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Abstract: This paper deals with an iterative learning control law for multivariable systems. The desired inputs are 

supposed to be known and periodic. The principle of the control is to make outputs as close as possible to 

desired inputs at each new period. After the design of multivariable repetitive controller, we give the 

stability condition of the algorithm and some simulation results. 

1 INTRODUCTION 

The theory of the modern control was successfully 

used in the control of several industrial processes. 

There are at the moment several analytical methods 

for the choice of the controller that permit to obtain 

an asymptotic stability and an acceptable static error, 

but few of them specify the transient response of the 

system. This limitation motivated the researchers to 

develop a new concept of control for the systems 

that repeat the same operation, known under the 

name of iterative learning control either repetitive 

control. The objective of such control is to improve 

the performances to every new period (Figure 1). 
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Figure 1: Example of periodic output. 

Typical examples are industrial robots, which 

most of their tasks are of this kind; e.g. pick and 

place, painting, etc. Other examples are control of 

numerical control machines, hard-disc drive or many 

mechanical systems having revolving mechanisms 

inside. 

Several researchers were interested in this type 

of control law (Arimoto et al. (1984), Sugie and Ono 

(1991), Moore et al. (1992), Xu and Tan (2003), 

Ahn et al. (2007) and Saari et al. (2010)). Most of 

their works were focused on the problem of the 

control in the multivariable case. They approached 

this problem by an analysis in the state space. The 

criticism made to this analysis is that it did not take 

into account the dynamics of the process to be 

controlled in the convergence condition of this 

algorithm (Curtelin et al. (1993)). The problem was 

resolved in the case of Single-Input Single-Output 

(SISO) systems by making an analysis by transfer 

function (Saari et al. (2010)). By respecting the 

convergence condition, the error goes to zero after 

an infinite number of periods. This induces the 

inversion of the process. The problem of non 

minimum phase process appears. This kind of 

problem was resolved by introducing the approached 

inverse of the process in the repetitive filter 

(Tomizuka et al. (1988) and Saari et al. (1994a, 

1994b, 1996, 2010)). 

In this paper, we are going to generalize the 

solution found for SISO systems to a Multi-Inputs 

Multi-Outputs (MIMO) system by using the notion 

of transfer matrix. 

2 PROBLEM FORMULATION 

The principle of repetitive control is presented by 

Figure 2, where, G is the transfer matrix of the 

process supposed to be stable and where 

nnG )dim( . H is the transfer matrix of the 

repetitive filter where nnH )dim( . Yd is the 

vector of periodic reference signal of dimension n. Y
i
 

105Saari H. and Caron B..
Multivariable Discrete Time Repetitive Control System.
DOI: 10.5220/0003964501050110
In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2012), pages 105-110
ISBN: 978-989-8565-21-1
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



 

and U
i
 are respectively the vectors composed by 

output and control signals of the period i. Both 

vectors are of dimension n. The memory blocks are 

introduced to indicate that the used signals are 

memorized in order to be used in the next period.  

From Figure 2, one has: 

.11   ii UGY  (1) 

The control algorithm is then given by the 

following equation: 

,1 iii EHUU 
 (2) 

where E
i
 is the error vector of dimension n given by: 

.i

d

i YYE   (3) 

By replacing (2) in (1) and taking into account 

(3), one obtains: 

  .1 ii EHGIE 
 (4) 

From (4), one can deduce the following theorem 

that gives the convergence condition of the repetitive 

algorithm. 

Theorem 1 

The repetitive control algorithm (2) converges and 

the error decreases under certain norm; 

ii EE 1
 (5) 

if and only if: 

.1


HGI  (6) 

 
The proof is obvious from (4). 

If the convergence condition (6) is verified the 

error vector tends towards a null value after an 

infinite number of periods ( 0lim 


i

i
E ), this is 

equivalent to
d

YY   and then, the control signal 

vector after an infinite number of periods inverts the 

process dynamic (
d

YGU   1 ) which seems to be 

impossible when the plant to be controlled is non 

invertible. 

However, since Yd is an a priori known signal, it 

is possible to generate the off-line control signal 

vector even if the plant is non invertible (saari et al. 

(2010)). 

Moore et al. (1992) show that to satisfy the 

repetitive control convergence condition, the 

repetitive controller H will contain the inverse of the 

process. The question is then, what can we do when 

the process is non invertible? 

In   the   following,   we   will   examine   several 

situations of the process to be controlled and 

consequently we will give the best choice of 

repetitive filter. 
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Figure 2: Scheme of the repetitive control. 

3 CASE OF STABLE PROCESS 

Let G the discrete stable transfer matrix of the 

process given under the form: 

,)(
)(

)( 1

1

1 





  zN
zD

z
zG

d

 (7) 

where d denotes the delay. D(z
-1

) is the polynomial 

denominator of the transfer matrix G, containing the 

poles of the process. N(z
-1

) is a matrix which 

elements are polynomials. 

In this section, we approach the problem of the 

choice of repetitive filter in the cases of invertible 

and non invertible processes. 

3.1 Case of an Invertible Process 

A first idea consists in choosing the repetitive filter 

H such that it compensates only the delay while 

verifying the convergence condition (6). 

The simplest expression of H is: 

,)(
0

1 HzzH d   (8) 

with   H0   a   constant   matrix   with   an appropriate 
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dimension. 

The drawback of this method is that there is no 

method which guides us in the choice of H0. 

A second idea with the choice of the repetitive 

filter H consists in setting the inverse of the transfer 

matrix )( 1zG  multiplied by a gain kr such as: 

  .)()()(
1111   zNzDzkrzH d  (9) 

Theorem 2 

The repetitive control algorithm described by Figure 

2, with the repetitive filter (9) for invertible system 

(7), converges to zero error vector if and only if: 

20  kr . 

 

Proof: 

By examining the convergence condition (6) and by 

taking into account (7) and (9), one obtains: 

,1


IkrI  (10) 

that allows us to write: 

  ,11,,0  kr  

and gives us finally: 

.20  kr  

3.2 Case of Non Invertible Process 

The idea in this case, is to put in the repetitive filter 

an estimate of the inverse of the process transfer 

matrix. 
The inverse of the transfer matrix G(z

-1
) appears 

under the form: 

    .)()()(
11111   zNzDzzG d  (11) 

One has: 

 
 

,
)(det

)(
)(

1

1

11





 
zN

zNadj
zN  (12) 

where  )( 1zNadj  is the adjoint of matrix N(z
-1

) and 

 )(det 1zN  is the determinant polynomial of N(z
-1

). 

  11(
zG is stable if the roots of  )(det 1zN  are 

located inside the unit circle. 

Let us decompose  )(det 1zN  into a polynomial 

containing the roots situated inside the unit circle 

)( 1 zN  and another one containing both roots 

situated outside of the unit circle and possible delay 

)( 1 zN : 

  .)()()(det 111   zNzNzN  (13) 

We suggest to take the repetitive filter H(z
-1

) 

under the form: 

 .(
)(

)()(
)( 1

1

1

1 





 



 zNadj

zNn

zNzDz
krzH

d

 (14) 

with 
 

.)(max
2

,0





jeNn 


  

kr is called the repetitive filter gain  and )(zN   is 

obtained by replacing every z
-1

 in )( 1 zN  by z. 

It is necessary to note that this filter has a strong 

similarity with the zero phase tracking controller 

(Tomizuka (1987)). 

Theorem 3 

The repetitive algorithm described by Figure 2, with 

the repetitive filter (14) for non invertible system 

(7), converges to zero error vector if and only if: 

20  kr . 

 

Proof: 

Let us examine the convergence condition (6). By 

taking into account (7) and (14) as well as (12), one 

obtains: 

.1
)()( 1









I
n

zNzN
krI  (15) 

One can then write for (15): 

 
  ,1)()(1max

,0









 







jj eNeN
n

kr
 

that gives us: 

 
,

)()(
2min0

,0 











  jj eNeN

n
kr  

and finally: 

.20  kr  

4 CASE OF AN UNSTABLE 

PROCESS 

In the case of an unstable process, the scheme of the 

repetitive control (Figure 2) is modified and 

becomes: 

Multivariable Discrete Time Repetitive Control System

107



 

 

Y
i 

 

Yd E
i 

K G U
i 

H 

C
i
 

+ + 

+ 
+ 


i-1 

- 

 

Figure 3: Repetitive control in closed loop configuration. 

where K(z
-1

) is a the controller transfer matrix that 

stabilizes the loop where nnK )dim( . C
i
 is the 

vector of the output controller’s of dimension n, 
i
 

of dimension n, is an anticipate vector function of 

the past error vector and the past control vector and i 

indicate the number of period. 

Based on this scheme, the control law is then:  

.11   iiii EKEHUU  (16) 

By multiplying the left side of both terms of (16) 

by G, one obtains: 

,11   iiii EKGEHGYY  (17) 

and then: 

,11   iiii EKGEHGEE  (18) 

that gives us finally: 

    .
11 ii EHGIKGIE 
  (19) 

From (19), the repetitive algorithm will converge 

to zero error (under certain norm) if: 

    ,1
1





HGIKGI  (20) 

and knowing that:  

,


 BABA  

where A and B are two complex matrices.  

If one notes: 

  ,
1





KGI  (21) 

then the condition (20) becomes: 

  ./1 


HGI  (22) 

In the case of an invertible process, the repetitive 

filter H(z
-1

) was taken like (9) and the convergence 

condition of the repetitive algorithm is given by the 

following theorem: 

Theorem 4 

The repetitive algorithm described by Figure 3 with 

the repetitive filter given by (9) and for invertible 

system (7), converges to zero error vector, if and 

only if: 

./11/11   kr  (23) 

 
Proof: 

By replacing in the convergence condition (22) G 

and H by their expressions given respectively by (7) 

and (9), one obtains: 

,/1 


IkrI  (24) 

that leads to: 

  ,/11,0   kr  

and gives us finally: 

./11/11   kr  

In the case of a non invertible process, the 

repetitive filter H(z
-1

) is taken by the expression 

(14). In that case, the convergence condition of the 

repetitive algorithm is given by the following 

theorem: 

Theorem 5 

The repetitive algorithm described by Figure 3 for 

non invertible system (7) and using the repetitive 

filter (14), converges to zero error vector if and only 

if:  

,  kr  (25) 

with: 

 
  .

)()(
/11max

,0












 


jj eNeN

n  

 
  .

)()(
/11min

,0 











 


jj eNeN

n  

 

Proof: 

From the convergence condition (22) and by taking 

into account (7), (14) and (12), one obtains: 

./1
)()( 1









I
n

zNzN
krI  (26) 

With the same approach which was made for 

(15), one has: 
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 
  ,/1)()(1max

,0












 



jj eNeN
n

kr
 

and gives us finally:     .  kr  

5 SIMULATION RESULTS 

To highlight the theoretical developments made 

previously, let us consider the process described by 

the following stable transfer matrix: 

.
02.01

5.111

3.01
)(

1

1

1

1

1



























z

z

z

z
zG  

We are in the case of non invertible stable 

system (section 3.2). 

Let us calculate det(N) that we put under the 

shape given by (13): 

)2.01()(

)5.11()(
11

111









zzN

zzzN
 

that allows us to give the following repetitive filter: 

,
2.01

)(
2221

1211

1

1


















HH

HH

z

kr
zH  

with: 

2

22

22

21

21

12

11

24.0232.0048.0

24.028.0944.0096.0

24.0592.0396.0072.0

0

zzH

zzzH

zzzH

H













 

From theorem 3, kr must be included between 0 

and 2 so that there is convergence of the repetitive 

algorithm. We choose then 1kr . Figure 4 

represents the convergence condition. We can see 

that it is respected, seen that 


GHI is lower than 

1 like imposed by (6). 
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Figure 4: Convergence condition. 

The purpose of this control is to track perfectly 

(with zero error) the periodic reference signals given 

by Figure 5 and which are represented over a period. 

Figure 6 shows the behavior of the tracking error 

signals (e1 and e2) at the 30
th

 period. One can see that 

there are practically zero. We obtain these results 

without inverting the process and consequently 

without divergence of the control signals u1 and u2, 

see Figure 7. 
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Figure 5: Reference signals. 
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Figure 6: Control signal behavior at the 30th period. 
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Figure 7: Control signal behavior at the 30th period. 
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6 CONCLUSIONS 

In this paper, we have considered the problem of the 

repetitive control in the multivariable case by using 

the formalism of the transfer matrix. This formalism 

allowed us to consider the processes with stable and 

unstable inverse transfer matrix. Moreover, the case 

of a closed loop configuration was considered when 

the system to be controlled is unstable. This paper 

allowed us to generalize the solutions found for 

SISO systems. With this algorithm, we obtained 

good results (zero error vector) while avoiding the 

inversion of the process in order to have no 

divergence of the control signals.  
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