
Design Patterns for Event-driven Enterprise Architectures

Jürgen Dunkel and Ralf Bruns
Department of Computer Science, Hannover University of Applied Sciences and Arts, Ricklinger Stadtweg 120, 30459

Hannover, Germany

Keywords: Event-driven Architecture, Complex Event Processing, Design Pattern, Enterprise Architecture.

Abstract: In recent years, event processing has gained considerable attention as an individual discipline in computer
science. For event processing, generally accepted software architectures based on proven design patterns and
principles are missing. In this paper, we introduce a catalogue of design patterns that supports the development
of event-driven enterprise architectures and complex event processing systems. The design principles originate
from experiences reported in publications as well as from our own experiences in building event processing
systems with industrial and academic partners. We present several patterns on different layers of abstractions
that define the overall structure as well as the building blocks for event processing systems. Finally, we discuss
a general reference architecture for event-driven enterprise systems.

1 INTRODUCTION

Recently, event processing (EP) has established it-
self as an individual discipline in computer sci-
ence. Event-driven architecture (EDA) introduces
event processing as the central architectural concept
(Chandy and Schulte, 2010). One key concept of
EDA is the employment of complex event process-
ing (CEP) as the general processing model (Luckham,
2002). CEP analyses continuous streams of incoming
events in order to identify the presence of complex
sequences of events, so called event patterns. Funda-
mental concepts of CEP are an event processing lan-
guage (EPL), to express event processing rules con-
sisting of event patterns and actions, as well as an
event processing engine that continuously analyzes
the event stream and executes the matching rules. If a
pattern matches either a new complex event could be
created or an appropriate action could be triggered.

But event-driven applications have not yet reached
the maturity of well-established software architec-
tures (Paschke, 2009), (Dunkel et al., 2009). Al-
though several concrete software architectures have
emerged there is a lack of established design patterns,
best practice examples, reusable components, process
models, and reference architectures offering guide-
lines on how to build enterprise event processing sys-
tems. In particular, design patterns and reference ar-
chitectures exist only in early draft versions (Schulte
and Bradely, 2009), (Paschke and Vincent, 2009), or

are related to certain technologies (Coral8, 2006) and
application domains (Dunkel et al., 2010).

In this paper, we are considering event processing
from a software engineering perspective. We present
a catalogue of patterns providing the basic structure
and the building blocks of a software architecture for
event processing systems. The proposed patterns can
serve as general guidelines for the development of
event-driven enterprise architectures. Using the pat-
tern catalogue we derive a general reference software
architecture for event processing enterprise systems.

Patterns encapsulate knowledge: they are based
on the repertoire of general principles and idiomatic
solutions of experienced developers. The design pat-
terns presented here originate from experiences re-
ported in published work as well as from our own ex-
periences in building event processing systems with
industrial and academic partners. This paper presents
a pattern catalogue that provides a way of organiz-
ing solutions for general problems in EP and makes
it easier to reuse them. In other words, our approach
introduces a vocabulary for the architecture of EP as
well as a conceptual framework that leads to a more
structured approach for the design of EP systems.

After discussing related work in the next section
we present in section 3 the catalogue of patterns. Fi-
nally, section 4 introduces a general reference archi-
tecture based on the proposed patterns.

187Dunkel J. and Bruns R..
Design Patterns for Event-driven Enterprise Architectures.
DOI: 10.5220/0003971301870192
In Proceedings of the 14th International Conference on Enterprise Information Systems (ICEIS-2012), pages 187-192
ISBN: 978-989-8565-12-9
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

2 RELATED WORK

General Patterns: Most of the pattern literature is
focused on conventional process-oriented software ar-
chitectures. But some of the general design pat-
terns like layers (Gamma et al., 1998) can be ap-
plied on EDA as well. Other patterns that can be di-
rectly transferred to event processing are discussed in
enterprise application integration (EAI). (Hohpe and
Woolf, 2003) presents numerous patterns describing
the message-based interaction between applications.
Obviously, the general ideas of Message Routing and
Message Transformation can be reused for event pro-
cessing as well. EAI patterns, as Pipes and Filters,
Message Filter, Aggregator, and Content Enricher are
applied on event processing in (Coral8, 2006).

Event Processing Patterns: In recent years, a lot
of work has been published reporting on manifold ex-
periences with event-driven systems. Luckham in-
troduced the concept of event processing networks
(EPN) in order to cope with the complexity of real-
world event-driven applications (Luckham, 2002).

A collection of CEP patterns is presented in
(Coral8, 2006) for illustrating the capabilities of CCL,
their proprietary event processing language. Because
the patterns are that closely tied to a certain technol-
ogy, they are much more recipes than patterns.

Paschke (Paschke, 2009) does not describe a cat-
alogue of patterns but presents a multidimensional
scheme for the categorization of CEP patterns.

Reference Architectures: A reference architecture
provides a generic and abstract software architecture
that provides a template for the design of an EP-
based system. Actually, there is only few work that
addresses directly a general reference architectures
for event processing. (Chandy and Schulte, 2010)
present a coarse-grain reference architecture for EPNs
containing event producers, channels, consumers, and
intermediaries. In (Paschke and Vincent, 2009) the
processing entity is structured into three logical steps:
event selection, aggregation, and handling.

An initiative towards professionalization of the
area is the EPTS Reference Architecture Working
Group founded by the Event Processing Technical So-
ciety (EPTS) in 2009 (EPTS, 2012).

3 PATTERNS

In the following we present the patterns in in an ade-
quate structured form: first, we describe the problem

in its context, then the solution, and finally the bene-
fits and dependencies of the pattern are evaluated.

3.1 Architectural Patterns

Architectural patterns describe how the entire system
can be structured and divided into components.

3.1.1 Layers

Problem and Context: First, the top-level structure
of the EDA has to be determined: The different tasks
and responsibilities of the resulting components have
to be identified and clearly separated.

Solution: The familiar architectural pattern of soft-
ware layers (Buschmann et al., 1998) can also be ap-
plied on event processing systems. The overall struc-
ture of an event-driven architecture consists of three
different logical layers.

1. Monitoring Layer: The Monitoring Layer is re-
sponsible for capturing the events from multiple
event sources as well as for the preprocessing of
the raw events. First, it implements the technical
access to the different event sources. In a second
step, the proprietary formats of the event data are
translated into standardized internal event objects.

2. Event Processing Layer: The Event Processing
Layer is responsible for the core processing of
continuous event streams using CEP, which is re-
sponsible for event pattern matching.

3. Event Handling Layer: The Event Handling
Layer is responsible for appropriate reactions on
matched event patterns. Mostly, a service in the
enterprise systems that performs simple business
functions or entire business processes is triggered.

Evaluation: The Layers pattern describes the global
structure of an EDA and decouples the key respon-
sibilities: detecting events, processing events and re-
acting on events: the Monitoring Layer does not un-
derstand the further processing, the Event Processing
Layer has no knowledge about the technical details
of the event sources, and the Event Handling Layer
does not know fine-grained events and has no idea
how complex business events have been processed
by the above layers. The pattern can also be find in
other EDA work, e.g. (Schulte and Bradely, 2009),
(Paschke and Vincent, 2009), (Michelson, 2006).

3.1.2 Agents

Problem and Context: The processing of events is
realized by a set of event processing rules. To reduce

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

188

complexity and to make event processing scalable an
approach is required for distributing event processing
rules to different execution environments.

Solution: David Luckham has introduced the con-
cept of event processing agents (EPA) in (Luckham,
2002). An EPA is a software component specialized
on event stream processing with its own rule engine
and rule base. An event processing network (EPN)
connects several EPAs to constitute an architecture
for event processing. Event processing agents com-
municate with each other by exchanging events.

Evaluation: Event processing agents are a central
and well-known CEP concept (Etzion and Niblett,
2010), (Luckham, 2002). Agents can be considered
as a distribution pattern defining the relation between
rules and runtime environments. Firstly, agents pro-
vide an approach for modularizing and structuring
rules in the Event Processing Layer. Light-weighted
agents with few rules improve comprehensibility and
maintainability. Usually, the rules contained in a cer-
tain agent fulfill a coherent domain-specific task. Sec-
ondly, agents make the system faster and more scal-
able by exploiting distributed system architectures.

3.1.3 Pipeline

Problem and Context: To cope with complexity of
event processing, a general approach for structuring
the Event Processing Layer is needed.

Solution: A pipeline can be used as the general event
processing model. A pipeline is of a chain of pro-
cessing elements, arranged so that the output of an
element serves as the input of the next. This ap-
proach applies the well-known pipes-and-filters pat-
tern (Buschmann et al., 1998) on event processing.
The different stages of the pipeline are characterized
by the following properties.

Each stage knows only its direct successor. The
first stage processes the raw events of the event
sources. The final stage sends events to the backend
systems for triggering event handling.

A stage transforms incoming simple events into
more complex and meaningful events. Thus, the pro-
cessing of elements of the pipeline is directly related
to the hierarchy of event types. Each processing stage
is implemented by an event processing agent.

Evaluation: The Pipeline pattern provides a gen-
eral processing model for events. In particular, the
pipeline stages introduce sequential processing order
in CEP. The rules of a certain stage cannot be ap-
plied until the processing of the former stage has been

finished. This sequential view on event processing
makes the Event Processing Layer easier to under-
stand and to maintain. Furthermore, the stages of the
pipeline are good candidates for processing agents.
They provide loosely coupled processing elements
implementing a fire-and-forget strategy: a stage sends
its results as event to its successor without knowing
anything about the subsequent processing stages.

3.2 Design Patterns

Design patterns describe the general mechanisms and
building blocks of event processing. They specify
archetypal processing stages of the Pipeline pattern.

3.2.1 Event Consistency

Problem and Context: Event data can contain
incorrect, meaningless or faulty data. Especially data
captured from the physical world tends to be noisy
and unreliable (Jeffrey et al., 2006).

Solution: A special cleaning step has to be processed
by a dedicated cleaning agent to detect any relevant
inconsistency. OCL constraints (OMG, 2003) can
be used to define valid ranges of event values. They
can be easily transformed into event processing
rules (Dunkel et al., 2009). Inconsistent events
can be deleted so that only completely consistent
events are subsequently processed. Incorrect data
is transformed into meaningful data, e.g. by using
default values. So, also events with partly incorrect
data are considered. Eventually, incorrect events
could simply be ignored, if the subsequent event
processing rules can deal with wrong event data.

Evaluation: An explicit cleaning step guarantees that
only consistent events are considered in subsequent
event processing steps. Thus, it simplifies the CEP
rules, because they only have to deal with reasonable
data. Generally, the Consistency pattern decouples
event cleaning from event processing.

3.2.2 Event Reduction

Problem and Context: Event processing systems
have to deal efficiently with extremely high volumes
of event data. Therefore, one of the first stages in
the processing pipeline tries to reduce the number of
events as early and as drastically as possible.

Solution: There are several design patterns to reduce
the set of the considered events.

� Filtering: All events that are not required for fur-
ther processing are logically removed from the

Design�Patterns�for�Event-driven�Enterprise�Architectures

189

event stream, i.e. only relevant events are passed
to the next stage. Usually, filtering criteria are
rather simple, just considering events of a certain
type or containing data of specific ranges.

� Content-based Routing: propagates events only
to those agents that are interested in this type of
events. It provides some kind of event dispatch-
ing and splits an event stream into different sub-
streams. In fact, the total number of events is not
decreased, but each EPA has to deal with fewer
events. Note that content-based routing yields
stronger coupling between the agents, because
they need some knowledge about subsequent pro-
cessing (Bruns and Dunkel, 2010).

� Sliding Windows: To cope with the infinite num-
ber of data, sliding windows are used, i.e. a his-
torical snapshot considering the most recent set of
events. Sliding windows are well-established in
event processing. Nearly all event processing lan-
guages contain language constructs for defining
sliding windows. Sliding windows extract a lim-
ited set of events from an infinite stream of events.

Evaluation: Different types of filtering mechanisms
reduce the number of events. All the mechanisms
are well-known and established (Etzion and Niblett,
2010), (Hohpe and Woolf, 2003). Filtering should
be processed in a dedicated EPA as early as possi-
ble. Content-based routing provides the controlling
of event streams and can be implemented by a single
dispatching agent or spread over multiple agents. In
contrast, reduction windows are used in a single rule
as restrictive condition.

3.2.3 Event Transformation

Problem and Context: Usually, event data is not op-
timized for further processing: Event sources produce
events in a proprietary data format, which cannot
be used directly in the CEP engines. Often, events
don’t carry all the data necessary in a processing step.
Therefore, expensive accesses to the backend system
are necessary to retrieve the missing information.

Solution: There exist two types of transformation
steps to cope with the above problems.

� Translation: In an explicit translation step, the
data format is changed to another format appro-
priate to further processing (e.g. XML or JSON).
Note that a translation step does not add any new
information to an event instance.

� Content-enrichment: Simple events contain only
low-level data and are often incomplete for fur-
ther processing. For instance, measured vehicle

velocities should berelated to the allowed speed
limit. Thus, in an explicit transformation step the
event objects are enriched with additional struc-
tural information by accessing the backend sys-
tems. The content enrichment step improves the
performance of the entire system by reducing the
number of requests to the backend systems in the
subsequent processing steps.

Evaluation: Event translation and content-
enrichment preserve the total number of events,
but change the data format or insert additional
information to event objects. Content-enrichment is
also established in event processing (Coral8, 2006)
or message-oriented systems (Fowler, 2002). Note
that added information does not put any new meaning
to the events, but makes them self-contained for the
next processing steps. The content-enrichment step
should be located after event reduction and before the
more intelligent event processing starts, which needs
the enriched events.

3.2.4 Event Synthesis

Problem and Context: The main task of complex
event processing is to extract a domain-specific mean-
ing out of the observed streams of simple fine-grained
and uncorrelated events. Considering a solitary event
is usually of no significance, because it represents
just a single incident in the physical world. Instead,
according to the key idea of CEP, a set of fine-grained
simple events must be correlated to a single complex
event with a significant meaning (Luckham, 2002).

Solution: A set of simple events is synthesized to one
complex event that has more meaning. Event cor-
relation is strongly domain-specific, but some gen-
eral aspects of correlation can be identified. First,
we discuss how to determine the set of correlated
events. Then two stages of correlations are distin-
guished: granularity shifts and semantic shifts.

� Correlation Sets: A certain correlation set con-
tains all events that share a particular context.
Generally, we can distinguish different dimen-
sions for constructing correlations sets: Domain-
specific correlation correlates events according
to domain-specific properties (usually determined
by constraints on the event data attributes). Tem-
poral correlation takes temporal relations be-
tween events into account: Nearly all event pro-
cessing languages include temporal operators to
specify the chronological order of events or to
consider temporal sliding windows. Spatial cor-
relation considers those events that are observed
at a certain location for identifying spatial behav-

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

190

ior. To consider the occurrence space of events,
spatial operators must be used. Such operators
should allow space coordinate windows similar to
temporal sliding windows.

� Granularity Shift: Usually, the events emitted by
the event sources are too fine-grained and uncorre-
lated to be meaningful for the business processes.
Therefore, an important aspect of CEP is achiev-
ing a shift of the event granularity. (Too) many
fine-grained events are aggregated to a new and
more abstract composite event. Aggregation uses
rather simple numerical operations such as calcu-
lating averages or sums of event data for correlat-
ing events of the same type. It reveals no new
sophisticated insights in analyzing the situation
caused by the arrived events.

� Semantic Shift: The key issue of CEP is shift-
ing the event semantics: The single events within
a certain correlation set are mapped to a new
complex event that assigns the occurred events a
new non-obvious and semantically richer mean-
ing. The underlying correlation sets are based on
rather complex event patterns with respect to the
sophisticated knowledge of domain experts. Se-
mantic patterns describe complex dependencies
between events taking temporal constraints into
account. The significance of a complex event is its
occurrence, not the data it is carrying. A complex
event can be used in subsequent processing or for
triggering immediate reactions in operational en-
terprise systems.

Evaluation: Event synthesis aggregates simple
events and transforms them to a new complex event
on a higher level of abstraction. Event correlation is
discussed generally in the context of event patterns in
many works, e.g. (Luckham, 2002), (Coral8, 2006).
Here, we present some general correlation mecha-
nisms that are application independent. First, corre-
lation sets determine the simple events to be corre-
lated. The concept of correlations sets is well-known
in other areas such as in business process model-
ing. Secondly, we argue that event correlation is pro-
cessed in two subsequent steps of the event process-
ing pipeline. A granularity shift just aggregates sim-
ple fine-grained events to a coarse-grained compos-
ite event still without providing new gain of insights.
Then, complex event processing rules define patterns
in the stream of composite events that represents a sig-
nificant meaning about. Thus, a semantic shift takes
place.

4 REFERENCE ARCHITECTURE

In this section, we apply the catalogue of patterns to
derive a reference architecture for event processing.
The reference architecture provides a template for the
design of event processing systems. To obtain a con-
crete architecture for a particular domain, the refer-
ence architecture has to be customized and adapted
to the specific domain requirements. Figure 1 depicts
the logical view of the architecture with its essential
layers and components.

Event Consistency

Event
 Reduction

Historical
Data

Event Processing

Event Flow

Structural
Data

Services Visualization

 Monitoring

ltering

Event Synthesis

In-Adapter

translation

granularity
shift

semantical
shift

Event Trans-
formation

content
enrichment

Business
Events

cleaningtechnical
access

Event Handling

 Event
Streams

Figure 1: Reference architecture for event processing.

The global structure is based on the Layers pattern
distinguishing the three software layers monitoring,
event processing and event handling with the particu-
lar responsibilities described in section 3.1.1.

The event processing layer is organized as a pro-
cessing Pipeline according to section 3.1.3. The
pipeline provides a general processing model of
events defining a number sequentially traversed
stages. Each stage of the pipeline is implemented
by a dedicated Agent (as described in section 3.1.2).
Light-weighted agents allow the distribution of event
processing rules between different runtime environ-
ments. Design patterns of our pattern catalogue de-
scribe the different components of each layer:

Event Monitoring: The monitoring layer is re-
sponsible for gathering events from multiple event
sources as well as for the preprocessing of the
raw events. The In-Adapter component implements
the technical access to the different types of event
sources. Afterwards, according to the Event Consis-
tency pattern, a separate cleaning step is processed
(see section 3.2.1): defect, faulty or double event ob-
jects are sorted out or corrected.

Event Processing: The event processing layer im-
plements a pipeline, where each stage transforms sim-

Design�Patterns�for�Event-driven�Enterprise�Architectures

191

ple incoming events into more complex and meaning-
ful events. The pipeline is organized on the base of
the following archetypal agents. As a first step of the
pipeline an Event Reduction agent reduces the number
of events by performing a filtering step (as described
in section 3.2.2). Only events relevant for further pro-
cessing are propagated to the next pipeline stage.

Then the relevant events pass an Event Transfor-
mation phase, where a content-enrichment step is pro-
cessed (according to section 3.2.3). Structural data re-
trieved from the backend systems is added to the event
objects to make them self-contained for the next pro-
cessing steps.

Event Synthesis: The last stage in the process-
ing chain is the most significant one: The filtered
and enriched simple events are aggregated, correlated,
and synthesized to new and more complex (business)
events. This stage is usually complex and can con-
sist of a processing pipeline on its own. The concrete
steps are domain-specific and can only be described
on a general level as discussed in section 3.2.4. First
event aggregation provides a granularity shift. Then
a semantic shift infers higher insight out of the set of
correlated events by applying rules based on expert
knowledge.

Event Handling: The event handling layer is re-
alized by the enterprise backend systems, which im-
plement appropriate reactions to received events (see
bottom layer in Figure 1).

5 CONCLUSIONS

In this paper, we introduced a catalogue of patterns
that supports the development of event-driven enter-
prise architectures. All patterns are described in a
standardized form providing a vocabulary and a con-
ceptual framework that leads to a more structural ap-
proach for the design of event processing systems.

We proofed the usefulness the presented pattern
catalogue by deriving a general reference architec-
ture. Our reference architecture is pattern-based and
supports the developers of event processing applica-
tions in their design decisions. It facilitates the con-
struction of systems, leads to reduced development
time of event processing applications, and fosters the
reuse of successful EP solutions.

REFERENCES

Bruns, R. and Dunkel, J. (2010). Event-Driven Archi-
tecture: Softwarearchitektur für ereignisgesteuerte

Geschäftsprozesse. Springer-Verlag, Berlin Heidel-
berg.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad,
P., and Stal, M. (1998). Pattern-Oriented Software-
Architecture Volume 1: A System of Pattern. Addison
Wesley.

Chandy, K. and Schulte, W. (2010). Event Processing: De-
signing IT Systems for Agile Companies. McGraw-
Hill.

Coral8 (2006). Complex event processing: Ten
design patterns. http://complexevents.com/wp-
content/uploads/2007/04/Coral8DesignPatterns.pdf.

Dunkel, J., Fernandez, A., Ortiz, R., and Ossowski, S.
(2009). Injecting semantics into event-driven architec-
tures. In Proceedings of the 11th International Con-
ference on Enterprise Information Systems (ICEIS),
pages 70–75.

Dunkel, J., Fernandez, A., Ortiz, R., and Ossowski, S.
(2010). Event-driven architecture for decision support
in traffic management systems. Expert Systems and
Applications.

EPTS (2012). Event Processing Technical Society.
http://www.ep-ts.com.

Etzion, O. and Niblett, P. (2010). Event Processing in Ac-
tion. Manning.

Fowler, M. (2002). Patterns of Enterprise Application Ar-
chitecture. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1998). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Hohpe, G. and Woolf, B. (2003). Enterprise Integrations
Patterns: Designing, Building, and Deploying Mes-
sage Solutions. Addison-Wesley.

Jeffrey, S., Alonso, G., Franklin, M., Hong, W., and Widom,
J. (2006). A pipelined framework for online cleaning
of sensor data streams. In ICDE, pages 140–142.

Luckham, D. (2002). The Power of Events. Addison-
Wesley.

Michelson, B. (2006). Event-driven architecture overview.
http://www.psgroup.com/detail.aspx?id=681.

OMG (2003). UML 2.0. Object Con-
straing Language (OCL) Specification.
http://www.omg.org/docs/ptc/03-10-14.pdf.

Paschke, A. (2009). A semantic design pattern language
for complex event processing. In Proceedings of the
AAAI Spring Symposium on Intelligent Event Process-
ing, pages 54–60.

Paschke, A. and Vincent, P. (2009). A reference architec-
ture for event processing. In Proceedings of the Third
International Conference on Distributed Event-Based
Systems (DEBS). ACM.

Schulte, R. and Bradely, A. (2009). A Gartner refer-
ence architecture for event processing networks. ID
G00162454.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

192

