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Abstract: Simulating the performance behavior of complex software systems, like Enterprise Resource Planning 
(ERP) systems, is a hard task due to the high number of system components when using a white box 
simulation approach. This paper utilizes a black box approach for establishing a simulation model for SAP 
ERP systems on the basis of real world performance data, which is gathered by using a synthetic 
benchmark. In this paper we introduce the benchmark, called Zachmanntest, and demonstrate that by using 
an evolutionary algorithm basing on the results of the Zachmanntest, the exact performance behavior of the 
ERP system can be modeled. Our work provides insights on how the algorithm is parameterized e.g. for the 
mutation and crossover probability, to receive optimal results. Furthermore we show that the evolutionary 
algorithm models the performance and scalability of an ERP system with an error less than 3.2%. With this 
approach we are able to build simulation models representing the exact performance behavior of a SAP ERP 
system with much less effort than required when using a white box simulation approach. 

1 INTRODUCTION 

The performance of an enterprise SAP ERP system 
is a business critical factor, as the ERP system often 
builds the basis for many semi-automated business 
processes. The throughput and response time of the 
ERP system determines how fast the business 
operations can be performed. Any change on the 
ERP system in hardware, software or user behavior 
is a business critical action.  

Software performance prediction is an approach 
to reduce the risk of bad system performance after 
such a change. Simulation approaches like layered 
queuing networks (Franks et al., 2009) are 
conventionally used to predict the performance 
behavior of SAP ERP systems (Sithole et al., 2010). 
Simulation approaches though require an insight into 
the system (white box approach), which is not 
always given. The white box approach becomes 
more hardly to handle, when more than 60,000 SAP 
ERP system’s components have to be represented in 
an appropriate simulation model. Besides, existing 
models often only assume the performance behavior 
of the components (for example an exponential 
function), which leads to incorrect simulation 
results. In order to avoid incorrect simulation models 

and results, a black box approach might be used 
first.  

This paper uses a black box approach for 
creating a simulation model based on performance 
data from a real-world SAP ERP system. We strictly 
follow the proposed simulation way of Jain (Jain, 
1991), where any simulation should be based on 
reliable performance data. The appropriate 
performance data set is gathered by executing a 
synthetic benchmark, called Zachmanntest 
(Bögelsack et al., 2010). We follow the black box 
approach by executing the test from outside of the 
SAP ERP system and only record the performance 
results. Applying a white box approach to the 
analyzed SAP ERP system would be possible too, 
but very costly due to the system’s complexity. The 
results of the black box approach are then used to 
build up the simulation model. Whenever though 
this data is used as input to a subsequent system like 
a simulation engine, it has to be transformed into a 
mathematical model. An algorithm that exactly 
solves the mathematical modeling for any given set 
of data is highly complex, resulting in an 
inacceptable execution time. To avoid this execution 
time we use a model approximation using an 
evolutionary algorithm. As long as the 
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approximation error is less than the estimated 
measurement error, the approximation does not 
negatively affect the exactness of the subsequent 
system. This paper proves that evolutionary 
algorithms can be used to establish a model 
representing the performance behavior of a SAP 
ERP system under different configurations and 
workloads. We describe the model approximation 
we performed on the results of the Zachmanntest, 
using our evolutionary algorithm implementation 
Mendel. Our research shows what affects the 
efficiency of the algorithm, and how it has to be 
configured to obtain best results. In addition we 
depict the modeling results and interpret the 
usability of evolutionary algorithms for black box 
ERP performance prediction. 

The rest of the paper is organized as follows: 
section 2 provides an overview about related work in 
the field of performance simulation of ERP systems 
and the usage of evolutionary algorithms for the 
purpose of performance modeling. Section 3 
describes the background and functionality of the 
Zachmanntest in detail. The explanation of the 
evolutionary algorithm and the establishment of it 
are explained in section 4. Section 5 summarizes the 
paper and provides an outlook. 

2 RELATED WORK 

Exploring related work in the area of modeling and 
simulating SAP ERP systems should be divided into 
two subareas: 1) the application of any modeling and 
simulation approach to SAP ERP systems and 2) the 
application of evolutionary algorithms to the IS field 
for any modeling or simulation purpose. 

Regarding the first subarea there are several 
papers available, all dealing with the common 
problem of how to simulate a SAP ERP system, 
which consists of more than 60,000 programs.  
Modeling the performance of SAP ERP system is 
firstly mentioned in (Bögelsack et al., 2008), 
whereas the authors state out how they would tackle 
the modeling problem of a complex software 
product like SAP ERP system. The approach is 
afterwards extended in (Gradl et al., 2009). Here a 
concrete modeling approach called Layered Queuing 
Network (LQN) is used and a first model is 
populated manually with performance measurement 
data and simulated afterwards. The same approach 
of utilizing LQN is used in (Rolia et al., 2009) to 
show the appropriateness of the LQN approach. 
Further research of the authors lead to (Rolia et al. 

2010), where a resource demand estimation 
approach is presented. 

In the area of applying evolutionary algorithms 
to a IS-related problems, first papers are published in 
the area of logistic problems, e.g. for the pallet 
loading problem as in (Herbert/Dowsland 1996). 
However, applying evolutionary algorithms in the 
area of simulation and especially performance 
simulation is very common. (Tikir et al., 2007) 
shows the application of evolutionary algorithms in 
the field of High Performance Computing. In 
(Justesen 2009) a simulation model combined with 
an evolutionary algorithm to find optimal processing 
sequences for two cluster tools from the wafer 
manufacturing. 

3 PERFORMANCE 
MEASUREMENT AND 
WORKLOAD CREATION 

Following the ideas of (Jain, 1991) and (Law, 2008) 
every simulation must be either based on or 
validated by performance measurement results and 
obtaining data from real-world applications is the 
best case for this. Generally spoken, application and 
synthetic benchmarks can be used to obtain valuable 
performance results. In this chapter we explain a 
synthetic benchmark, called Zachmanntest, which is 
used to gather performance results. Those results 
form the basis of our simulation model and 
algorithm. 

3.1 Application and Synthetic 
Benchmark 

Measuring the performance of SAP ERP systems is 
a hard task as there are two different perspectives of 
how to measure the performance and how to 
implement a measurement process. First, the usage 
of so called application benchmarks is proposed. 
Application benchmarks contain a sequence of 
typical application usage steps. An exemplary step 
would be the creation of a customer order or a 
production order. The set of typical application 
usage steps form the application benchmark, which 
is then somehow instrumented with a performance 
metric, e.g. the number of created production orders. 
The most commonly known application benchmark 
in the sector of SAP ERP systems is the sales and 
distribution benchmark (SD benchmark). 
Application benchmarks are used very often, which 
can be proven by the large number of available SD-
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benchmark results (see (SAP, 2010)). One drawback 
of application benchmark is that they are hard to 
implement and need a huge testing environment.  

Second, the usage of synthetic benchmarks is 
proposed for measuring the performance of a SAP 
ERP system. The synthetic approach derives from 
the need of testing the performance of a very 
specific element in the SAP ERP system. A 
synthetic benchmark is a set of elementary 
operations in the SAP ERP system 
(Curnow/Wichmann, 1976). For example, applying 
a TPC-benchmark for measuring the performance of 
the underlying database system, is a popular 
approach to get an understanding of the system’s 
performance (Doppelhammer et al., 1997). One 
drawback of any synthetic benchmark is that the 
benchmark is very focused. However, the major 
advantage is, that a synthetic benchmark can be 
easily applied to the system and performance results 
can be gained quickly. 

In this paper we utilize a synthetic benchmark to 
measure the performance and scalability of a SAP 
ERP system. We chose the synthetic benchmark, 
because it is easy to apply to the SAP ERP system, it 
gains the necessary results for our simulation 
approach and the benchmark steps are transparent to 
us. 

3.2 Zachmanntest – A Synthetic Main 
Memory Benchmark 

3.2.1 Zachmanntest: Architecture 

The Zachmanntest consists of two Advanced 
Business Application Programming (ABAP) 
programs. The first program is an easy to use entry 
mask to specify the test execution parameters. The 
second one is the ultimate test executable, which 
produces a lot of main memory operations in the 
application server. In fact, those main memory 
operations are operations on so called internal tables. 
Each program of the SAP ERP system, which is 
somehow interacting with the database management 
system and stores/reads data from it, uses this 
concept. From our point of view, this operation is a 
universal one and therefore a suitable example for a 
synthetic benchmark. A synthetic benchmark 
requires a specific sequence of operations/programs 
to be executed during runtime (Curnow and 
Wichmann, 1976). This is achieved by specifying 
the following steps during the execution. Please note 
that we used pseudo-code instead of ABAP 
statements: 
 

 1:While time < max_run 
 2:  Create internal table 
 3:  Fill internal table with data 
 4:  While iteration <loop_cnt 
 5: Randomly select data set 
 6: Read selected data set  
 7: Increase throughput counter 
 8:  Endwhile 
 9:  Delete internal table 
10:Endwhile 
11:Print throughput counter 

The value max_run defines the runtime (default: 900 
seconds) after which the execution of the 
Zachmanntest is aborted. The value loop_cnt 
(default: 1,000,000) defines a numerical value for 
how often the internal table should be cycled. By 
executing the entire Zachmanntest, one instance of 
the test executable is instantiated. The Zachmanntest 
produces a heavy main memory load on the 
application server.  

3.2.2 Performance Metric 

The Zachmanntest is meant to quantify the 
performance of the underlying main memory system 
from a SAP perspective. Generally, there are several 
performance metrics available, e.g. response time 
metrics or throughput metrics. The performance 
metric of the Zachmanntest is throughput, measured 
in rows per seconds. For example, after finishing 
one run of one Zachmanntest, the throughput of the 
SAP ERP system results in about 9,000 rows per 
second. This metric is to be interpreted as follows: in 
the case of one instantiated benchmark in the SAP 
ERP system, approx. 9,000 rows per second can be 
accessed for this benchmark instance. When 
handling two benchmark instances at the same time 
(we refer to them as two Zachmanntests) the 
throughput might be less or equal. This is because 
the maximum available throughput will be shared 
between both Zachmanntests. 

The throughput metric is the best metric for the 
purpose of our simulation, as it can be easily applied 
to the simulation model. The throughput is 
expressed in a very simple numerical only way. 
Thus it can be applied to our simulation without the 
need of any transformation or mathematical 
operation. 
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4 MODELING THE 
PERFORMANCE USING 
EVOLUTIONARY 
ALGORITHMS 

The next step after measuring the performance of the 
ERP system using the Zachmanntest is to make the 
measured data usable for performance and 
scalability prediction. For this, the measured data 
has to be transformed into a mathematical model. 
For multi-dimensional data, an exact solution 
becomes very complex in terms of the model size 
and solution determination, making it unusable for 
simulation approaches. Furthermore there is no 
guarantee that exactly one optimal model exists for 
the measured performance data – several Pareto-
optimal solutions might be possible (Zitzler and 
Thiele, 1999) when factors like the model length and 
evaluation time are considered. To limit the 
maximum model size, as well as to reduce the time 
for solution determination, an evolutionary 
algorithm is used to approximately model any given 
set of performance data. 

4.1 Description of the Evolutionary 
Algorithm Approach 

The basic idea behind any evolutionary algorithm is 
the imitation of Darwin’s idea of natural evolution. 
The best individuals or genomes of a generation 
survive and reproduce. Hence, an evolutionary 
algorithm is a random search method performing 
multi-criteria optimization on an n-dimensional 
search area. The algorithm consists of multiple 
individuals, competing on a limited resource. The 
algorithm performs several iterations, each resulting 
in a new generation of individuals. A fitness 
function is used to determine every individual’s 
fitness, resulting in the decision if an individual is 
allowed to pass its genome to the next generation or 
not. Mutation and crossover is performed whenever 
a genome is passed to a new generation’s individual, 
allowing moving or jumping in the search area. 

In our actual prototype Mendel (named after the 
researcher Gregor Johann Mendel), the limited 
resource is the fixed size of individuals and the rule 
that 50% of the individuals are passed to the next 
generation, while new individuals replace the other 
50%. The fitness of an individual is defined by the 
negative geometrical distance of the generated 
model from the underlying measured performance 
data. An error value ݏா௥௥ is calculated as defined in 
formula 1, with ݎ௠௘௔௦௨௥௘ௗ೔ being the ith measured 

value, ݎ௠௢ௗ௘௟௘ௗ೔ the ith modeled value, and n the 
number of measured performance values. Simply 
saying, an individual is fitter than another if its 
model fits closer to the measured data (i.e. the model 
has a smaller error value ݏா௥௥). 

 

s୉୰୰ = 	∑ หr୫ୣୟୱ୳୰ୣୢ౟ିr୫୭ୢୣ୪ୣୢ౟หr୫ୣୟୱ୳୰ୣୢ౟୬୧ୀ଴ n  

4.2 Model Representation and 
Mathematical Operators 

The model of an individual is stored in a genome 
structure. Every odd element in the genome is either 
a fixed number, or a parameter, and every even 
element is an operator. The genome is interpreted 
from right to left, assuming a right bracketing. 

Figure 1 is a visualization of the exemplary 
model a + ୶ୠ౯ష౩౟౤(ౙ∗౰) with a, b, c being fixed 
numbers and x, y, z parameters.  

A + x / b ^ y - sin c * z 

Figure 1: Genome coding of an exemplary model. 

4.3 Configuration of the Evolutionary 
Algorithm 

The performance and efficiency of the evolutionary 
algorithm is strongly dependent on its configuration 
(Zitzler/Thiele, 1999). Commonly used 
configuration parameters are shown in Table 1. 

Table 1: Configuration parameters of the evolutionary 
algorithm. 

Parameter Description 

Population 
Size 

The number of individuals. Larger 
population size results in higher model 
variance, but also increases the resource 
usage per iteration.  

Genome 
Length 

The length of the genome. Longer genomes 
result in more complex models. 

Mutation 
Probability 

The probability for mutation when a model 
is passed to the next generation.  

Crossover 
Probability 

The probability for crossover when a model 
is passed to the next generation. 

 
For identifying the optimal configuration for 

modeling the given performance data we carried out 
five calculations for every combination of 
configuration parameters, interrupted the 
evolutionary algorithm after five minutes, and 
compared the resulting models. As the evolutionary 
algorithm is a non-deterministic algorithm, we 
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compared the median value of the five calculations 
per configuration. 

4.3.1 Population Size and Genome Length 

Population size defines the number of parallel 
threads that are used for modeling, while the genome 
length defines the length of the model. Both 
parameters are correlated, as they both affect the 
resource usage of the evolutionary algorithm. A 
bigger population requires to evaluate and pass more 
models per iteration, while the genome length 
determines the required CPU cycles to evaluate and 
the memory to store the model.  

To get an indication for an appropriate 
population size range we performed the modeling 
with 100, 1,000, 5,000, 10,000 and 20,000 
individuals. The results of this first iteration showed 
that a population size bigger than 5,000 does not 
provide usable results on the given hardware 
configuration. 

The same ranging was done for the genome 
length. Modeling was performed for 11, 21, 41 and 
201 genome length, showing that a genome longer 
than 41 elements is not performing in the given 
context. Figure 2 depicts the average modeling error 
for all combinations of population size and genome 
length. 

 
Figure 2: Effect of population size and genome length on 
modeling accuracy. 

Higher population size results in more modeling 
variation, which again results in a higher chance of 
the model converging to the measured data. The 
optimal population size though is determined by the 
number of available CPUs. Too big populations (in 
our case > 3,000 individuals) result in increased wait 
times, reducing the efficiency of the algorithm. 

From the data presented in the diagram it is 
obvious that a too long genome also reduces the 
modeling accuracy. On the one hand this inaccuracy 
is caused by a reduced number of iterations 
performed in the given timeframe due to an 

increased resource need for the model evaluation. 
On the other hand an analysis of intermediate result 
revealed that with a long genome mutation becomes 
inefficient. In every iteration mutation changes one 
genome element. However, the longer a genome is 
the higher is the chance that it contains elements 
with small effects. Hence the possibility of 
mutations advancing the model noticeably is 
decreased. Short genomes though reduce the model 
flexibility, inhibiting the approximation of complex 
measured data. For the given ERP data a population 
size of 1,500 or 3,000, and a genome length of 21 
proved to return the best results. 

4.3.2 Mutation and Crossover Probability 

Mutation and crossover, as defined by Goldberg 
(1989), build the random searching operations of the 
evolutionary algorithm. Both operations are 
performed with a given probability when a model is 
passed to a new generation. To determine the effect 
of the mutation and crossover probability the 
average error value is compared for each 
combination of mutation and crossover probability. 
Figure 3 shows all the combinations resulting in an 
average modeling error value of less than five 
percent. 

 
Figure 3: Effect of mutation and crossover probability on 
modeling accuracy. 

It is obvious that high crossover or mutation 
probability leads to accurate models. Zero or small 
mutation probability (< 20%) avoids convergence 
towards an optimum, while zero or small crossover 
probability restricts the jumping in the search area, 
forces the algorithm to getting caught in a local 
optimum. 

4.4 Modeling Results 

Given the correct configuration, the evolutionary 
algorithm results in models approximating very 
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close the given scalability data. In our case study the 
model fits to the given data with an error smaller 
than four percent. 

Figure 4 visualizes the modeled scalability data 
compared to the measured data for an ERP system 
configured with 12 work processes. It is visible that 
the model comes very close to the measured data. 
Providing the presented model the evolutionary 
algorithm achieved an error of less than 0.7 percent, 
in a modeling time of five minutes. 

 
Figure 4: Comparison of measured and modeled data for 
12 workflow processes. 

Table 2 shows the error values (EV, in percent) 
of all work process (WP) configurations. For each 
configuration, modeling was performed for exactly 
five minutes. 

Table 2: Modeling error values for all measured work 
process configurations. 

WP 6 7 8 9 10 11 12 13 14 

EV 2.2 3.2 2.8 0.9 1.7 1.2 0.7 2.0 1.4 
 
Compared to other works in the field of 

evolutionary algorithms (see (Tikir et al. 2007) for 
example), our reached error values are very low. 
Hence, we rate our gained error values as very good 
ones.  

5 CONCLUSIONS AND FUTURE 
WORK 

5.1 Conclusions 

This paper presents our black box approach to create 
a simulation model, which is based on an 
evolutionary algorithm and real world performance 
data from a SAP ERP system. The presented results 
show that, given the correct configuration, 

evolutionary algorithms perform well in modeling 
scalability data of ERP systems with an error value 
under 3.2%. The modeling error of approximately 
two percent is less than the assumed measurement 
error, and thus acceptable. A negative side of the 
non-determinism of the evolutionary algorithm is 
that an acceptable model is only found in 
approximately ninety percent of all modeling runs in 
an acceptable time, while in the other cases the 
algorithm takes hours to result in a usable model. 
This effect is independent on the given performance 
data but results from the random model generation 
and mutation. We neglected the effect by setting a 
timeout, after which the algorithm was restarted. 

One of the biggest benefits of using the 
evolutionary algorithm proved to be its ability to 
model any kind of data without being adopted. This 
characteristic allows the modeling of multiple sets of 
data automatically without any manual effort, and 
allows the integration of the algorithm into an 
automatic scalability and performance prediction 
framework, bridging for example from the measured 
scalability and performance data to the simulation 
engine. 

5.2 Future Work 

This paper shows how to use the black box approach 
for modeling a very complex SAP ERP system in a 
first step. However, such a software system must be 
modeled in a more detailed way. Thus our goal is to 
extend the simulation model with more components 
and to use real life monitoring data to establish an 
evolutionary algorithm, which is able to reproduce 
the exact performance behavior of the entire system.  

Evolutionary algorithms as implemented in our 
prototype Mendel, suite well in modeling the 
performance and scalability data when the data is 
equally distributed. When an equal distribution is 
not given, the used fitness function might result in a 
model not representing properly the scalability of the 
ERP system. This might be the case if, for example, 
a big data set is available for low load, but only few 
data for high load. Then a well matching model for 
all the low load data, not matching the high load 
data, might result in a good fitness value. This effect 
will be neglected by implementing clustering of the 
scalability data and solving each cluster on its own. 

Future work will also be to identify the optimal 
configurations of the evolutionary algorithm for 
different usage scenarios. As presented in this paper 
the configuration strongly affects the modeling error 
and the time the algorithm needs to finish.  
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