
ABOUT USING MOBILE DEVICES AS CLOUD SERVICE
PROVIDERS

Marc Jansen
University of Applied Sciences Ruhr West, Computer Science Institute, Bottrop, Germany

Keywords: Cloud Computing, Mobile Devices, Platform-as-a-Service.

Abstract: In recent years, the number of reasonable powerful mobile devices increased. In 2011, the number of
smartphone (e.g.) increased to more than 300 million units. A lot of research has already been conducted
with respect of mobile devices acting as Cloud Service consumers, but still not much effort is put on mobile
devices in the role of Cloud Service providers. Therefore, this paper presents an approach that allows to
utilize mobile devices like smart phones or tablets as Cloud Service providers. In order to make this a
reasonable approach, some of the occurring problems are discussed and it is shown how the presented
architecture is able to overcome these problems. Last but not least, this paper describes some performance
tests of the chosen implementation for mobile Web Services.

1 INTRODUCTION

As the number of reasonable powerful mobile
devices increased a lot in recent years (e.g.
according to (IDC, 2011) the number of
smartphones increased to more than 300 million
units in 2011), the usage of these kinds of devices
becomes more and more interesting in various
scenarios. Also, with respect to Cloud Computing
scenarios there is a lot of research published (e.g.
Manjunatha et al., 2010) that uses mobile devices as
consumers of services offered in the Cloud. Still,
there is not much work to be found when it comes to
mobile devices acting as Cloud Service providers.

Nevertheless, one of the most serious problems
nowadays with software development for mobile
devices is the heterogenity of devices that are
available on the market. With respect to the work
presented in this paper, the most stressing problem
of heterogenity is the number of different operating
systems for mobile devices. According to (Tudor,
Pettey, 2010), there were at least five different
operating systems for smartphones available on the
market in 2010. Furthermore, not only the operating
systems on different mobile devices differ, but also
the complete development process (starting with
different programming languages) differ
dramatically from one to the other device.

Therefore, this paper presents an approach that
allows to deploy Cloud like services on mobile
devices like cell phones or tablets.

Of course, beside the problem of the heterogenity
of devices, a number of other problems also arise
when Cloud Services are deployed on mobile
devices. Here, this paper also discusses how
problems that usually occur if Cloud Services are to
be deployed on mobile devices, can be solved and
how the presented architecture supports the solution
of these kinds of problems.

Since the approach for the implementation of
mobile Web Services chosen for the example
implementation is special with respect to its polling
mechanism, some performance tests for this
approach are presented in this paper also.

Nevertheless, this paper only describes a
technical approach and does not consider security
related problems that might come into play, if a
certain service should be run on a mobile device,
where the owner of the devices is not aware of each
and every service running on his devices.

2 STATE OF ART

As already mentioned there is already some research
around the topic of mobile devices acting as clients
in Cloud Computing scenarios. For example

147Jansen M..
ABOUT USING MOBILE DEVICES AS CLOUD SERVICE PROVIDERS.
DOI: 10.5220/0003961401470152
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 147-152
ISBN: 978-989-8565-05-1
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

(Manjunatha et al., 2010) describe an approach
based on a domain specific language (Deursen,
Kling, Visser, 2000) that allows the development of
a so called cloud-mobile-hybrid application.
Basically, in this kind of applications, the core
functionality is provided in a Cloud Computing
scenario, whereas a small and tiny client application
makes use of this Cloud Service to allow a mobile
consumer to use the Cloud Service from a mobile
device.

In (Mishra, Elespuru, Shakaya, 2009) the authors
describe a mobile MapReduce system that allows to
solve portions of a problem on mobile devices.
Therefore, this approach could be seen as one of the
first Software-as-a-Service implementations that is
heavily based on mobile devices.

Furthermore, some work has already been
published with respect to mobilde devices as Web
Service providers, e.g. (Li, Chou, 2011) describe an
approach based on a modified HTTP protocol that
allows to provide Web Services on mobile devices.

Furthermore, in (Jansen, 2012) another approach
for providing Web Services on mobile devices based
on standardized protocols is described. Additionally,
this approach provides the ability to overcome some
of the usual problems by providing services on
mobile devices, such as frequent network changes
and so on.

3 EXAMPLE SCENARIOS

Just to show how reasonable it might be to have a
certain service running on a mobile device, this
section describes two scenarios that can be
implemented with the help of the describe approach.

The first example is sort of comparable to a
location based service: one of the most important
facts about mobile devices is, that these kind of
devices are more like a pack of different sensors,
than a single device. Usually, mobile devices
nowadays are equipped with a GPS sensor that
allows to track the position of a device, an
Accelerometer that allows to track the acceleration
of the device, a compass to track the heading of the
device and many other sensors as well. Therefore, it
makes perfect sense either to use the informations
provided by these sensor in order to provide
contextualized information to the owner of the
device while using a specific software, or to make
use of these kind of information in order to share
informations with others. Here, the first example
scenario is a fairly easy one related to the current
position of the device. Imagine Person A wants to

know the current temperature at a certain location. In
order to get this question answered, Person A can
just raise the question for the current temperature
along with the geo-coordinates of the location he/she
is interested in, to a Cloud Service. Then a mobile
device that runs the approach described in this paper
will retrieve the question raised to the Cloud and
can, if the device is currently located within the area
of the location in question, answer the question
about the temperature.

The second scenario is a completely different
one: Another major advantage of mobile devices is
the number of devices available. As said before
(IDC, 2011), already in 2011 the number of
smartphones increased 300 million units. Therefore,
if an approach similar to the one described in this
paper would be deployed at least to a subset of all
available smartphones, this would lead to a
tremendous amount of computational power.
Furthermore, another positive aspect of smartphones
is the fact that these kinds of devices are connected
permanently to the internet usually. Beside using the
tremendous computational power of these devices,
also other scenarios might be reasonable, e.g.
making a survey among customers might lead to a
question send to the Cloud and answered by a
tremendous number of mobile users in a very narrow
time range. Here, of course, the feedback of the
owner of the mobile device is important, what
provides a new scalability dimension for mobile
Cloud Computing based services.

4 IMPLEMENTATION

In order to describe the example implementation of
the presented approach, this section first provides a
classification of the approach. The second
subsection describes the approach more clearly and
provides a presentation of the example
implementation.

4.1 Classification of the Described
Approach

According to the NIST definition for Cloud
Computing (Mell, Grand, 2011) Cloud Computing
consists basically of three different service models.
Within this definition the most low level service
model is the Infrastructure-as-a-Service model, in
which infrastructural resources are provided on a
flexible basis. The most top level service model is
the Software-as-a-Service model in which a

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

148

complete software stack is provided to the end user
in a flexible way.

The here presented approach is located in the
layer in between these two layers, the so-called
Platform-as-a-Service layer. This layer allows the
user to deploy user created software of a certain
programming language and by certain libraries. The
user of a such a service does not have to handle the
underlying hardware or software configuration.

Therefore, the major goal for the presented
approach is to provide an environment that allows to
flexibly deploy pieces of software into a Cloud
Computing scenario that consists of mobile devices.

4.2 Description of the Implementation

In order to achieve the goal to flexibly deploy pieces
of software in a Cloud Computing scenario
consisting of mobile devices, first a decision about
the programming language in which the software
that should be deployed to the Cloud has to be
implemented, must be taken. As already described in
the introduction, a number of different programming
languages are usually used for the implementation of
platform dependent mobile applications. Since the
presented approach should of course be able to run
on wide variety of different mobile applications (and
their according operating systems), a platform
dependent programming language does not seem to
be the preferred solution. Therefore, a programming
language that runs on the common classes of mobile
devices would be the logical choice. One of the most
prominent candidates of this kind of programming
language is probably JavaScript. Not only since
NodeJS (Hughes-Croucher, Wilson, 2012),
JavaScript is a fairly well recognized programming
language not only on the client side of web
applications, but also for server side code. Since
JavaScript is the basis for a lot of applications spread
in the WWW, modern mobile devices are able to
interpret the language and to execute the according
programs.

Hence, the example implementation for the
described approach provides a flexible way to
deploy JavaScript code to mobile devices. In order
to allow a flexible deployment of new JavaScript
programs to a mobile device, a Web Service
approach is used that allows to run Web Services on
a mobile device. As already said in the state-of-art
section, a number of different approaches exist that
flexibly allow to deploy Web Services on mobile
devices. For the example implementation, the
approach described in (Jansen, 2012) was used. With
the help of this approach, a limited number of Web

Services gets deployed on the mobile devices that
later-on provide the Cloud Services. In the first
example implementation three Web Services where
deployed on these mobile devices:

1. Deployment Web Service: this Web
Service allows to deploy a JavaScript
program on the mobile device.

2. Task Web Service: this Web Service
provides the possibility to send a certain
task to the JavaScript software, formerly
deployed with the help of the Deploy
Web Service, and to receive the
calculated results.

3. Undeploy Web Service: this Web
Service allows to undeploy formerly
deployed JavaScript programs.

This very limited set of Web Service of very
basic tasks, still provides enough power to build a
solution to the major goal of the presented approach.

Figure 1: Sequence diagram of the usual service
sequences.

Figure 1 shows the usual sequence of service
calls either from the view of the cloud service
consumer (that is the person who deploys the
JavaScript program to the mobile Cloud) and from
the service consumer (the one that later-on executes
the deployed programs in the Cloud).

First of all, the program that should later-on
execute the single tasks in the Cloud, has to be
deployed to the Cloud consisting of mobile devices.
Later-on a service consumer can execute the
deployed programs in order to get his tasks
performed. If the deployed software is no longer
used, or the cloud service consumer wants to

ABOUT�USING�MOBILE�DEVICES�AS�CLOUD�SERVICE�PROVIDERS

149

deactivate his implementation, the Undeploy Web
Service can be called in order to remove the program
from the mobile Cloud.

The implementation of the three mentioned Web
Services is based on a simple XML dialect that
allows to describe the tasks that are necessary in
order to fulfill the Web Service. Therefore, the XML
dialect allows to describe certain necessary
information for the according Web Services:

1. Deployment Web Service: beside the
JavaScript code itself, that should be
deployed to the mobile Cloud, also a
unique identifier for the program needs
to be determined in order to later-on
identify the piece of software that
should be executed.

2. Task Web Service: in order to be able to
execute a certain JavaScript task, the
Web Service needs to be provided either
with the unique identifier of the
JavaScript program that should be
executed, along with the parameters that
should be passed to the program in
order to execute the special task for the
user.

3. Undeploy Web Service: this Web
Service simply needs the unique
identifier that represents the JavaScript
code that should be undeployed.

Already this very limited set of implemented
Web Services allows to provide a minimal
implementation in order to tackle the major goal of
flexibly deployment of small pieces of software to a
Cloud Computing scenario consisting of mobile
devices.

5 PERFORMANCE TESTS

Since the chosen approach for the implementation of
the Web Services uses a polling mechanism, one
concern of this approach is the question of its
performance. In order to get a first idea how good or
bad this implementation behaves with respect to
performance issues, a simple performance test was
implemented.

5.1 Description of the Test Scenario

For the performance test, we implemented a very
simple mobile Web Service. This service only
calculates the sum of two given integers and returns
the according value as the result. The major

advantage of such a simple mobile Web Service is
that almost the complete time for the mobile Web
Service call is dedicated to the communication, and
almost no amount of the round-trip time is used for
the calculation itself. Since the communication is the
complex part of the presented approach this way of
performance testing seemed to lead to results that
provide the best overview about the communication
performance of the presented approach. As a test
scenario we used a usual client (running on a usual
PC) which had to do a number of service requests to
the mobile Web Service.

In order for being able to compare the results
against the performance of usual Web Service calls
the same test scenario was implemented just the
other way round: we implemented a usual Web
Service (running on a usual server) and called this
Web Service from a mobile device. Here, the basic
idea was that we wanted to use the same hard- and
software environment with minimal changes and
also the network environments should be the same in
all of the tests.

Furthermore, we were interested in the
communication performance in different network
settings. Therefore, we performed the same tests in
basically four different network settings. For each of
the tests the (mobile) Web Service and its consumer
where running:

• … in the same (WiFi) network,
• … different networks, and the mobile

device was connected via WiFi,
• … different networks, and the mobile

device was connected via UMTS
• … different networks, and the mobile

device was connected via GPRS

Therefore, we conducted eight different test
cases. Four for the different network constellations
with a mobile Web Service running on a mobile
device and a Web Service client running on a usual
PC, and four test cases where the Web Service was
running on a usual Server and the client was running
on a mobile device.

In the test cases where the (mobile) Web Service
provider and the client have not been connected to
the same network, the central components for the
implementation of the polling mechanism have been
deployed to a server running via Amazon Web
Services (AWS), as a Cloud Computing provider.

5.2 Results of the Test

Within each of these eight test cases, one hundred
service calls where performed and the time for each

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

150

of these service calls was measured.
The results for the mobile Web Service in the

different network scenarios are shown in Figure 2.

Figure 2: Results for the mobile Web Service in the
different network constellations.

As expected the performance for the mobile Web
Service calls are pretty good and pretty constant if
the mobile device is connected with a WiFi network.
The average time if both the mobile Web Service
provider and the client are connected to the same
WiFi network was M = 147.69ms (SD = 76.00ms).
Having the mobile Web Service provider connected
to a different, still WiFi, network the average time
for one service call calculates to M = 339.04ms (SD
= 61.71ms).

Of course we measured less performance of the
service calls when the mobile Web Service provider
was connected to a mobile network. The results for
the UMTS based network connection of the mobile
Web Service show an average of M = 827.55ms (SD
= 250.35ms) for each service calls, while the results
for the GPRS based network are even worse. Here,
the average for a single service call calculates to M
= 1355.96ms (SD = 986.38ms). As it could be seen
by the values for the standard deviation, also the
performance of single service calls differs
dramatically, e.g. the minimum time measured
within the UMTS scenario was MIN = 283ms and
the maximum was MAX = 2169ms. Hence, the
results for the GPRS based scenario are even worse,
with a MIN = 142ms and MAX = 5123ms.

Within the second step of the test, we tried to
compare the performance results with the
performance that a usual Web Service call has.
Therefore, as already described earlier, we
established the same test, but this time the Web
Service was not running on a mobile device but on a
usual server, while the Web Service client was
running on a mobile device, again in the four
different network settings. The results of these tests
are shown in Figure 3.

Figure 3: Results for the usual Web Service calls in the
different network constellations.

As it could be seen, the results are from both
perspectives, the overall performance and the
standard deviation in the different network settings
better. A usual Web Service call, if the Web Service
provider and the mobile Web Service consumer are
connected to the same WiFi network has an average
round-trip time of M = 61.16ms (SD = 301.36ms).
Still within the scenario where the Web Service
client was connected to a different (still WiFi)
network the average performance was M =
156.71ms (SD = 15.24ms).

Again the values for the Web Service client
connected to a mobile network are little bit less. In
case of the UMTS network, the average service call
had a performance of M = 528.55ms (SD =
273.34ms). Again, the results for the GPRS based
network have been worse. Here, the average for each
of the service calls calculates to M = 1299.10ms (SD
= 658.75ms).

The next step was to compare the different
results. The major goal of this comparison was to get
an idea of how good the performance of the
presented approach for mobile Web Service calls is,
in comparison to usual Web Service calls. Therefore,
we first calculated the difference in the average
performance of a single Web Service call in the
different scenarios and in a second step we
calculated the percentage of the performance
difference in the different scenarios. The results are
shown in Figure 4.

Figure 4: Comparison of the usual Web Service calls and
the mobile Web Service calls in the different network
scenarios.

Here it can be seen that the performance of the
presented approach is not really good if the mobile

ABOUT�USING�MOBILE�DEVICES�AS�CLOUD�SERVICE�PROVIDERS

151

Web Service is connected to a WiFi network in
comparison to usual Web Service calls. The results
for the mobile Web Service provider and the client
connected to the same network, show a performance
overhead of 137.60%, and still if the mobile Web
Service is provided within a different WiFi network,
the performance overhead is about 116.35%. But, if
the mobile Web Service is connected to a mobile
network the performance overhead is not that
dramatic anymore. In case of the UMTS network,
the overhead was limited to 56.57% and for the
GPRS based network, the overhead was still lower at
4.38%. Therefore, on the basis of our test results, it
could be said that the performance of the presented
approach for mobile Web Services (in comparison to
usual Web Services) seems to become better the
lower the network bandwidth is. This could best be
seen by the results for the GPRS based network,
where the actual overhead in our test was below 5%.

6 CONCLUSIONS AND
OUTLOOK

As explained at the beginning of this paper, the
increasing number of powerful mobile devices
provide a reasonable basis for powerful Cloud
Computing scenarios based on mobile devices.
Furthermore, the example implementation described
in this paper shows that it is technically feasible to
implement Platform-as-a-Service scenarios based on
mobile devices.

Of course the described example implementation
is still very fundamental and does not provide a very
rich infrastructure for that kind of scenarios.
Therefore, the future work should clearly go in the
direction of providing more advanced administrative
methods, available through more powerful Web
Services. Additionally, more advanced features like
limitation of different applications only to a limited
number of mobile devices or specific amount of
other resources.

The chosen approach for the implementation of
Web Service on mobile devices seems to make
sense, since the performance test still show
reasonable results.

Additionally, a number of security related issues
show up when Cloud Computing services are to be
deployed to devices owned by individuals. Here,
also some research should be invested in order to
overcome limitations resulting from legal problems.

ACKNOWLEDGEMENTS

This work was partly supported by an Amazon AWS
research grant.

REFERENCES

Deursen, A., Klint, P., Visser, J., Domain-specific
languages: an annotated bibliography. SIGPLAN No.,
35(6): 26-36, 2000

Hughes-Croucher, T., Wilson, M., Node: Up and Running:
Scalable Server-Side Code with JavaScript, O'Reilly
Media, 2012

IDC Worldwide Quarterly Mobile Phone Tracker, January
27, 2011.

Jansen, M., Getting Serious About Providing Mobile Web
Service, In: Proceedings of the 8th International
Conference on Web Information Systems and
Technologies, Porto, Portuguese, 2012

Li, L., Chou, W., COFOCUS – Compact and Expanded
Restful Services for Mobile Environments, In:
Proceedings of the 7th International Conference on
Web Information Systems and Technologies,
Noordwijkerhout, The Netherlands, 2011

Manjunatha, A., Ranabahu, A., Sheth, A., Thirunarayan,
K., 2010. Power of Clouds in Your Pocket: An
Efficient Approach for Cloud Mobile Hybrid
Application Development, In: Cloud Computing
Technology and Science (CloudCom), 2010 IEEE
Second International Conference on, Indianapolis, IN,
US.

Mell, P., Grand, T., The NIST Definition of Cloud
Computing, National Institute of Science and
Technology, http://csrc.nist.gov/publications/nistpubs/
800-145/SP800-145.pdf, last visited: 31.01.2012

Mishra, S., Elespuru, P., Shakya, S., MapReduce system
over heterogeneous mobile devices, In: Workshop on
Sofware Technologies for Future Embedded and
Ubiquitous Systems, 2009

Tudor, B., Pettey, C., 2010. Gartner Says Worldwide
Mobile Phone Sales Grew 35 Percent in Third Quarter
2010, Smartphone Sales Increased 96 Percent,
Gartner, http://www.gartner.com/it/page.jsp?
id=1466313, last visited 28.01.2012

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

152

