

How can you be Agile in “Rough Terrain” and under “Tight
Boundary Conditions”

Industrial Experience Report

Peter Faßbinder
Siemens AG, Otto-Hahn-Ring 6, 81739 Munich, Germany

peter.fassbinder@siemens.com

Keywords: Agile Development, Large Systems, “Hybrid” Projects, Agile Requirements Management, Agile Testing,
Agile Roles, Process Integration, Tailoring Concepts, Industry Experience.

Abstract: Ten years after the publication of the agile manifesto, the following statements still hold true: Defining an
agile development process for a small co-located software team is straight forward; there are many theories,
models and examples for this. However, integrating agile development into an overall standard process of a
complex organization, that includes hardware and system development, and has large distributed projects, is
still a major challenge: How do you integrate the agile development approach into the standard process?
How much agility do you have to abandon to satisfy the boundary conditions of such an environment? What
is the ideal process architecture to address the needs of the different project types? What compromises do
you have to accept and where are the limits that you should not cross? This work provides possible answers
to these questions, and describes suitable approaches to address the three key challenges faced when
integrating agile development into a standard system development process. The results are based on
experiences from many agile implementation projects within the Siemens AG.

0B1 INTRODUCTION

Last year the agile manifesto (Beck K. et. al., 2001)
celebrated its tenth birthday. It condensed the
essential ideas from lightweight development
approaches as e.g. Extreme Programming (Beck K.,
1999), Scrum (Schwaber and Beedle, 2001), and
others.

While the agile development approches were
originally designed for smaller development
projects, many interpretations and case studies for
scaling agile approaches have been reported over the
past years (see e.g. Larman, Vodde, 2008; Larman,
Vodde, 2010; Canditt S. et. al., 2010). Nevertheless,
there is no “one size fits all” theory for using agile
approaches within large projects (i.e. multiple
subprojects) or complex organizations.

This work describes the experiences with using
agile development approaches in large,
heterogeneous, potentially distributed system
development projects; in organizations, where the
variety of project types require agile and
“traditional” development (i.e. non agile approaches
such as the waterfall or V-Model) to go side by side,
sometimes even within one project. It presents the

most important aspects encountered when deploying
agile development in such complex and
heterogeneous environments, and discusses the
associated challenges and suitable solutions.

The following sections describe the three major
challenges faced in this context in more detail.
Based on the experiences from many agile
implementation projects, these key challenges are:

 How can the agile development approach be
integrated into the overall process landscape of
the enterprise without jeopardizing the
traditional boundary conditions? This is the
process challenge.

 What are suitable approaches to integrate system
requirements and system test within the agile
mode of handling requirements and testing? This
is the requirements and test challenge.

 How can agile roles be integrated into the overall
organizational process with its many traditional
roles? This can be labelled the role challenge.

2 THE PROCESS CHALLENGE

Large organizations within the industry are faced by

117Faßbinder P..
How can you be Agile in “Rough Terrain” and under “Tight Boundary Conditions” - Industrial Experience Report.
DOI: 10.5220/0003970901170121
In Proceedings of the 7th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2012), pages 117-121
ISBN: 978-989-8565-13-6
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

many requirements that define the boundary
conditions for their processes. Thereby, multiple
external and internal stakeholders have to be
considered in addition to the team of a specific
project.

2.1 Process Stakeholders

Within industry, legislations, norms, and standards
might require a standard process that covers a
comprehensive set of process areas and satisfies
specific safety criteria. The enterprise tool landscape
might impose certain constraints on the data that
needs to be provided by projects. Headquarters or
higher organizational level might expect a specific
form of planning and reporting.

On the other hand, process manager and process
users need an efficient process that is easy to use and
easy to maintain. They expect continuous
incorporation of experiences and lessons learned
from other projects within the organization. Since
the process might be applicable for thousands of
employees and hundreds of projects in large
development departments, this poses a major
challenge.

2.2 Boundary Conditions and Agile
Principles

Due to the multiple stakeholders and diverse nature
of development projects within a large, complex
organization, creating suitable processes is a
challenging task.

There will be projects where a transition to agile
development is not possible or is not sensible. These
can be, e.g., long running product lines where only
minor maintenance is done, or hardware
development, where short iterations are hardly
achievable.

Or there might be large system projects with
multiple subprojects, of which some want to develop
agile to increase their efficiency, while other
subprojects are not suitable for this approach. Also
for these “hybrid projects” efficient process
solutions have to be provided.

2.3 Integration Concepts

Faced with the challenge to provide the organization
with a process framework that supports agile
development, traditional development and hybrid
projects, one can distinguish three different
implementation approaches:

 Creation of a separate process for agile

development (i.e. an agile process variant).
Thereby, the traditional process remains
unchanged.

 Agile development is described in a guideline as
an add-on to the traditional process description.
Also in this case the traditional process itself
remains unchanged.

 Integration of agile development within the
traditional process, i.e., the creation of one
process with suitable tailoring mechanism that
covers agile and traditional development
approaches.

2.3.1 Process Variant for Agile Development

If you create a separate process for agile
development, the impact on the traditional
development process is minimal, since it will remain
basically unchanged. On the other hand, the process
for agile development can be optimized for agile and
does not have to consider aspects from traditional
development projects.

Benefits of this approach are especially the easy
navigation for users of both process variants. The
variants can be optimized and streamlined for their
specific purposes. There are no ambiguities and no
further agile tailoring aspects within the processes.

The disadvantages of two separate process
variants for agile and traditional development are
especially:

 Hybrid projects are not addressed. They have to
define their own interpretation of the processes
and how to combine them within their project.

 Similarities between the traditional and agile
development process are not emphasized.
Standardization and shared lessons learned
across both variants are difficult to manage.

 The maintenance of the processes requires a
high effort since two variants have to be kept up
to date.

2.3.2 Agile Development as a Guideline

Another approach is the creation of a guideline for
agile development. This means, the traditional
development process of the organization remains
valid also for agile development. All necessary
adaptations to implement the agile principles are
described in the guideline and have to be treated as
an ad-on to the traditional process.

The advantages of this approach are especially
its easy implementation and the unchanged
traditional development process.

There are, however, numerous disadvantages

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

118

associated with this approach:
 The challenge to integrate the agile

development into the overall process is
transferred from the process team to every
agile project team. This will result in multiple
effort, interpretation variants, and missing
integration of best practices.

 There is ample room for ambiguity within the
agile projects. There is no guarantee, that
mandatory elements from the standard process
are implemented within an agile project.

 Agile roles are not defined in the standard
process description, i.e., there are no officially
defined responsibilities for agile.

 The agile development is not very visible
within the process framework of the
organization. This signals that traditional
development remains the standard.

2.3.3 Integration of Agile and Traditional
Process

The third implementation approach is the creation of
one common process for all types of development
projects, which incorporates traditional and agile
streams. This approach requires a suitable process
architecture and tailoring concept.

In this approach, the tailoring criteria can be
implemented on three different levels within the
integrated process (the recommended solution
depends on the amount of differences within the
workflows and activities):

 As agile workflows that are variants of a
complete traditional workflow.

 As agile variants of activities or activity chains
within a workflow.

 As tailoring options within an activity that
differentiate e.g. between outputs or methods
for agile and traditional projects.

In this approach, the similarities between the
traditional and agile development process are
emphasized. The workflows and the process
elements, that are identical for agile and traditional
development, have to be maintained only once. And
hybrid projects have a clear, consistent basis to
manage the overall system project and the individual
subprojects.

The disadvantage is that this approach requires
considerable effort for its implementation. The agile
and traditional processes have to be integrated,
based on a suitable process architecture and tailoring
concept. If this is not done systematically, the
workflow variants and tailoring options can make
process navigation cumbersome.

2.4 Recommended Approach

The recommended integration approach depends on
the objectives, the boundary conditions, the project
types, and the transition strategy of the affected
organization.

The preferred solution is typically the integration
of the agile and traditional process. However, this is
not the must suitable solution for all situations. If
one has only a small number of agile projects, a
guideline for these types of projects can be more
appropriate. Also a guideline could be a sensible
first step towards a more thorough transition to agile
development.

On the other hand, if agile and traditional
projects are clearly separated, and hybrid projects
are not relevant, two process variants could be the
most efficient approach for the organization, despite
requiring process higher maintenance efforts.

As mentioned in the introduction, there is no “on
size fits all” solution for every given situation. All
the discussed integration concepts have their
eligibility, and all approaches have been
implemented successfully within process
improvement projects.

3 THE REQUIREMENTS AND
TEST CHALLENGE

If one wants to expand the agile development
principles to large system projects, one has to look
especially at the requirement engineering and test
activities. These two parts of the development cycle
are crucial in understanding agile system
development, since they connect the system level
with the component development within the
subprojects.

3.1 The Requirements Dilemma

When looking at the requirements breakdown of
large system projects, one is faced inevitably with a
dilemma.

In traditional development, the system
requirements are specified as comprehensive as
possible at the beginning of the project. The system
requirements, the derived system architecture, and
the breakdown of the system requirements into the
requirements for the different software and hardware
components are specified during the early project
phases.

If we want to expand the agile development
approach from the component to the system level,

How�can�you�be�Agile�in�"Rough�Terrain"�and�under�"Tight�Boundary�Conditions"�-�Industrial�Experience�Report

119

the expectation would be, that the detailing, i.e., the
breakdown of the system requirements into
component requirements, takes place in iterations.
On the other hand, a comprehensive overview over
the expected functionality of a component is
required to set up a suitable and stable component
architecture.

This raises the following question: how much
information needs a component team upfront to
enable efficient agile development, and how much
information can the system level provide without
giving up the agile principles of iterative
refinement? An appropriate balance needs to be
achieved between these two contradicting
expectations.

3.2 Agile System Testing

The “back end” of the development cycle is easier to
grasp. In principle, it is straight forward to expand
the agile approach to system testing. System testing
has to be done iteratively within the iteration cycles
and the definition of done should be based on passed
system tests.

In practice, it is however often not possible to
integrate system testing completely within short
iteration cycles. Reasons for this can be, e.g.,
complex systems, long test durations, manual tests,
or that some components of the project follow the
traditional development approach.

Therefore, one also has to find the right balance
between what’s desirable and what’s possible when
expanding agile principles to system testing.

3.3 Proposed Solution

A possible approach to handle the challenges faced
when expanding agile development to large system
projects, is the introduction of an intermediate level
in-between the system project and the component
development.

The intermediate level breaks the project into
several development steps. The number and duration
of these steps is driven by how much information a
component team needs upfront, so that it creates
only a minimum of waste when continuing with the
development in the next step. The duration of the
steps can vary within the project. They should be as
short as possible, but are driven by the structure of
the development object, the boundary conditions and
the organizational constraints.

By this means, one can keep the short iterations
and agile principles on component level without
compromising them. And it is possible to integrate

the agile development of e.g. software components
with traditional development of e.g. hardware
components.

On the overall project, the breakdown of the
system requirements and the system integration and
system testing will be done in larger steps. This then
summarizes the outcome of several development
iterations on component level. This means, the
system level has been “agilized” as much as
sensible.

As pointed out above, the right balance between
what’s desirable and what’s possible and sensible
has to be found. This differs from organization to
organization. Typically, the “agilization grade” of
the system level increases over time.

4 THE ROLE CHALLENGE

Agile development approaches focus on specific
responsibilities. Scrum defines, e.g., only three roles
(product owner, scrum master, development team).
On the contrary, traditional processes within
development departments have typically between 40
to 60 roles.

Do these roles become obsolete with the
introduction of agile development? Can every
activity be mapped to the three Scrum roles?

4.1 Role Concept

The answer is of course no. Especially large system
projects require additional roles. Depending on the
organizational set up, the project scope and the
boundary conditions imposed by the multiple
stakeholders, a suitable role concept has to be
defined. This must address the needs of the
organization and large system projects, without
compromising agile principles more than necessary.

4.1.1 Project Organization

Agile development teams work best with seven plus
or minus two team members. This means, that large
system projects require an additional project
organization on top of the agile development teams,
including coordinating functions.

These coordinating functions can be, e.g., an
overall project manager, a chief product owner, or a
chief architect. Nevertheless, the self organizing
aspects of the agile development teams should be
preserved as much as possible. I.e., the
responsibilities of the traditional roles have to be
adjusted, enabling the agile roles to be implemented

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

120

as consistent as possible.

4.1.2 Supporting Roles

Other roles that are typically required in large
system projects are an overall project quality
manager, a business administrator, and a supplier
manger. These roles can be taken from the
traditional development process. In most cases they
do not have to be changed, since their tasks will
remain very similar to traditional projects.

The key success factor for combining agile with
traditional roles into an overall role concept is the
adjustment of the responsibilities of the traditional
roles. In order to preserve the agile principles as
much as possible, some of the traditional roles have
to be abandoned, others changed significantly.

4.2 Organizational Aspects

Another aspect that needs to be considered when
introducing agile development is the organizational
set up. Especially the relation between product
management and development has to be adjusted.

This is best understood when one looks at the
product owner role defined in Scrum. This role
combines aspects from the traditional roles of
product manager and project manager. Since most
organizations separate these two functions into
separate functional units, this requires special
attention.

The desirable option would be the integration of
the product management and development
departments. But this might not always be possible
or sensible. Other organizational constraints might
favour a separate structure.

In this case, one has to define how the relation
between these two departments is handled in agile
development projects. Typical questions that need to
be addressed are: Who takes over the product owner
role? How do the responsibilities change? How can
R&D provide operational support for the product
owner?

These topics need to be considered very
carefully, since they are a crucial aspect for the
success of agile development in large projects and
complex organizations.

5 CONCLUSIONS

Introducing agile development in large projects or
complex organizations is possible. However, there is
no defined blueprint how this should be done.

Agile development was originally intended to
suit small software development teams. Any
extension to large system projects is a balance
between following the agile principles as much as
possible, yet satisfying the organizational constraints
and requirements from the multiple stakeholders.

This is especially true for organizations, where
projects are a mix of agile, traditional and hybrid
development. In this case, the process has to address
the needs of all these projects. Depending on the
objectives and boundary conditions of the affected
organization, the optimal integration approach
varies.

The key challenges, that need to be addressed in
this context, are the definition of a suitable process
framework, the structuring of the requirements
breakdown and system testing, and the definition of
a suitable role concept.

REFERENCES

Beck K. et. al., 2001. Agile Manifesto. agilemanifesto.org.
Beck K., 1999. Extreme Programming Explained:

Embrace Change. Addison-Wesley Professional.
Boston, 1st edition.

Schwaber K., Beedle M., 2001, Agile Software
Development with Scrum, Prentice Hall. NJ, 1st
edition.

Larman C., Vodde B., 2008. Scaling Lean & Agile
Development: Thinking and Organizational Tools for
Large-Scale Scrum. Addison-Wesley Professional.
Boston, 1st edition.

Larman C., Vodde B., 2010. Practices for Scaling Lean &
Agile Development: Large, Multisite, and Offshore
Product Development with Large-Scale Scrum.
Addison-Wesley Professional. Boston, 1st edition.

Canditt S. et. al., 2010. Das V-Modell XT mit Scrum
inside. OBJECTspektrum. Troisdorf.

How�can�you�be�Agile�in�"Rough�Terrain"�and�under�"Tight�Boundary�Conditions"�-�Industrial�Experience�Report

121

