
System Evolution via Model-driven Design

A. Branson1, J.-M. Le Goff2, R. McClatchey1 and J. Shamdasani1
1Centre for Complex Cooperative Systems, University of the West of England, Coldharbour Lane, Bristol, U.K.

2CERN, 1217 Geneva 23, Switzerland

Keywords: Description-driven, Model Evolution, Dynamic Requirements, System Reconfiguration.

Abstract: Software engineers frequently face the challenge of systems whose requirements change over time to adapt
to organizational reconfigurations or external pressures. Evolving user requirements present a considerable
software engineering challenge, all the more so in an environment in which business agility demands shorter
development times and responsive prototyping. This paper presents a system called CRISTAL which was
developed at CERN in Geneva. CRISTAL is based on the concept of so-called ’description-driven’ change
management that enables system development which is responsive to changes in user requirements and facili-
tates dynamic system reconfiguration as required.

1 INTRODUCTION

The principal motivation in carrying out this research
was to address the requirements scientists working on
the Large Hadron Collider (LHC) accelerator project
at CERN which reached its final phase of construction
and testing in 2009. The Compact Muon Solenoid
(CMS) (The CMS Collaboration and Chatrchyan,
S. et al., 2008) is one of the four main experiments
of the LHC; it contains the so-called Electromagnetic
Calorimeter (ECAL) detector. Its design and con-
struction were carried out between 1995 and 2008 and
form the subject of this paper.

A research project, entitled CRISTAL (Cooper-
ating Repositories and an Information System for
Tracking Assembly Lifecycles) (Estrella, F. et al.,
2003) was established, using pure object oriented
computing technologies where possible, to facilitate
the management of the engineering data collected at
each stage of construction of CMS. CRISTAL is a dis-
tributed product data and workflow management sys-
tem which uses a database for its repository, a multi-
layered architecture for its component abstraction and
dynamic object modelling for the design of the ob-
jects and components of the system. These techniques
are critical in handling the complexity of such a data-
intensive system and to provide the flexibility to adapt
to the changing production scenarios typical of any re-
search production system. The CRISTAL system has
been based on a so-called description-driven approach
in which all logic and data structures are described by

meta-data, which can be modified and versioned
online as the design of the detector changes. A
description-driven system (DDS) architecture (Es-
trella, F. et al., 2003) is an example of a reflective
meta-layer architecture. DDSs make use of meta-
objects to store domain-specific system descriptions
(e.g. items, processes, lifecycles, goals, agents and
outcomes) which control and manage the lifecycles
of instances or domain objects. As objects, reified
system descriptions of DDSs can be organized into
libraries conforming with frameworks for modelling
of languages, and to their adaptation for specific do-
mains.

The meta-data and the instantiated elements of
data are stored in the database; the evolution of the
design is tracked by versioning the changes in the
meta-data over time. Thus description-driven systems
make use of meta-objects to store domain-specific
system descriptions that control and manage the life-
cycles of domain objects (i.e. instances of the meta-
object definitions). The separation of the descrip-
tions from their instances allows them to be speci-
fied and managed and to evolve independently and
asynchronously. This separation is essential in han-
dling the complexity issues facing many web-based
computing applications and facilitates interoperabil-
ity and reusability with system evolution. Separating
descriptions from their instantiation allows new ver-
sions of defined objects (and their descriptions) to co-
exist with older versions. The reader is directed to
previous publications on DDS for further background

142 Branson A., Le Goff J., McClatchey R. and Shamdasani J..
System Evolution via Model-driven Design.
DOI: 10.5220/0003970101420145
In Proceedings of the 14th International Conference on Enterprise Information Systems (ICEIS-2012), pages 142-145
ISBN: 978-989-8565-11-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



(Estrella, F. et al., 2003; Estrella, F. et al., 2001).
At the outset of CRISTAL an approach was fol-

lowed that enabled both ECAL parts and the activ-
ities (both with the metadata of their specifications)
that were carried out on the parts to be saved side-by-
side in a structured database. In this way as the sci-
entists developed their research ideas we were able to
capture each design version and those parts and activ-
ities that were processed for that version. The produc-
tion version of CRISTAL was designed to satisfy a set
of requirements covering both the CMS ECAL needs
and the needs of commercial Business Process Man-
agement (BPM) users. This led to a generalization of
the concept of ’parts’ to that of ’items’ which were
intended to be applicable to describe any element of
any business process. The intention was to enable de-
velopers to define the objects central to the operation
of any business and to drive the design process from
the standpoint of how those objects (’items’) change
over time.

CRISTAL is, in essence, an application server
that abstracts all of its business objects into workflow
driven, version controlled ’Items’ which are instanti-
ated from descriptions stored in other Items (see Fig-
ure 1) and are managed on-the-fly for target user com-
munities. Items contain:

� Workflows, that comprise of Activities to be exe-
cuted by Agents (either human users or mechani-
cal/ computational agents via an API), which then
generate:

� Events that detail each change of state of an Ac-
tivity. Completion events generate data, stored as:

� Outcomes which are XML documents from each
execution, for which:

� Viewpoints refer to particular versions (e.g. the
latest version or, in the case of descriptions, a par-
ticular version number).

� Properties are name/value pairs that name and
type items, they also denormalize collected data
for more efficient querying, and

� Collections that enable items to be linked to each
other.

The CMS ECAL was made of thousands of sim-
ilar parts, all needing characterizing and assembling
in an optimal configuration based on sets of detailed
measurements. Every component part was registered
as an Item in the CRISTAL database, each with its
barcode as an identifier, stored as the CRISTAL prop-
erty ’Name’. Each part had a type, which functioned
as the item description, and was linked to the work-
flow definition that each instance would follow in
order to collect its data and mount sub-parts. All

collected data and assembly information were stored
as outcomes attached to events, therefore the entire
history of every interaction with the application was
recorded. The result was a set of items representing
the top level components of the detector which con-
tained levels of substructure, all with their full pro-
duction history with all collected and calculated pro-
duction data attached in the correct context. On cre-
ation, an item contains no events, outcomes or view-
points (the context of the item). These are explicitly
generated later during execution of its workflow pro-
cesses. Initially an item contains properties to identify
it, its workflow and any collections of items it may
need, with all slots empty. The initial set of proper-
ties are created in the process of rendering a property
input form by exploiting the property description (it-
self an outcome stored in the item description), and
submitting it as an activity outcome of the description
item.

The basic functionality of CRISTAL is best il-
lustrated with an example: using CRISTAL a user
can define product types (such as Newcar spark plug)
and products (such as a Newcar spark plug with se-
rial number #123), workflows and activities (e.g. to
test that the plugs work properly, and mount them
into the engine). This allows products that are un-
dergoing workflow activities to be traced and, over
time, for new product types (e.g. an improved Newcar
spark plug) to be defined which are then instantiated
as products (e.g. updated Newcar spark plug #124)
which are traced in parallel to pre-existing ones. The
application logic is free to allow or deny the inclusion
of older product versions in newer ones (e.g. to use
up the old stock of spark plugs). Similarly, versions
of the workflow activities can co-exist and be run on
these products. All versions of items in the produc-
tion history are simply viewed as items allowing the
capture of many versions of items and their coexis-
tence in CRISTAL. Further detail of the the CRISTAL
database can be found in (Branson, A. et al., 2012).

2 CRISTAL IN PRACTICE

This section outlines how the CRISTAL system per-
formed in practice at CERN. The CRISTAL software
was developed over the period 1997-2000 and was
delivered for use at CMS early in 2000, when the
data from the characterization and the physical mea-
surement of the 70,000 lead tungstate crystals began.
CRISTAL collected initial data against a data model
residing in Objectivity but it suffered from numerous
performance limitations. After significant redesign
CRISTAL V2 was made available to the CMS ECAL

System�Evolution�via�Model-driven�Design

143



Figure 1: Model vs. description in Cristal 2.

user community from 2003 and it remained in opera-
tion over the following five to six years. Each ECAL
crystal generated between 2-3Mbytes of information
which was mainly gathered in an automated data ac-
quisition system which characterised the crystals in
batches over a period of 8-10 hours for each batch
of 30 crystals. Due to the vast numbers of crystals
(100,000s) to measure it was important that this data
acquisition process was reliable, consistent and that
the mean time between failures was very high. Some
batches required re-characterisation and some crys-
tals needed to be replaced; the whole data acquisi-
tion process took around five years to complete. It
was the responsibility of one CRISTAL software en-
gineer (the so-called application maintainer) to en-
sure as smooth operation as possible of the data ac-
quisition and to provide round-the-clock accessibility
to the CRISTAL database. Where changes were re-
quired to the descriptions handled by CRISTAL the
procedure outlined above was followed.

In the CMS experiment, production models
change over time. Detector parts of different model
versions must be handled over time and coexist with
other parts of different model versions. Separating
details of model types from the details of single parts
allows the model type versions to be specified and
managed independently, asynchronously and explic-
itly from single parts. In capturing descriptions sep-
arate from their instantiations, system evolution can
be catered for while production is underway this pro-
vides continuity in the production process and de-
sign changes can be reflected quickly into produc-
tion. The approach of reifying a set of simple design

patterns as the basis of the description-driven archi-
tecture for CRISTAL has provided the capability of
catering for the evolution of a rapidly changing re-
search data model. In the six years of operation of
CRISTAL it has gathered over 50 GBytes of data and
been able to cope with 25 evolutions of the underly-
ing data schema without code or schema recompila-
tions. During the years of near-continuous operation,
the descriptions went from beta to production then
through years of (relatively few) alterations of the do-
main logic which necessitated very little change in the
actual server software, illustrating the flexibility of the
CRISTAL approach.

3 LESSONS LEARNT FROM
BUILDING CRISTAL

Probably the main lesson learned from the CRISTAL
project in coping with change was to develop a data
model that had the capacity to cover multiple types of
data (be they products or activities, atomic or com-
posite in nature) and at the same time was elegant
in its simplicity. To do this a systemically consis-
tent approach to data modelling was needed: de-
signers needed to think in a way that would facili-
tate system flexibility, would enable rapid change and
would ease the burden of maintenance from the out-
set of the design process. The approach that was
followed in designing CRISTAL was to concentrate
on the essential enterprise objects and descriptions
(products, activities, user roles, outcomes, events)
that could be needed during the lifetime of the sys-

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

144



tem no matter from which viewpoint that data is ac-
cessed. Thus the system was allowed to be open in
design and flexible in nature and the elegance of its
design was not limited from being viewed from one or
several application-led standpoints (e.g. BPM, EAI,
CRM, PDM,WfMS). Rather we enabled the traceabil-
ity of enterprise objects over the lifetime of the sys-
tem as the primary goal of the system and left the
application-specific views to be defined as and when
they became required. It is this that we see as the main
and unique contribution of the CRISTAL approach
(a ’description-driven’ one) to building flexible and
maintainable systems and we believe this makes a
significant contribution to how moel-driven enterprise
systems can be implemented. These were not simple
design skills; designers needed to be able to think con-
ceptually, abstracting the characteristics of everyday
objects into ’items’ with associated metadata and to
be able to represent that complexity in a concrete data
model. Great benefits in terms of maintainability and
flexibility resulted from being able to treat many dif-
ferent system objects (workflows, events, outcomes,
items) in a single standardised manner. The impor-
tance of instantiation and description in formulating a
generic CRISTAL data model cannot be overempha-
sised. They are the foundations on which description-
driven systems development is based.

Importance was placed on the involvement of
users at all stages of the development of CRISTAL.
We regard this as one of the prime reasons for the
eventual success of the project. Although initially it
was hoped that high-end expert users would be able
to develop workflows themselves, in practice this was
not possible. Instead the users collaborated closely
with the designers to establish a much clearer idea of
the implications of their requirements, and with a full
understanding of the functionality that their workflow
must provide. This could then be implemented with
verifiable accuracy against what the user originally
wanted. Essentially this approach, centred on the
identification of items and their descriptions, led to
a very intuitive way of representing requirements and
absorbing them, as and when they emerged, into the
evolving data model. On the negative side the users
necessarily did not always know at the outset what
their final requirements would be for data and pro-
cess management, often leading to disruptive changes
in design decisions. On the positive side, the users
were not locked into a ’static’ product: CRISTAL was
evolving to cater for their requirements and could be
made responsive to their needs.

Control of evolving requirements was a particu-
larly challenging problem. New user requirements
needed to be addressed at the application level which,

as a consequence, induced requirements at the domain
implementation level which in turn passes its own re-
quirements down to the kernel level. The result of
this was that there could be a considerable number
of potential feature configurations of the CRISTAL
kernel needed to meet all possible requirements from
the user. Since CRISTAL was conceived as a model-
driven system, an attempt was made to follow best
software engineering practice in implementing fea-
tures associated with object orientation (e.g. inher-
itance, polymorphism, deferral of commitment, etc)
to ensure reuse and extensibility. Whenever a new
design modification was needed, the approach taken
therefore was always to implement as open and as
flexible a solution as the design allowed in order not to
constrain future extensions. In practice, however, this
“second guessing quickly” led to feature creep and
spiralling complexity which was at risk of compro-
mising the system development process. To address
this situation the approach that we adopted was to
make the implementation of new requirements as in-
tuitive as possible with as simple functionality as nec-
essary to cope with the requirements, thereby preserv-
ing the elegance of the original (description-driven)
design. This led to a closely connected set of system
functionalities which was easy to maintain and to dy-
namically extend as and when needed. In addition this
much simpler system has the virtue of being signifi-
cantly easier for users, developers and administrators
new to the system to pick up and start working with.
The flexible nature of the DDS approach has recently
enabled the use of CRISTAL as a provenance man-
agement tool in the neuGRID project (for studies of
Alzheimer’s disease) (Anjum, A. et al, 2010).

REFERENCES
Anjum, A. et al (2010). Reusable Services from the

neuGRID Project for Grid-Based Health Applica-
tions. Studies in Health Technology and Informatics,
147:283–288.

Branson, A. et al. (2012). Evolving Requirements: Model-
Driven Design for Change. Information Systems. Un-
der final review.

Estrella, F. et al. (2001). Meta-data Objects as the Basis
for System Evolution. In Proceedings of the Second
International Conference on Advances in Web-Age In-
formation Management, WAIM ’01, pages 390–399.
Springer-Verlag.

Estrella, F. et al. (2003). Pattern Reification as the Basis for
Description-Driven Systems. Journal of Software and
System Modelling, 2(2):108–119.

The CMS Collaboration and Chatrchyan, S. et al. (2008).
The CMS experiment at the CERN LHC. Journal of
Instrumentation, 3:S08004.

System�Evolution�via�Model-driven�Design

145


