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Abstract: In this paper we describe issues related to the execution of scientific workflows on clouds, giving particular 
emphasis to the challenges faced by scientists when using grids and clouds for workflows. We also mention 
some existing solutions and identify areas requiring additional work.  

1 INTRODUCTION 

Over the past decade grid computing has been put 
forward as a platform for conducting science. We 
have seen both tightly and loosely coupled parallel 
applications making use of national and international 
infrastructures such as the Open Science Grid (OSG) 
(www.opensciencegrid.org), TeraGrid (http://www. 
teragrid.org/), EGI (Kranzlmüller et al., 2010), and 
others. These applications have been developed for 
domains such as astronomy (Deelman et al., 2008), 
bioinformatics (Stevens et al., 2003), earthquake 
science (Callaghan et al., 2008), physics (Brown et 
al., 2006), and others.  

The broad spectrum of distributed computing 
provides unique opportunities for large-scale, 
complex scientific applications in terms of resource 
selection, performance optimization, reliability, etc. 
However, many issues of usability, reliability, 
performance, and efficient computation remain 
challenges in the area of grid computing. Over time 
the architecture of the underlying clusters used for 
scientific computation has been changing, from 
commodity-type architectures connected by high-
performance networks to more complex 
architectures and deployments such as those of the 
Cray XT5 (Bland et al., 2009) or IBM Blue Gene 
(Gara et al., 2005). As the computing architectures 
have changed, so has the software used to access 
these machines across the wide area networks. For 
example, the Globus Toolkit (Foster, 2006) has 
undergone many revisions and architectural changes 
over the past decade. 

Although the various hardware and software 
systems have been changing, users have been 
dealing with the same issues when executing 
applications on these distributed systems. One of 
these issues is usability. Much of the software that is 
deployed today is very complex and often geared 
towards high-end users that have already invested a 
large amount of time and effort to learn the ins-and-
outs of the cyberinfrastructure. An average scientist 
who is ready to scale up his or her computations to 
the large-scale infrastructure is faced with learning 
new software components that will move the data to 
the computations, schedule the jobs, and bring the 
results back. Although these functions seem 
relatively straight forward, they involve relying on a 
stack of software that includes services (e.g. Condor 
(Litzkow et al., 1988) /GRAM (Czajkowski et al., 
1998) /PBS (Bayucan et al., 1999) /local OS) for 
scheduling jobs and a data transfer service (e.g. 
GridFTP (Allcock et al., 2001)) that is interacting 
with a parallel file system (e.g. Lustre (Sun 
Microsystems), PVFS, etc.) deployed on the 
resource. The software stack can be unreliable and 
prone to user, system, and software errors. If an 
error occurs in that software stack, then it is very 
hard for the user to discover the source of the 
problem. Currently there are no debugging tools 
available to enable the tracing of the problem. 
Tuning the system for performance is an additional 
concern. Each of the system components has their 
own controls, and exposes only some of them to the 
users. As a result, obtaining performance from an 
application can be difficult. 
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In addition to the large-scale cyberinfrastructure, 
applications can target campus clusters, or utility 
computing platforms such as commercial (Amazon 
Elastic Compute Cloud); (Google App Engine) and 
academic clouds (Nimbus Science Cloud); 
(FutureGrid). However, these opportunities also 
bring with them their own set of challenges. It is 
hard to decide which resources to use and how long 
they will be needed. It is hard to determine what the 
cost/benefit trade-offs are when running in a 
particular environment. It is also difficult to achieve 
good performance and reliability for an application 
on a given system. 

In the paper, we describe an approach to 
managing scientific applications, in particular 
scientific workflows, on cloud resources. We use 
this example as an illustration of the challenges 
faced by such applications on clouds, and postulate 
that although cloud computing is, in some ways, an 
improvement in distributed computing capabilities, 
many issues still need to be addressed. 

2 APPLICATION CHALLENGES 

Scientific workflows are being used today in a 
number of disciplines. They stitch together 
computational tasks so that they can be executed 
automatically and reliably on behalf of the 
researcher. For example, in astronomy, researchers 
use workflows to generate science-grade mosaics of 
the sky (Berriman et al., 2004); (http://montage.ipac. 
caltech.edu). These workflows are composed of a 
number of image processing applications that 
discover the geometry of the input images on the 
sky, calculate the geometry of the output mosaic on 
the sky, re-project the flux in the input images to 
conform to the geometry of the output mosaic, 
model the background radiation in the input images 
to achieve common flux scales and background 
levels across the mosaic, and rectify the background 
that makes all constituent images conform to a 
common background level. Finally these normalized 
images are added together to form the final mosaic. 

The search for exoplanets is another example. 
The NASA Kepler mission (http://kepler.nasa.gov/) 
uses high-precision photometry to search for 
transiting exoplanets around main sequence stars. In 
May 2009, it began a photometric transit survey of 
170,000 stars that has a nominal mission lifetime of 
3.5 years. By the end of 2010, the Kepler mission 
had released light curves of 210,664 stars; these light 
curves contain measurements made over 229 days, 
with between 500 to 50,000 epochs per light curve. 

Analysing these light curves to identify periodic 
signals, such as those that arise from transiting 
planets and from stellar variability, requires 
calculations of periodograms that reveal periodicities 
in time-series data and estimates of their 
significance. Because periodograms require large 
amounts of computation to produce, workflows are 
being used to coordinate periodogram generation 
across distributed computing infrastructures. 

Another example is from the earthquake science 
domain, where researchers use workflows to 
generate earthquake hazard maps of the Southern 
California region (W. G. et al., 2006). These maps 
show the maximum seismic shaking that can be 
expected to happen in a given region over a period 
of time (typically 50 years). Each point is obtained 
from a single hazard curve and each curve is 
generated by a workflow containing ~800,000 to 
~1,000,000 computational tasks (Callaghan et al., 
2008). This application requires large-scale 
computing capabilities such as those provided by the 
NSF TeraGrid (http://www.teragrid.org/). 

In order to support such workflows, software 
systems need to 1) adapt the workflows to the 
execution environment (which, by necessity, is often 
heterogeneous and distributed), 2) optimize 
workflows for performance to provide a reasonable 
time to solution, 3) provide reliability so that 
scientists do not have to manage the potentially large 
numbers of failures that may occur, and 4) manage 
data so that it can be easily found and accessed at the 
end of the execution. 

2.1 Cloud Issues 

Having a number of capabilities, clouds can provide 
a variety of different solutions for applications. The 
latter have a choice of either adapt themselves to the 
new computational models provided by the cloud 
(such as MapReduce (Dean and Ghemawat, 2008)) 
or adapt the cloud to look like a computational 
environment that the applications have used so far—
a compute cluster. Although new applications, 
especially those in bioinformatics, are willing to 
adopt new programming models, other applications, 
which have been using long time-validated and 
community accepted codes, are not willing to re-
write their applications. 

Virtualization in general opens up a greater 
number of resources to legacy applications. These 
applications are often very brittle and require a very 
specific software environment to execute 
successfully. Today, scientists struggle to make the 
codes that they rely on for weather prediction, ocean 
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modelling, and many other computations work on 
different execution sites. No one wants to touch the 
codes that have been designed and validated many 
years ago in fear of breaking their scientific quality.  

Clouds and their use of virtualization 
technologies may make these legacy codes much 
easier to run. With virtualization the environment 
can be customized with a given OS, libraries, 
software packages, etc. The needed directory 
structure can be created to anchor the application in 
its preferred location without interfering with other 
users of the system. The downside is obviously that 
the environment needs to be created and this may 
require more knowledge and effort on the part of the 
scientist than they are willing or able to spend. 

For cluster-friendly applications, clouds can be 
configured (with additional work and tools) to look 
like a remote cluster, presenting interfaces for 
remote job submission and data transfer. As such, 
scientists can use existing grid software and tools to 
get their work done.  

Another interesting aspect of the cloud is that, by 
default, it includes resource provisioning as part of 
the usage mode. Unlike the grid, where jobs are 
often executed on a best-effort basis, when running 
on the cloud, a user requests a certain amount of 
resources and has them dedicated for a given 
duration of time. Resource provisioning is 
particularly useful for workflow-based applications, 
where overheads of scheduling individual, inter-
dependent tasks in isolation (as it is done by grid 
clusters) can be very costly. For example, if there are 
two dependent jobs in the workflow, the second job 
will not be released to a local resource manager on 
the cluster until the first job successfully completes. 
Thus the second job will incur additional queuing 
delays. In the provisioned case, as soon as the first 
job finishes, the second job is released to the local 
resource manager and since the resource is 
dedicated, it can be scheduled right away. Thus the 
overall workflow can be executed much more 
efficiently. 

3 MANAGING WORK ON 
CLOUDS 

3.1 Application Management 

One approach to managing workflow-based 
applications in grid or cloud environments is to use 
the Pegasus Workflow Management System 
(Deelman et al., 2004). Pegasus runs scientific 

workflows on desktops, private clusters, campus 
clusters, the Open Science Grid (www.openscience 
grid.org), the TeraGrid (http://www.teragrid.org/), 
and academic and commercial clouds (Amazon 
Elastic Compute Cloud); (Google App Engine); 
(Nimbus Science Cloud). Pegasus can be used to run 
workflows ranging from just a few computational 
tasks to a million tasks. When errors occur, Pegasus 
tries to recover when possible by retrying tasks, by 
retrying the entire workflow, by providing 
workflow-level check-pointing, by re-mapping 
portions of the workflow, by trying alternative data 
sources for staging data, and, when all else fails, by 
providing a rescue workflow containing a 
description of only the work that remains to be done 
so that the user can resubmit it later when the 
problem is resolved (Deelman et al., 2006). Pegasus 
cleans up storage as the workflow is executed so that 
data-intensive workflows have enough space to 
execute on storage-constrained resources 
(Ramakrishnan et al., 2007); (Singh et al., 2007). 
Pegasus keeps track of what has been done 
(provenance) including the locations of data used 
and produced, and which software was used with 
which parameters (Miles et al., 2007); (Miles et al., 
2008); (Groth et al., 2009).  

Pegasus assumes that the workflow management 
system and the workflow description live on a 
submit host, which is under the user’s control. 
Pegasus launches jobs from the submit host to the 
execution sites (either local or remote). The notion 
of a submit host and execution environment lends 
itself well to the Infrastructure as a Service (IaaS) 
model of cloud computing (Deelman, 2009) .  

Although Pegasus controls workflow execution 
through both static workflow restructuring and 
dynamic tuning of the job execution, it does not 
control the resources where the jobs are executing. 
However, managing resources is important in grids 
when trying to optimize workflow performance and 
is critical in clouds where the resources are not 
necessarily preconfigured for the workflow. As a 
result, we advocate the approach of building virtual 
clusters on the cloud and configuring them in a way 
similar to the clusters encountered by grid 
applications. 

3.2 Building Virtual Clusters 

Deploying applications in the cloud is not a trivial 
task. It is usually not sufficient to simply develop a 
virtual machine (VM) image that runs the 
appropriate services when the virtual machine starts 
up, and then just deploy the image on several VMs 
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in the cloud. Often, the configuration of distributed 
services requires information about the nodes in the 
deployment that is not available until after nodes are 
provisioned (such as IP addresses, host names, etc.) 
as well as parameters specified by the user. In 
addition, nodes often form a complex hierarchy of 
interdependent services that must be configured in 
the correct order. Although users can manually 
configure such complex deployments, doing so is 
time consuming and error prone, especially for 
deployments with a large number of nodes. Instead, 
we advocate an approach where the user is able to 
specify the layout of their application declaratively, 
and use a service to automatically provision, 
configure, and monitor the application deployment.  

 
Figure 1: Wrangler architecture.  

The service should allow for the dynamic 
configuration of the deployment, so that a variety of 
services can be deployed based on the needs of the 
user. It should also be resilient to failures that occur 
during the provisioning process and allow for the 
dynamic addition and removal of nodes. 

The Wrangler system (Juve and Deelman, 2011); 
(Juve and Deelman, 2011) allows users to send a 
simple XML description of the desired deployment 
to a web service that manages the provisioning of 
virtual machines and the installation and 
configuration of software and services. It is capable 
of interfacing with many different resource 
providers in order to deploy applications across 
clouds, supports plugins that enable users to define 
custom behaviors for their application, and allows 
dependencies to be specified between nodes. 
Complex deployments can be created by composing 

several plugins that set up services, install and 
configure application software, download data, and 
monitor services on several interdependent nodes. 

The components of the system are shown in 
Figure 1. They include: clients, a coordinator, and 
agents. 

• Clients run on each user’s machine and send 
requests to the coordinator to launch, query, 
and terminate, deployments. Clients have 
the option of using a command-line tool, a 
Python API, or XML-RPC to interact with 
the coordinator. 

• The coordinator is a web service that 
manages application deployments. It accepts 
requests from clients, provisions nodes from 
cloud providers, collects information about 
the state of a deployment, and acts as an 
information broker to aid application 
configuration. The coordinator stores 
information about its deployments in an 
SQLite database. 

• Agents run on each of the provisioned nodes 
to manage their configuration and monitor 
their health. The agent is responsible for 
collecting information about the node (such 
as its IP addresses and hostnames), reporting 
the state of the node to the coordinator, 
configuring the node with the software and 
services specified by the user, and 
monitoring the node for failures. 

• Plugins are user-defined scripts that 
implement the behavior of a node. They are 
invoked by the agent to configure and 
monitor a node. Each node in a deployment 
can be configured with multiple plugins. 

Users specify their deployment using a simple 
XML format. Each XML request document 
describes a deployment consisting of several nodes, 
which correspond to virtual machines. Each node 
has a provider that specifies the cloud resource 
provider to use for the node, and defines the 
characteristics of the virtual machine to be 
provisioned — including the VM image to use and 
the hardware resource type — as well as 
authentication credentials required by the provider. 
Each node has one or more plugins, which define the 
behaviors, services, and functionality that should be 
implemented by the node. Plugins can have multiple 
parameters, which enable the user to configure the 
plugin, and are passed to the script when it is 
executed on the node. Nodes may be members of a 
named group, and each node may depend on zero or 
more other nodes or groups. 
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3.3 Observation of Cloud Failures 

We can use Wrangler to build virtual clusters across 
heterogeneous clouds. In the example below we ran 
the test workflow 3 times provisioning 6 nodes (or 
48 cores on each resource): once on FutureGrid 
(Sierra host), an academic cloud deployment in the 
US, once on Magellan, which was an experimental 
cloud deployment supported by the US Department 
of Energy, and once on both Sierra and Magellan at 
the same time using 6 nodes (48 cores) each (for a 
total of 96 cores). Figure 2 illustrates the 
deployment, which consists of a Master Node 
(submit host) and a virtual cluster running Condor 
provisioned by Wrangler. 

 
Figure 2: Virtual cluster using local resources, and cloud 
resources from both Sierra and Magellan, that was used to 
execute the periodograms workflows. 

After some failures we were able to execute 3 
complete runs of the periodogram workflow, which 
read a total of 5.4 GB of input data, produced 30 GB 
of output data, and consumed 713 hours of CPU 
time, all within the course of a few hours.  

Although Wrangler was able to successfully 
provision resources and execute the application, we 
found that failures were a major problem. We 
encountered several different types of failures while 
running this application. Table 1 shows a breakdown 
of the number of requests made and the number and 
type of failures for both Sierra and Magellan. The 
failures we encountered include: 

• Failed to start: The request was accepted, but 
the VM state went from 'pending' to 
'terminated' without reaching 'running'. 

• No route to host: The VM is in the 'running' 
state and reports to the Coordinator, but does 
not respond to network connections, or it 
stops responding to network connections after 
some time. 

• Invalid IP: The provider’s information 
service reported a public IP of '0.0.0.0' for the 
VM.  

• No public IP: VM was assigned two private 
IP addresses instead of one public and one 
private. 

• Request timed out: Resource provider’s web 
service hanged and the connection timed out. 
These failures were automatically corrected 
by retrying the request. 

• Insufficient resources: The resource provider 
was not able to satisfy the request due to the 
lack of available resources. 

The failure rate we observed in running this 
application was significant. Five out of 20 requests 
to Sierra failed, which translates to a failure rate of 
25%. Magellan was even worse with 12 out of 28, or 
42%, of requests failing. The high failure rate on 
Magellan was primarily due to a network outage that 
caused several VMs to fail at the same time, and 
several failures were caused by a lack of resources, 
which is not a failure in the strictest sense. The 
effect of each of these failures is a request that did 
not result in a usable VM. Although these failures 
may, in some cases, be prevented by changes to the 
cloud management system, the fact is that such 
failures will occasionally occur. Provisioning 
systems like Wrangler should be prepared to detect 
and manage such failures, otherwise it will be 
difficult for an application to achieve meaningful 
results. 

We found that using Wrangler greatly simplified 
the process of provisioning and configuring cloud 
resources to execute this application. We were able 
to provision resources across two different clouds, 
quickly deploy a resource management system, and 
perform a non-trivial amount of computation in a 
short amount of time. However, we determined that 
more work is needed to automatically detect and 
recover from failures. 

Table 1: Number of requests and number and type of 
failures for the periodograms application on Sierra and 
Magellan. 

 FutureGrid/Sierra NERSC/ 
Magellan 

Requests 20 28 
Failed to start 2 0 
No route to host 0 5 
Invalid IP 1 0 
No public IP 1 0 
Request timed out 1 1 
Insufficient 
resources 0 6 

Total Failures 5 12 
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4 RELATED WORK 

There has been a considerable amount of work in the 
area of scientific workflows (Deelman et al., 2009). 
Here we just present related work in the area of 
virtual clusters.  

Constructing clusters on top of virtual machines 
has been explored by several previous research 
efforts. These include VMPlants (Krsul et al., 2004), 
StarCluster (http://web.mit.edu/stardev/cluster/), and 
others (Murphy et al., 2009); (Vöckler et al., 2011). 
These systems typically assume a fixed architecture 
that consists of a head node and N worker nodes. 
They also typically support only a single type of 
cluster software, such as SGE, Condor, or Globus.  

Many different configuration management and 
policy engines have been developed for UNIX 
systems. Cfengine (Burgess, 1995), Puppet (Kanies, 
2006), and Chef (http://www.opscode.com/chef) are 
a few well-known examples. Wrangler is similar to 
these systems in that configuration is one of its 
primary concerns, however, the other concern of this 
work, provisioning, is not addressed by 
configuration management systems.  

This work is related to virtual appliances 
(Sapuntzakis et al., 2003) in that we are interested in 
deploying application services in the cloud. The 
focus of our project is on deploying collections of 
appliances for distributed applications. As such, our 
research is complementary to that of the virtual 
appliances community. 

Wrangler is similar to the Nimbus Context 
Broker (NCB) (http://workspace.globus.org) used 
with the Nimbus cloud computing system (Keahey 
et al., 2008). NCB supports roles, which are similar 
to Wrangler plugins with the exception that NCB 
roles must be installed in the VM image and cannot 
be defined by the user when the application is 
deployed. In addition, our system is designed to 
support multiple cloud providers, while NCB works 
best with Nimbus-based clouds. 

Recently, other groups are recognizing the need 
for deployment services, and are developing similar 
solutions. One example is cloudinit.d (Bresnahan et 
al., 2011), which enables users to deploy and 
monitor interdependent services in the cloud. 
Cloudinit.d services are similar to Wrangler plugins, 
but each node in cloudinit.d can have only one 
service, while Wrangler enables users to compose 
several, modular plugins to define the behavior of a 
node. 

5 DISCUSSION AND 
CONCLUSIONS 

We have shown that workflow-based applications 
can run successfully on cloud resources using the 
same execution model as they use on the grid. 
However, there are still many obstacles to making 
this mode of execution efficient and robust. 
Although cluster configuration tools exist, they need 
to be able to deal with the failures we see in the 
underlying cloud software. A big challenge, just as 
is in the case of grids, is managing the failures, 
either by masking them, by presenting them to the 
user in an understandable way, and/or by providing 
tools to help pinpoint the source of problems.  

If one approaches application execution the way 
we do, where we stand up a cloud infrastructure that 
is similar to what can be found on campus or 
national resources, then we still have the same 
problems that we see in grids, with a number of 
software systems layered on top of each other. We 
still have issues of deciphering problems when 
errors are not passed gracefully between the 
software layers. Just as with grids, there are no 
debugging tools or sophisticated user-friendly 
monitoring tools for applications running on cloud 
environments. Although virtualization can be a very 
powerful tool for providing better reliability and 
performance, today’s tools do not take full 
advantage of it.  

Although commercial clouds, such as Amazon, 
are currently much more reliable than their academic 
counterparts, there are monetary costs associated 
with their use. Therefore applications developers and 
users need tools to help evaluate the cost and 
turnaround time of the entire computational problem 
(for example whole sets of workflows—ensembles). 
They also need tools to manage these costs for 
example by using cost-effective resources or 
leveraging allocations on grid systems. 

For a number of new bioinformatics 
applications, which are entering the arena of cloud 
computing, issues of data privacy and security are 
critical. Thus a new understanding and evaluation of 
the security practices in virtual environments needs 
to be developed. 
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