
INTEROPERABILITY AND PORTABILITY OF CLOUD SERVICE
ENABLERS IN A PaaS ENVIRONMENT

David Cunha1;2, Pedro Neves1 and Pedro Sousa2

1Portugal Telecom Inovação, SA, 3810-106 Aveiro, Portugal
2Centro ALGORITMI / Department of Informatics, University of Minho, 4710-057 Braga, Portugal

Keywords: Cloud Computing, Platform-as-a-Service, Portability, Service Delivery Platform, Context-awareness.

Abstract: Nowadays, the competition in the telecommunications market is exciting and new entities with value-added
services have emerged over the core network of Telecommunications operators (Telcos). These new par-
ticipants have taken out the operators’ relevance since they are entirely agnostic from infrastructure service
connectivity. Therefore Telcos, like Portugal Telecom Inovação (PTIN), need to focus on the provision of
services to a user’s point of view to not become just a dumb-pipe between the consumers and Cloud service
providers.
This paper proposes a definition of a distributed architecture that allows developers to create and expose ser-
vices through a Service Delivery Platform (SDP). The benefit of such Cloud-enabled SDP architecture is the
portability of service enablers between Platform-as-a-Service (PaaS) providers through a standardized API.
Service developers may thus select the more suitable PaaS offering in order to build on-top applications, based
on the performance required by a service. An example of applications which can take advantage from more
versatile Cloud platforms, is the delivery of mobile context-aware services that react to both environment and
user conditions selecting the right type of content (e.g. photos, videos, etc.) to deliver.

1 INTRODUCTION

Cloud Computing introduced the concept of comput-
ing as a utility bringing an innovative and signifi-
cant opportunity for operators in terms of new de-
livery’s models (on demand) and new flexible busi-
ness strategies (B2B) (Armbrust et al., 2009). It al-
lows consumers and enterprises to use services over
the hardware and systems software hosted remotely at
providers’ datacenters. The analogy is, ”If you only
need milk, would you buy a cow?” (InternalCom-
puter, 2011). Therefore, to obtain the benefit: making
video calls, sending emails, etc. the consumers really
need to acquire the required software/hardware? With
the Cloud Computing concept the answer is no. The
everyday needs of the general community can be de-
livered on a pay-per-use model with only a connection
to Internet, just like we do at home with the electric-
ity grid. All the software and hardware is provisioned
and governed by the Cloud services providers based
on the users’ requirements and so allowing a more ef-
ficient computing (Zhang et al., 2010). It is thought
that one day Cloud Computing will be the 5th utility
(after water, electricity, gas, and telephony) (Buyya

et al., 2009), and it is currently a popular topic within
the academic research community.

A previous paradigm laid the foundations of
Cloud Computing with the principles of service ori-
entation. Service-oriented architecture (SOA) facili-
tates the design, reusability, deployment and manage-
ment of extendable applications towards interopera-
ble services (Azeez et al., 2010), (K.Ramana et al.,
2011). Nowadays, Web Services became the prevail-
ing SOA implementation paradigm over standard In-
ternet protocols (Blum et al., 2009). Applications can
be developed as compositions of service enablers dis-
tributed through a Service Delivery Platform (SDP)
exchanging data with each others. Cloud Comput-
ing embraced all these technologies creating a new
and promising landscape for a next generation of
SOA deployment. Cloud delivery models generally
fall in three categories: Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS), and Software-
as-a-Service (SaaS), but only higher Cloud stack lev-
els, such as, SaaS and PaaS will be discussed in this
paper. For NIST (U.S. Government’s National In-
stitute of Standards and Technology), it can be as-
sumed that with SaaS the consumer uses an applica-

432 Cunha D., Neves P. and Sousa P..
INTEROPERABILITY AND PORTABILITY OF CLOUD SERVICE ENABLERS IN A PaaS ENVIRONMENT.
DOI: 10.5220/0003959204320437
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 432-437
ISBN: 978-989-8565-05-1
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



tion but does not control the operating system, hard-
ware or network infrastructure on which it’s running.
On the other hand with PaaS, the developer uses a
hosting environment Service Execution Environment
(SEE)/Service Creation Environment (SCE) for con-
trolling his services (life cycle) but does not control
the operating system, hardware or network infrastruc-
ture on which they are running (NIST, 2011). Under-
lying these concepts exist financial incentives that at-
tract the both sides: Cloud service providers and con-
sumers, such as enterprises. Service providers charge
consumers for the delivery and governance of ser-
vices, and enterprises reduce both Capital Expendi-
ture (CAPEX) and Operational Expanditure (OPEX)
since there is no infrastructure provisioning or soft-
ware investment to be made at the beginning (Maes,
2010),(Armbrust et al., 2009). Telecommunications
operators (Telcos) are interested in taking a share of
this Cloud market where only some giants US ser-
vice providers, namely Google, Microsoft, Amazon
and Apple take the lead. To enter the game, op-
erators must exploit their differentiated assets (SDP,
OSS/BSS, CRM, service enablers, etc.) enabling a
two-sided business strategy with service providers.

With the emergence of numerous providers, the
need for interoperability and portability between plat-
forms (PaaS) will enable flexibility for Third-parties’
developers. Increasing the Cloud choice will re-
duce the vendor ”lock-in” to specific technologies,
such as programming models, software tools or APIs
(Parameswaran and Chaddha, 2009),(Dikaiakos et al.,
2009). Telcos can explore these potentialities through
a Service Delivery Platform that glue the pieces to-
gether no matter where they are deployed (Bozman
and Chen, 2010). Then, they can sell their service en-
ablers to Third-parties for build-on top applications’
in order to play new roles in the Internet value chain.
In this context, this work proposes and explains a
Cloud-enabled SDP architecture that will simplify the
development of services in view to rapidly respond to
consumers’ needs with the migration of enablers be-
tween PaaS providers. Therefore, this paper presents
the related work (Section 2), the architecture specifi-
cation toward a solution (Section 3), a possible use-
case in a real mobile environment (Section 4), and the
preliminary conclusions (Section 5).

2 RELATED WORK

Recently, some of the Cloud Computing’s concerns
are associated to interoperability and portability be-
tween different providers (Parameswaran and Chad-
dha, 2009),(Dikaiakos et al., 2009). It should be pos-

sible for developers to swap enablers between plat-
forms whenever they need (performance issues, ac-
tual costs, etc.) without re-architecting the solutions.
This can be a quite challenging with the different
data models and proprietary runtime frameworks that
each application requires and each provider enables.
Currently there are no standards for interoperabil-
ity or data portability, however some initiatives have
emerged from non-profit groups with the collabora-
tion of researchers and some Cloud service providers.

The Open Cloud Manifesto (OCM, 2010) is an
initiative supported by various vendors with the vi-
sion to standardize Cloud Computing (interoperabil-
ity, portability, security, governance and management,
etc.). The goals of an open cloud, such as, flexibility,
speed and agility, etc. are outlined to lead a discussion
about new cloud computing paradigms and impacts.
Another group, the Cloud Computing Interoperability
Forum (CCIF, 2009), proposes to unify Cloud APIs
with a standardized semantic interface (Unified Cloud
Interface) (UCI, 2009) and layers of abstraction from
the underlying infrastructure. The orchestration layer
and the federation of Clouds are the features of the
CCIF presented architecture. However, Amazon and
Microsoft rejected the CCIF agenda. Other initiatives
like OGF’s Open Cloud Computing Interface (OCCI,
2010) tries to bring, in a quick frame, an API speci-
fication for the deployment and monitoring. The cur-
rent release focus is in the Cloud infrastructures-as-a
service (IaaS), however, it is referenced that the model
may be suitable for higher interoperability at PaaS and
SaaS levels. The DMTF’s Cloud Management Work-
ing Group (CMWG, 2009) focus on defining archi-
tectural semantics to standardize interfaces, interac-
tions and data formats between Cloud environments.
This body of work consists in the development of use-
cases, services life cycle, and an interoperable Cloud
architecture for service providers and their consumers
and developers.

In this perspective, it takes time for standards to
mature, and this lack of acceptance derives from the
disregard of providers like Google, Microsoft, Ama-
zon and others, that want to offer differentiated ser-
vices attracting more customers. On the other hand,
defining standards in upper layers like PaaS and SaaS,
turns the normalization more dependent of propriety
interfaces.

3 TOWARD A SOLUTION

In this section, a Cloud-enabled architecture is pro-
posed clarifying the adopted strategy for the modules
integration and inherent development.

INTEROPERABILITY�AND�PORTABILITY�OF�CLOUD�SERVICE�ENABLERS�IN�A�PaaS�ENVIRONMENT

433



Figure 1: Proposed Cloud-enabled SDP architecture.

3.1 Cloud-enabled SDP Architecture

The proposed Cloud architecture is presented in Fig-
ure 1 with a private PaaS (PTIN PaaS) and a public
PaaS.

At a very basic and abstract level, the SDP can be
seen as a collection of service enablers which are or-
chestrated by a Service Broker and exposed for third-
parties’ applications development in a SOA paradigm.
To consume the available services, the client only
needs to use the correspondent Web Services Descrip-
tion Language (WSDL) provided by the Service Bro-
ker, which in turn use remote invocation procedure
via Simple Object Access Protocol (SOAP) or Rep-
resentational State Transfer (REST) protocols. Fur-
thermore, the Service Broker is a middleware respon-
sible for tasks such as authentication, authorization,
accounting, binding, data transformation, load bal-
ancing, monitoring, policies and routing, between de-
ployed services and final consumers. The service en-
ablers may be implemented using any type of technol-
ogy (Java, Python, PHP, Ruby, C#, Visual Basic, etc.),
as long as they are able to communicate with the Ser-
vice Broker via Web services. Third-parties’ devel-
opers interact with the Broker through the Developer
Interface1 gaining access to the capabilities offered by
the SDP (i.e. the enablers). Then, the permissions re-
quired for exposing or managing developed services
will be assigned in order to choose the suitable PaaS
or deploying an enabler. Afterward, if the developer
wishes to change any enabler to another PaaS, the De-
veloper Interface will allow him to do so. The PaaS
Manager is the key element from the architecture pro-
viding the features required for a more flexible and
interoperable PaaS environment. This module will be
more detailed in section 3.2.

1Wizard platform for service’s deployment, migration
and management

Figure 2: Integration overview.

3.2 Integration Overview

The integration overview presented in Figure 2 focus
on the main components of the architecture: the De-
veloper Interface, the PaaS Manager, the Service Bro-
ker and the various platforms offering. As mentioned
above, the Service Broker has the registration of all
available services at the SDP. Querying this compo-
nent, it is possible to access the list of services and ob-
tain the WSDL that describes each one. For example,
when a service is called by a consumer, the Service
Broker will invoke the actual service logic which runs
in a PaaS environment. The PaaS Manager acts as
a standard implementation in order to integrate PaaS
offerings with the Developer Interface, allowing the
deployment and the portability of service enablers be-
tween platforms. Therefore, it is designed with each
PaaS APIs implementations which are used for con-
trolling all the offered functionalities. The interoper-
ability between providers can be reached through the
PaaS Manager and the Service Broker when a devel-
oper manages enablers that are deployed across di-
verse Clouds.

3.3 PaaS Manager Developer-cases

In this section the service registration and service mi-
gration processes are now overviewed within the pro-
posed architecture.

3.3.1 PaaS Manager Service Registration

Delving into more technical details, adding a new
service to the SDP involves supplying the PaaS Man-
ager with the business logic (i.e. the service code)
and the interface of the service (i.e. an Extensible
Markup Language (XML) file). The XML interface
schema will be handed to the Service Broker, which
will register the new service at the SDP. The PaaS
Manager component will then deploy the supplied
service code at the chosen platform. The final
consumer’s applications use the WSDL to invoke
the service, while the Service Broker invokes the

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

434



Figure 3: PaaS manager service registration developer-case.

deployed service code. The defined steps for the
register process are the following (see Figure 3):

1 Set the suitable PaaS (PTIN PaaS or public PaaS);

2 Define the interface (XML) and supply the service code
(e.g .jar);

3 Register service process at the PaaS Manager;

4 Register service process at the Broker;

5 PaaS Manager deploys the service enabler in PTIN PaaS;

5a Or PaaS Manager deploys the service enabler in a public
PaaS.

Figure 3 presents a developer-case of a registration
procedure involving the Cloud-enabled SDP architec-
ture components.

3.3.2 PaaS Manager Service Migration

The migration of a service can be quite a chal-
lenge. The automated behavior defined requires the
un-deployment of the service enabler from the previ-
ous platform, the archive being saved in a temporary
repository by the PaaS Manager, and finally the de-
ployment in the new PaaS. Meanwhile, the modifica-
tion is performed at the Service Broker where a new
mapping is created in order to locate the new endpoint
when the migrated service is called by a consumer ap-
plication.

The data migration (e.g. databases, etc.) be-
tween PaaS is currently a topic under consideration
in the proposed architecture. One possible approach
is merely migrate databases between providers that
offer the same technology, for example, MySQL to
MySQL, Oracle to Oracle, etc. Moreover, an ad-
ditional concern is the dimension size of the ser-
vices’ databases systems, since saving several Ter-
abytes of data in a temporary repository and forward-
ing it through the network could become a heavy task.
The defined steps for the migration process are the
following (see Figure 4):

Figure 4: PaaS manager service migration developer-case.

1 Set the new suitable PaaS (PTIN PaaS or public PaaS);

2 Migration service process at the PaaS Manager;

3 Migration service process at the Broker;

4,5,4a,5a Transference service process from previous
PaaS, to a temporary GIT repository and finally to the
new PaaS;

6, 6a PaaS Manager deploys the service enabler in the new
platform;

Figure 4 presents a developer-case of service porta-
bility involving the Cloud-enabled SDP architecture
components.

4 CLOUD-ENABLED SDP
ARCHITECTURE USE-CASE:
CONTEXT-AS-A-SERVICE

Context-as-a-Service (CaaS) brings the opportunity to
use consumers’ generated information for selecting,
rate and delivers suitable content (e.g. photos, videos,
etc.) to themselves. These metadata can characterize
any consumer situation, such as, his position, gender,
along with social, music or movies interests. There-
fore, context-aware systems proves to be the future
of mobile Internet services for finding and grouping
users with common interests delivering the most ap-
propriate content (Gomes et al., 2010).

In this section, the proposed use-case shows the
ability of automatically selecting the right content to
the right people. Public Spaces may easily become
Smart Public Spaces by offering a variety of mobile
context-aware services that react to both environment
and user conditions. The proliferation of such ser-
vices can, in such cases, generate an overload at some
platforms and underlying infrastructures. In order to
preserve the adequate performance, the PaaS Man-
ager will allows developers to migrate the service’s
modules, keeping the process the more agnostic pos-
sible for the final consumers. Figure 5 shows the pro-
posed Context-aware architecture integrated with the

INTEROPERABILITY�AND�PORTABILITY�OF�CLOUD�SERVICE�ENABLERS�IN�A�PaaS�ENVIRONMENT

435



Figure 5: Context-as-a-Service architecture.

SDP’s Service Broker, a Platform-as-a-Service and a
set of java service enablers. It is important to mention
that in the defined architecture some of the CaaS mod-
ules are located within the same platform. However, it
is the service developer that manages the deployment
location of these components.
Each CaaS module depicted in Figure 5 has fun-
cionalities that will be detailed briefly:

Context Providers: expose interfaces for provid-
ing information to the Context Broker. Through those
interfaces the Providers register their availability and
capabilities in order to publish different type of re-
trieved information (e.g. points of interest, calendar,
preferences, presence, social, etc.) from a specific
user.

Context Broker: responsible for retrieving and
delivering information to the Context enablers. It
manages and discovers all the registered Context
Providers, like the SDP’s Service Broker does with
the service enablers, matching context elements and
storing the information received from the Context
Agents.

Group Manager enabler (GME): responsible for
identify, create and manage groups of users, deliver-
ing context information for further processing. The
GME receives the list of subscribed consumers, and
starts establishing groups based on configured condi-
tions (e.g. location, social preferences, sensors infor-
mation, presence, gender, etc.). All this group infor-
mation is notified to the CSE for the content selection
handling process.

Content Selection enabler (CSE): responsible for
defining selection rules for the content’s ranking de-
ciding which better meets the conditions of a certain
user or groups of users. CSE creates a playlist of con-

tent and delivers it to the mobile application. This en-
abler can be more or less complex depending on the
multifaceted ranking rules developed.

Content Providers: interact with the consumers’
applications delivering the selected content from the
playlist (e.g. photos, videos, etc.) by a client.

Context Agents/Consumers: typically located on
the consumers portable devices updating client’ situ-
ation data from several sensors (e.g. location, prefer-
ences, presence, social, etc.) for further processing at
the Context Broker.

The context consumption is done through XMPP
(Extensible Messaging and Presence Protocol) on
a publish/subscribe model. XMPP runs on top of
TCP/IP protocol stack and it is considered a more in-
teroperable protocol compared to JMS (Java Messag-
ing Service), and a lightweight compared to SOAP
(XMPP, 2007),(Gomes et al., 2010). Figure 6 presents
the communication scheme.

Figure 6: Context Consumption.

5 PRELIMINARY CONCLUSIONS

Cloud interoperability and standardization efforts will
increase the quality and diversity of Cloud Comput-
ing solutions provided to final consumers. The ability
of seamlessly migrate services between providers re-
duces the existent ”lock-in” towards the development
of flexible business applications across platforms.
This paper presented an architecture that will simplify
the development and exposure of services in view to
rapidly respond to consumers’ needs with the migra-
tion of enablers between PaaS providers. However,
the databases migration is still under survey since
it imposes some dependencies at the PaaS Manager
and underlying network. For the architecture proto-
typing, it was exposed a specification/development
approach with the technical requirements and so-
lutions. Currently a PT’ Service Delivery Plat-
form solution (Sapo-SDB, 2011) is under exploration
for the integration of services in a SOA paradigm.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

436



Moreover, context-aware services are being tested in
some platforms providers, namely, Red Hat’s Open
Shift (Open-Shift, 2011), Google App Engine (GAE,
2011), CloudBees (Cloud-Bees, 2011) and probably
a PTIN platform which is under development. The
java implementation, and detailed specification of the
PaaS Manager, will be soon in progress to integrate
and accommodate firstly the PT’ SDP, and in a poste-
rior phase, the Developer Interface.

ACKNOWLEDGEMENTS

The work of P. Sousa was funded by FEDER, through
the program COMPETE and the Portuguese Foun-
dation for Science and Technology (FCT), within
the project FCOMP-01-0124-FEDER- 022674. A
partial prototype, namely the context-aware ser-
vices and the integration with the PT’ SDP, will be
demonstrated under the scope of the European ICT
project ”Cloud4SOA” (Contract-No. ICT-257953):
(Cloud4SOA, 2010).

REFERENCES

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R. H., Konwinski, A., Lee, G., Patterson, D. A.,
Rabkin, A., and Zaharia, M. (2009). Above the
clouds: A berkeley view of cloud computing. Tech-
nical report, University of California, Berkeley.

Azeez, A., Perera, S., Gamage, D., Linton, R., Siriwardana,
P., Leelaratne, D., Weerawarana, S., and Fremantle, P.
(2010). Multi-tenant soa middleware for cloud com-
puting. In CLOUD ’10 IEEE 3rd International Con-
ference on Cloud Computing, pages 458 – 465, Mi-
ami, Florida, USA.

Blum, N., Magedanz, T., Schreiner, F., and Wahle, S.
(2009). A research infrastructure for soa-based service
delivery frameworks. In 5th International Conference
on Testbeds and Research Infrastructures for the De-
velopment of Networks and Communities, pages 1–6,
Washington DC, USA.

Bozman, J. and Chen, G. (2010). Cloud computing: The
need for portability and interoperability. Technical re-
port, Red Hat.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and
Brandic, I. (2009). Cloud computing and emerging it
platforms vision, hype, and reality for delivering com-
puting as the 5th utility. Future Generation Computer
Systems, 25(6):599–616.

CCIF (2009). The cloud computing interoperability fo-
rum. Retrieved December 2011, from: http://
www.cloudforum.org/.

Cloud-Bees (2011). Cloud bees. Retrieved January 2012,
from: http://www.cloudbees.com/.

Cloud4SOA (2010). The cloud4soa initiative
(fp7). Retrieved December 2011, from: http://
www.cloud4soa.eu/.

CMWG (2009). Cloud management working
group. Retrieved December 2011, from: http://
www.dmtf.org/standards/cloud/.

Dikaiakos, M. D., Katsaros, D., Mehra, P., Pallis, G., and
Vakali, A. (2009). Cloud computing: Distributed in-
ternet computing for it and scientific research. IEEE
Internet Computing, 13(5):10–13.

GAE (2011). Google app engine. Retrieved January 2012,
from: http://code.google.com/appengine/.

Gomes, D., Goncalves, J., Santos, R. O., and Aguiar,
R. L. (2010). Xmpp based context management ar-
chitecture. In 2010 Workshop on Enabling the Fu-
ture Service-Oriented Internet (EFSOI), pages 1372 –
1377, Miami, Florida, USA.

InternalComputer (2011). Understanding what cloud com-
puting means and its advantages. Retrieved Decem-
ber 2011, from: http://www.internalcomputer.com/
understanding-what-cloud-computing-means-and-its-
advantages.computer.

K.Ramana, Krishna, T., Narayana, C., and Kumar, M. P.
(2011). Comparative analysis on cloud computing and
service oriented architecture. International Journal of
Advanced Research In Technology, 1(1):22–28.

Maes, S. H. (2010). Understanding the relationship between
sdp and the cloud. In The First International Confer-
ence on Cloud Computing, GRIDs, and Virtualization,
pages 159–163, Lisbon, Portugal.

NIST (2011). The nist definition of cloud comput-
ing. Retrieved November 2011, from: http://
www.csrc.nist.gov/publications/nistpubs/800-145/
SP800-145.pdf.

OCCI (2010). Open cloud computing interface. Retrieved
December 2011, from: http://occi-wg.org/.

OCM (2010). The open cloud manifesto. Re-
trieved December 2011, from: http://
www.openCloudmanifesto.org/index.htm/.

Open-Shift (2011). Red hat open shift. Retrieved January
2012, from: https://openshift.redhat.com/app/.

Parameswaran, A. V. and Chaddha, A. (2009). Cloud inter-
operability and standardization. SETLabs Briefings,
7(7):19–26.

Sapo-SDB (2011). Sapo service delivery broker. Retrieved
December 2011, from: http://sdb.sapo.pt/.

UCI (2009). Unified cloud interface. Retrieved December
2011, from: http://www.groups.google.com/group/
unifiedcloud/.

XMPP (2007). Xmpp extensions. Retrieved December
2011, from: http://xmpp.org/.

Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud com-
puting: State-of-the-art and research challenges. In-
ternet Services and Applications, 1(1):7–18.

INTEROPERABILITY�AND�PORTABILITY�OF�CLOUD�SERVICE�ENABLERS�IN�A�PaaS�ENVIRONMENT

437


