABLE.PK-column
and SUPER-TABLE.search-column = “filter”

SUPER-TABLE PK-column search-column column1 … columnN

SUB-TABLE PK-column FK-column column1 … columnN

ForeignKey

Database�Schema�Elicitation�to�Modernize�Relational�Databases

129

to obtain the output model that represents the new
and minimal database schema.

Table 1: Input SQL statement models.

Module Source
Files

SQL
Statements

SQL Statement
Models

Main 18 23 18
Administration 8 14 8
Old Students 4 4 4
Management 1 1 1

Quality 44 60 44
Total 75 102 84

After the execution of the QVT transformations,
a set of output models that depicts database
segments (used for each module of the intranet) was
obtained. Table 2 summarizes the results obtained
for each output model. The legacy database had 140
tables and 25 tables were recovered. Table 2 shows
the tables recovered for each intranet module. In
addition, it presents the gain related to the tables
(GT) as well as the gain regarding the columns (GC).

The analysis of the results obtained for these
models presents several conclusions that should be
considered as a response to the question Q1: (i)
tables are usually obtained without primary keys
unless Rule 6 is launch after other QVT relations;
(ii) obtaining tables without columns is not usual,
because any column that appears in a SQL statement
is normally associated with its table.

In this case study, the QVT relations do not infer
enough foreign keys, because the only QVT-
implemented mechanism for inferring foreign keys
is Rule 5. Indeed, the intranet source code has only
two join select sentences due to the bad design of the
legacy database.

In order to respond to the question Q2, the gain
of the obtained database schema was also assessed.
In total, 18% of the tables were recovered (25 tables)
and the GT value was 82%. With respect to the
columns, the box diagram in Figure 3 shows the
distributions of GC for each intranet module. The
mean per table of the GC values was 27%, although
in some modules this mean was higher. In this study,
the GC mean is lower than the GT. However, the total
gain related to the size minimization of the new
database schema is significant.

5 CONCLUSIONS

This paper proposes a modernization process based
on KDM. The objective of this process is the
modernization of legacy source code together with
legacy relational databases. For this reason, this

proposal considers two complementary sources of
knowledge: (i) the schema of the legacy database,
and (ii) the SQL sentences embedded in the legacy
source code.

The main contribution of this paper is a
mechanism named ‘schema elicitation’ to rebuild the
database schema from the SQL sentences embedded
in the source code.

Figure 3: Box diagram of GC per module.

This mechanism removes the dead parts of the
database schema such as duplicated or unused tables
and unused columns. Also, this mechanism can
discover new referential constraints implicit in the
source code. Therefore, this proposal obtains
improved and minimal database schemas used in the
latter stages of the modernization process. In order
to support the schema elicitation mechanism, two
SQL metamodels were developed: a metamodel for
representing SQL sentences embedded in source
code as well as a metamodel for modelling schemas
for relational databases. In addition, a set of QVT
relations was tailored to transform a SQL sentences
model into another database schema model.

Finally, a case study with a legacy intranet
reports the main advantages of this proposal. Firstly,
the obtained database schema had the adequate
completeness level, thus that schema can be used as
new database schema in the modernized system.
Secondly, the dead parts were removed. In our case
study the minimization of the size of the obtained
schema was around 80% with regard to the original
size.

The future extension of this research focuses on
the improvement of the completeness level of the
database schema models and on the detection more
dead parts by means of more refined patterns. For

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

130

Table 2: The schema elements recovered through the case study and the gain of the minimal schema.

this purpose, more case studies will be carried out in
order to detect more information needs in the target
database schema that must be obtained. In addition,
the future work will address the next stages of the
proposed modernization process such as the
transformation from database models to KDM
models, and then, the restructuring and forward
engineering stages, which will use the previous
knowledge.

ACKNOWLEDGEMENTS

This work has been supported by the FPU Spanish
Program; by the R&D projects funded by JCCM:
ALTAMIRA (PII2I09-0106-2463), INGENIO
(PAC08-0154-9262) and PRALIN (PAC08-0121-
1374).

REFERENCES

Bianchi, A., Caivano, D., Marengo, V. and Visaggio, G.
2003. Iterative Reengineering of Legacy Systems.
IEEE Trans. Softw. Eng., 29, 225-241.

Blaha, M. Year. A Retrospective On Industrial Database
Reverse Engineering Projects-Part 1. In: Proceedings
of The 8th Working Conference on Reverse
Engineering (WCRE´01), 2001 Suttgart, Germany.
Ieee Computer Society, 136-147.

Cohen, Y. and Feldman, Y. A. 2003. Automatic High-
Quality Reengineering of Database Programs By
Abstraction, Transformation and Reimplementation.
ACM Trans. Softw. Eng. Methodol., 12, 285-316.

Fong, J., 1997. Converting Relational to Object-oriented
Databases. ACM SIGMOD Record, 26, 53–58.

Hainaut, J.-L., Henrard, J., Hick, J.-M., Roland, D. and
Englebert, V. 1996. Database Design Recovery.

Proceedings of The 8th International Conference on
Advances Information System Engineering. Springer-
Verlag.

ISO/IEC. 1992. ISO/IEC 9075:1992, Database Language
Sql.

ISO/IEC. 2009. ISO/IEC Dis 19506. Knowledge
Discovery Meta-Model (KDM), V1.1 (Architecture-
Driven Modernization).

Khusidman, V. And Ulrich, W. 2007. Architecture-Driven
Modernization: Transforming the Enterprise. Draft
V.5. andHttp://Www.Omg.Org/Docs/Admtf/07-12-01.
Pdf. Omg.

Lewis, G. A., Smith, D. B. and Kontogiannis, K., 2010. A
Research Agenda for Service-Oriented Architecture
(Soa): Maintenance and Evolution of Service-oriented
Systems. Software Engineering Institute.

Moyer, B., 2009. Software Archeology. Modernizing Old
Systems. Embedded Technology Journal [Online], 1.
Available: Http://Adm.Omg.Org/Docs/Software_
ArcheoLogy_4-Mar-2009.Pdf [Accessed Junio 2009].

Omg 2008. Qvt. Meta Object Facility (Mof) 2.0
Query/View/Transformation Specification. Http://
Www.Omg.Org/Spec/Qvt/1.0/Pdf. Omg.

Omg. 2009. Architecture-Driven Modernization Standards
Roadmap. [Online]. Omg. Available: Http://Adm.
Omg.Org/Admtf%20roadmap.Pdf [Accessed
29/10/2009].

Pérez-Castillo, R., García-Rodríguez De Guzmán, I.,
Caballero, I., Polo, M. And Piattini, M. 2009. Preciso:
A Reengineering Process and a Tool for Database
Modernisation Through Web Services 24th ACM
Symposium on Applied Computing. P. 2126-2133.

Pérez-Castillo, R., García Rodríguez De Guzmán, I. and
Piattini, M. 2011. Architecture-Driven Modernization.
In: Dogru, A. H. And Bier, V. (Eds.) Modern Software
Engineering Concepts And Practices: Advanced
Approaches. Igi Global.

Polo, M., García-Rodríguez De Guzmán, I. And Piattini,
M. 2007. An Mda-based Approach For Database Re-
Engineering. J. Softw. Maint. Evol., 19, 383-417.

Ramanathan, S. And Hodges, J. 1997. Extraction of

Database�Schema�Elicitation�to�Modernize�Relational�Databases

131

Object-oriented Structures From Existing Relational
Databases. ACM SIGMOD Record, 26, 59–64.

Reus, T., Geers, H. And Deursen, A. V. Year. Harvesting
Software for MDA-based Recovering. In: European
Conference on Model Driven Architecture -
Foundations and Applications, 2006 Bilbao (Spain).
Springer-Verlag Berlin Heidelberg.

Sneed, H. M., 2005. Estimating The Costs of a
Reengineering Project, IEEE Computer Society.

Ulrich, W. M. and Newcomb, P. H., 2010. Information
Systems Transformation. Architecture Driven
Modernization Case Studies, Burlington, MA, Morgan
Kauffman.

Visaggio, G., 2001. Ageing of a Data-intensive Legacy
System: Symptoms and Remedies. Journal Of
Software Maintenance, 13, 281-308.

Wu, W., Reinwald, B., Sismanis, Y. and Manjrekar, R.
Year. Discovering Topical Structures of Databases. In:
ACM SIGMOD International Conference on
Management of Data, 2008 Vancouver, Canada. Acm,
1019-1030.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

132

