
USING CLOUDS FOR SCIENCE, IS IT JUST KICKING THE CAN
DOWN THE ROAD?

Ewa Deelman1, Gideon Juve1 and G. Bruce Berriman2
1Information Sciences Institute, University of Southern California, Marina del Rey, CA, U.S.A.

2Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA, U.S.A.

Keywords: Scientific Workflows, Grids and Clouds, Cloud Configuration, Application Management.

Abstract: In this paper we describe issues related to the execution of scientific workflows on clouds, giving particular
emphasis to the challenges faced by scientists when using grids and clouds for workflows. We also mention
some existing solutions and identify areas requiring additional work.

1 INTRODUCTION

Over the past decade grid computing has been put
forward as a platform for conducting science. We
have seen both tightly and loosely coupled parallel
applications making use of national and international
infrastructures such as the Open Science Grid (OSG)
(www.opensciencegrid.org), TeraGrid (http://www.
teragrid.org/), EGI (Kranzlmüller et al., 2010), and
others. These applications have been developed for
domains such as astronomy (Deelman et al., 2008),
bioinformatics (Stevens et al., 2003), earthquake
science (Callaghan et al., 2008), physics (Brown et
al., 2006), and others.

The broad spectrum of distributed computing
provides unique opportunities for large-scale,
complex scientific applications in terms of resource
selection, performance optimization, reliability, etc.
However, many issues of usability, reliability,
performance, and efficient computation remain
challenges in the area of grid computing. Over time
the architecture of the underlying clusters used for
scientific computation has been changing, from
commodity-type architectures connected by high-
performance networks to more complex
architectures and deployments such as those of the
Cray XT5 (Bland et al., 2009) or IBM Blue Gene
(Gara et al., 2005). As the computing architectures
have changed, so has the software used to access
these machines across the wide area networks. For
example, the Globus Toolkit (Foster, 2006) has
undergone many revisions and architectural changes
over the past decade.

Although the various hardware and software
systems have been changing, users have been
dealing with the same issues when executing
applications on these distributed systems. One of
these issues is usability. Much of the software that is
deployed today is very complex and often geared
towards high-end users that have already invested a
large amount of time and effort to learn the ins-and-
outs of the cyberinfrastructure. An average scientist
who is ready to scale up his or her computations to
the large-scale infrastructure is faced with learning
new software components that will move the data to
the computations, schedule the jobs, and bring the
results back. Although these functions seem
relatively straight forward, they involve relying on a
stack of software that includes services (e.g. Condor
(Litzkow et al., 1988) /GRAM (Czajkowski et al.,
1998) /PBS (Bayucan et al., 1999) /local OS) for
scheduling jobs and a data transfer service (e.g.
GridFTP (Allcock et al., 2001)) that is interacting
with a parallel file system (e.g. Lustre (Sun
Microsystems), PVFS, etc.) deployed on the
resource. The software stack can be unreliable and
prone to user, system, and software errors. If an
error occurs in that software stack, then it is very
hard for the user to discover the source of the
problem. Currently there are no debugging tools
available to enable the tracing of the problem.
Tuning the system for performance is an additional
concern. Each of the system components has their
own controls, and exposes only some of them to the
users. As a result, obtaining performance from an
application can be difficult.

127Deelman E., Juve G. and Bruce Berriman G..
USING CLOUDS FOR SCIENCE, IS IT JUST KICKING THE CAN DOWN THE ROAD?.
DOI: 10.5220/0003958901270134
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 127-134
ISBN: 978-989-8565-05-1
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

In addition to the large-scale cyberinfrastructure,
applications can target campus clusters, or utility
computing platforms such as commercial (Amazon
Elastic Compute Cloud); (Google App Engine) and
academic clouds (Nimbus Science Cloud);
(FutureGrid). However, these opportunities also
bring with them their own set of challenges. It is
hard to decide which resources to use and how long
they will be needed. It is hard to determine what the
cost/benefit trade-offs are when running in a
particular environment. It is also difficult to achieve
good performance and reliability for an application
on a given system.

In the paper, we describe an approach to
managing scientific applications, in particular
scientific workflows, on cloud resources. We use
this example as an illustration of the challenges
faced by such applications on clouds, and postulate
that although cloud computing is, in some ways, an
improvement in distributed computing capabilities,
many issues still need to be addressed.

2 APPLICATION CHALLENGES

Scientific workflows are being used today in a
number of disciplines. They stitch together
computational tasks so that they can be executed
automatically and reliably on behalf of the
researcher. For example, in astronomy, researchers
use workflows to generate science-grade mosaics of
the sky (Berriman et al., 2004); (http://montage.ipac.
caltech.edu). These workflows are composed of a
number of image processing applications that
discover the geometry of the input images on the
sky, calculate the geometry of the output mosaic on
the sky, re-project the flux in the input images to
conform to the geometry of the output mosaic,
model the background radiation in the input images
to achieve common flux scales and background
levels across the mosaic, and rectify the background
that makes all constituent images conform to a
common background level. Finally these normalized
images are added together to form the final mosaic.

The search for exoplanets is another example.
The NASA Kepler mission (http://kepler.nasa.gov/)
uses high-precision photometry to search for
transiting exoplanets around main sequence stars. In
May 2009, it began a photometric transit survey of
170,000 stars that has a nominal mission lifetime of
3.5 years. By the end of 2010, the Kepler mission
had released light curves of 210,664 stars; these light
curves contain measurements made over 229 days,
with between 500 to 50,000 epochs per light curve.

Analysing these light curves to identify periodic
signals, such as those that arise from transiting
planets and from stellar variability, requires
calculations of periodograms that reveal periodicities
in time-series data and estimates of their
significance. Because periodograms require large
amounts of computation to produce, workflows are
being used to coordinate periodogram generation
across distributed computing infrastructures.

Another example is from the earthquake science
domain, where researchers use workflows to
generate earthquake hazard maps of the Southern
California region (W. G. et al., 2006). These maps
show the maximum seismic shaking that can be
expected to happen in a given region over a period
of time (typically 50 years). Each point is obtained
from a single hazard curve and each curve is
generated by a workflow containing ~800,000 to
~1,000,000 computational tasks (Callaghan et al.,
2008). This application requires large-scale
computing capabilities such as those provided by the
NSF TeraGrid (http://www.teragrid.org/).

In order to support such workflows, software
systems need to 1) adapt the workflows to the
execution environment (which, by necessity, is often
heterogeneous and distributed), 2) optimize
workflows for performance to provide a reasonable
time to solution, 3) provide reliability so that
scientists do not have to manage the potentially large
numbers of failures that may occur, and 4) manage
data so that it can be easily found and accessed at the
end of the execution.

2.1 Cloud Issues

Having a number of capabilities, clouds can provide
a variety of different solutions for applications. The
latter have a choice of either adapt themselves to the
new computational models provided by the cloud
(such as MapReduce (Dean and Ghemawat, 2008))
or adapt the cloud to look like a computational
environment that the applications have used so far—
a compute cluster. Although new applications,
especially those in bioinformatics, are willing to
adopt new programming models, other applications,
which have been using long time-validated and
community accepted codes, are not willing to re-
write their applications.

Virtualization in general opens up a greater
number of resources to legacy applications. These
applications are often very brittle and require a very
specific software environment to execute
successfully. Today, scientists struggle to make the
codes that they rely on for weather prediction, ocean

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

128

modelling, and many other computations work on
different execution sites. No one wants to touch the
codes that have been designed and validated many
years ago in fear of breaking their scientific quality.

Clouds and their use of virtualization
technologies may make these legacy codes much
easier to run. With virtualization the environment
can be customized with a given OS, libraries,
software packages, etc. The needed directory
structure can be created to anchor the application in
its preferred location without interfering with other
users of the system. The downside is obviously that
the environment needs to be created and this may
require more knowledge and effort on the part of the
scientist than they are willing or able to spend.

For cluster-friendly applications, clouds can be
configured (with additional work and tools) to look
like a remote cluster, presenting interfaces for
remote job submission and data transfer. As such,
scientists can use existing grid software and tools to
get their work done.

Another interesting aspect of the cloud is that, by
default, it includes resource provisioning as part of
the usage mode. Unlike the grid, where jobs are
often executed on a best-effort basis, when running
on the cloud, a user requests a certain amount of
resources and has them dedicated for a given
duration of time. Resource provisioning is
particularly useful for workflow-based applications,
where overheads of scheduling individual, inter-
dependent tasks in isolation (as it is done by grid
clusters) can be very costly. For example, if there are
two dependent jobs in the workflow, the second job
will not be released to a local resource manager on
the cluster until the first job successfully completes.
Thus the second job will incur additional queuing
delays. In the provisioned case, as soon as the first
job finishes, the second job is released to the local
resource manager and since the resource is
dedicated, it can be scheduled right away. Thus the
overall workflow can be executed much more
efficiently.

3 MANAGING WORK ON
CLOUDS

3.1 Application Management

One approach to managing workflow-based
applications in grid or cloud environments is to use
the Pegasus Workflow Management System
(Deelman et al., 2004). Pegasus runs scientific

workflows on desktops, private clusters, campus
clusters, the Open Science Grid (www.openscience
grid.org), the TeraGrid (http://www.teragrid.org/),
and academic and commercial clouds (Amazon
Elastic Compute Cloud); (Google App Engine);
(Nimbus Science Cloud). Pegasus can be used to run
workflows ranging from just a few computational
tasks to a million tasks. When errors occur, Pegasus
tries to recover when possible by retrying tasks, by
retrying the entire workflow, by providing
workflow-level check-pointing, by re-mapping
portions of the workflow, by trying alternative data
sources for staging data, and, when all else fails, by
providing a rescue workflow containing a
description of only the work that remains to be done
so that the user can resubmit it later when the
problem is resolved (Deelman et al., 2006). Pegasus
cleans up storage as the workflow is executed so that
data-intensive workflows have enough space to
execute on storage-constrained resources
(Ramakrishnan et al., 2007); (Singh et al., 2007).
Pegasus keeps track of what has been done
(provenance) including the locations of data used
and produced, and which software was used with
which parameters (Miles et al., 2007); (Miles et al.,
2008); (Groth et al., 2009).

Pegasus assumes that the workflow management
system and the workflow description live on a
submit host, which is under the user’s control.
Pegasus launches jobs from the submit host to the
execution sites (either local or remote). The notion
of a submit host and execution environment lends
itself well to the Infrastructure as a Service (IaaS)
model of cloud computing (Deelman, 2009) .

Although Pegasus controls workflow execution
through both static workflow restructuring and
dynamic tuning of the job execution, it does not
control the resources where the jobs are executing.
However, managing resources is important in grids
when trying to optimize workflow performance and
is critical in clouds where the resources are not
necessarily preconfigured for the workflow. As a
result, we advocate the approach of building virtual
clusters on the cloud and configuring them in a way
similar to the clusters encountered by grid
applications.

3.2 Building Virtual Clusters

Deploying applications in the cloud is not a trivial
task. It is usually not sufficient to simply develop a
virtual machine (VM) image that runs the
appropriate services when the virtual machine starts
up, and then just deploy the image on several VMs

USING�CLOUDS�FOR�SCIENCE,�IS�IT�JUST�KICKING�THE�CAN�DOWN�THE�ROAD?

129

in the cloud. Often, the configuration of distributed
services requires information about the nodes in the
deployment that is not available until after nodes are
provisioned (such as IP addresses, host names, etc.)
as well as parameters specified by the user. In
addition, nodes often form a complex hierarchy of
interdependent services that must be configured in
the correct order. Although users can manually
configure such complex deployments, doing so is
time consuming and error prone, especially for
deployments with a large number of nodes. Instead,
we advocate an approach where the user is able to
specify the layout of their application declaratively,
and use a service to automatically provision,
configure, and monitor the application deployment.

Figure 1: Wrangler architecture.

The service should allow for the dynamic
configuration of the deployment, so that a variety of
services can be deployed based on the needs of the
user. It should also be resilient to failures that occur
during the provisioning process and allow for the
dynamic addition and removal of nodes.

The Wrangler system (Juve and Deelman, 2011);
(Juve and Deelman, 2011) allows users to send a
simple XML description of the desired deployment
to a web service that manages the provisioning of
virtual machines and the installation and
configuration of software and services. It is capable
of interfacing with many different resource
providers in order to deploy applications across
clouds, supports plugins that enable users to define
custom behaviors for their application, and allows
dependencies to be specified between nodes.
Complex deployments can be created by composing

several plugins that set up services, install and
configure application software, download data, and
monitor services on several interdependent nodes.

The components of the system are shown in
Figure 1. They include: clients, a coordinator, and
agents.

• Clients run on each user’s machine and send
requests to the coordinator to launch, query,
and terminate, deployments. Clients have
the option of using a command-line tool, a
Python API, or XML-RPC to interact with
the coordinator.

• The coordinator is a web service that
manages application deployments. It accepts
requests from clients, provisions nodes from
cloud providers, collects information about
the state of a deployment, and acts as an
information broker to aid application
configuration. The coordinator stores
information about its deployments in an
SQLite database.

• Agents run on each of the provisioned nodes
to manage their configuration and monitor
their health. The agent is responsible for
collecting information about the node (such
as its IP addresses and hostnames), reporting
the state of the node to the coordinator,
configuring the node with the software and
services specified by the user, and
monitoring the node for failures.

• Plugins are user-defined scripts that
implement the behavior of a node. They are
invoked by the agent to configure and
monitor a node. Each node in a deployment
can be configured with multiple plugins.

Users specify their deployment using a simple
XML format. Each XML request document
describes a deployment consisting of several nodes,
which correspond to virtual machines. Each node
has a provider that specifies the cloud resource
provider to use for the node, and defines the
characteristics of the virtual machine to be
provisioned — including the VM image to use and
the hardware resource type — as well as
authentication credentials required by the provider.
Each node has one or more plugins, which define the
behaviors, services, and functionality that should be
implemented by the node. Plugins can have multiple
parameters, which enable the user to configure the
plugin, and are passed to the script when it is
executed on the node. Nodes may be members of a
named group, and each node may depend on zero or
more other nodes or groups.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

130

3.3 Observation of Cloud Failures

We can use Wrangler to build virtual clusters across
heterogeneous clouds. In the example below we ran
the test workflow 3 times provisioning 6 nodes (or
48 cores on each resource): once on FutureGrid
(Sierra host), an academic cloud deployment in the
US, once on Magellan, which was an experimental
cloud deployment supported by the US Department
of Energy, and once on both Sierra and Magellan at
the same time using 6 nodes (48 cores) each (for a
total of 96 cores). Figure 2 illustrates the
deployment, which consists of a Master Node
(submit host) and a virtual cluster running Condor
provisioned by Wrangler.

Figure 2: Virtual cluster using local resources, and cloud
resources from both Sierra and Magellan, that was used to
execute the periodograms workflows.

After some failures we were able to execute 3
complete runs of the periodogram workflow, which
read a total of 5.4 GB of input data, produced 30 GB
of output data, and consumed 713 hours of CPU
time, all within the course of a few hours.

Although Wrangler was able to successfully
provision resources and execute the application, we
found that failures were a major problem. We
encountered several different types of failures while
running this application. Table 1 shows a breakdown
of the number of requests made and the number and
type of failures for both Sierra and Magellan. The
failures we encountered include:

• Failed to start: The request was accepted, but
the VM state went from 'pending' to
'terminated' without reaching 'running'.

• No route to host: The VM is in the 'running'
state and reports to the Coordinator, but does
not respond to network connections, or it
stops responding to network connections after
some time.

• Invalid IP: The provider’s information
service reported a public IP of '0.0.0.0' for the
VM.

• No public IP: VM was assigned two private
IP addresses instead of one public and one
private.

• Request timed out: Resource provider’s web
service hanged and the connection timed out.
These failures were automatically corrected
by retrying the request.

• Insufficient resources: The resource provider
was not able to satisfy the request due to the
lack of available resources.

The failure rate we observed in running this
application was significant. Five out of 20 requests
to Sierra failed, which translates to a failure rate of
25%. Magellan was even worse with 12 out of 28, or
42%, of requests failing. The high failure rate on
Magellan was primarily due to a network outage that
caused several VMs to fail at the same time, and
several failures were caused by a lack of resources,
which is not a failure in the strictest sense. The
effect of each of these failures is a request that did
not result in a usable VM. Although these failures
may, in some cases, be prevented by changes to the
cloud management system, the fact is that such
failures will occasionally occur. Provisioning
systems like Wrangler should be prepared to detect
and manage such failures, otherwise it will be
difficult for an application to achieve meaningful
results.

We found that using Wrangler greatly simplified
the process of provisioning and configuring cloud
resources to execute this application. We were able
to provision resources across two different clouds,
quickly deploy a resource management system, and
perform a non-trivial amount of computation in a
short amount of time. However, we determined that
more work is needed to automatically detect and
recover from failures.

Table 1: Number of requests and number and type of
failures for the periodograms application on Sierra and
Magellan.

 FutureGrid/Sierra NERSC/
Magellan

Requests 20 28
Failed to start 2 0
No route to host 0 5
Invalid IP 1 0
No public IP 1 0
Request timed out 1 1
Insufficient
resources 0 6

Total Failures 5 12

USING�CLOUDS�FOR�SCIENCE,�IS�IT�JUST�KICKING�THE�CAN�DOWN�THE�ROAD?

131

4 RELATED WORK

There has been a considerable amount of work in the
area of scientific workflows (Deelman et al., 2009).
Here we just present related work in the area of
virtual clusters.

Constructing clusters on top of virtual machines
has been explored by several previous research
efforts. These include VMPlants (Krsul et al., 2004),
StarCluster (http://web.mit.edu/stardev/cluster/), and
others (Murphy et al., 2009); (Vöckler et al., 2011).
These systems typically assume a fixed architecture
that consists of a head node and N worker nodes.
They also typically support only a single type of
cluster software, such as SGE, Condor, or Globus.

Many different configuration management and
policy engines have been developed for UNIX
systems. Cfengine (Burgess, 1995), Puppet (Kanies,
2006), and Chef (http://www.opscode.com/chef) are
a few well-known examples. Wrangler is similar to
these systems in that configuration is one of its
primary concerns, however, the other concern of this
work, provisioning, is not addressed by
configuration management systems.

This work is related to virtual appliances
(Sapuntzakis et al., 2003) in that we are interested in
deploying application services in the cloud. The
focus of our project is on deploying collections of
appliances for distributed applications. As such, our
research is complementary to that of the virtual
appliances community.

Wrangler is similar to the Nimbus Context
Broker (NCB) (http://workspace.globus.org) used
with the Nimbus cloud computing system (Keahey
et al., 2008). NCB supports roles, which are similar
to Wrangler plugins with the exception that NCB
roles must be installed in the VM image and cannot
be defined by the user when the application is
deployed. In addition, our system is designed to
support multiple cloud providers, while NCB works
best with Nimbus-based clouds.

Recently, other groups are recognizing the need
for deployment services, and are developing similar
solutions. One example is cloudinit.d (Bresnahan et
al., 2011), which enables users to deploy and
monitor interdependent services in the cloud.
Cloudinit.d services are similar to Wrangler plugins,
but each node in cloudinit.d can have only one
service, while Wrangler enables users to compose
several, modular plugins to define the behavior of a
node.

5 DISCUSSION AND
CONCLUSIONS

We have shown that workflow-based applications
can run successfully on cloud resources using the
same execution model as they use on the grid.
However, there are still many obstacles to making
this mode of execution efficient and robust.
Although cluster configuration tools exist, they need
to be able to deal with the failures we see in the
underlying cloud software. A big challenge, just as
is in the case of grids, is managing the failures,
either by masking them, by presenting them to the
user in an understandable way, and/or by providing
tools to help pinpoint the source of problems.

If one approaches application execution the way
we do, where we stand up a cloud infrastructure that
is similar to what can be found on campus or
national resources, then we still have the same
problems that we see in grids, with a number of
software systems layered on top of each other. We
still have issues of deciphering problems when
errors are not passed gracefully between the
software layers. Just as with grids, there are no
debugging tools or sophisticated user-friendly
monitoring tools for applications running on cloud
environments. Although virtualization can be a very
powerful tool for providing better reliability and
performance, today’s tools do not take full
advantage of it.

Although commercial clouds, such as Amazon,
are currently much more reliable than their academic
counterparts, there are monetary costs associated
with their use. Therefore applications developers and
users need tools to help evaluate the cost and
turnaround time of the entire computational problem
(for example whole sets of workflows—ensembles).
They also need tools to manage these costs for
example by using cost-effective resources or
leveraging allocations on grid systems.

For a number of new bioinformatics
applications, which are entering the arena of cloud
computing, issues of data privacy and security are
critical. Thus a new understanding and evaluation of
the security practices in virtual environments needs
to be developed.

ACKNOWLEDGEMENTS

This work was supported by the National Science
Foundation under grant OCI-0943725.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

132

G. B. Berriman is supported by the NASA
Exoplanet Science Institute at the Infrared
Processing and Analysis Center, operated by the
California Institute of Technology in coordination
with the Jet Propulsion Laboratory (JPL).

REFERENCES

"Open Science Grid," www.opensciencegrid.org.
TeraGrid. Available: http://www.teragrid.org/
D. Kranzlmüller, J. M. Lucas, et al, "The European Grid

Initiative (EGI)," Remote Instrumentation and Virtual
Laboratories, pp. 61-66, 2010.

E. Deelman, G. Singh, et al, "The Cost of Doing Science
on the Cloud: The Montage Example," SC'08 Austin,
TX, 2008.

R. D. Stevens, A. J. Robinson, and C. A. Goble, "myGrid:
personalised bioinformatics on the information grid,"
Bioinformatics vol. 19, 2003.

S. Callaghan, P. Maechling, et al, "Reducing Time-to-
Solution Using Distributed High-Throughput Mega-
Workflows - Experiences from SCEC CyberShake," e-
Science, Indianapolis, 2008.

D. A. Brown, P. R. Brady, et al, "A Case Study on the Use
of Workflow Technologies for Scientific Analysis:
Gravitational Wave Data Analysis," in Workflows for
e-Science, I. Taylor, et al, Eds., Springer, 2006.

A. S. Bland, R. A. Kendall, et al, "Jaguar: The world’s
most powerful computer," Memory (TB), vol. 300, p.
362, 2009.

A. Gara, M. A. Blumrich, et al, "Overview of the Blue
Gene/L system architecture," IBM Journal of Research
and Development, vol. 49, 2005.

I. Foster, "Globus Toolkit Version 4: Software for
Service-Oriented Systems," 2006.

M. Litzkow, M. Livny, and M. Mutka, "Condor - A
Hunter of Idle Workstations," in Proc. 8th Intl Conf.
on Distributed Computing Systems, ed, 1988.

K. Czajkowski, I. Foster, et al, "A Resource Management
Architecture for Metacomputing Systems," in 4th
Workshop on Job Scheduling Strategies for Parallel
Processing, 1998, pp. 62-82.

A. Bayucan, R. L. Henderson, et al, "Portable Batch
System: External reference specification," ed, 1999.

W. Allcock, J. Bester, et al, "Data Management and
Transfer in High-Performance Computational Grid
Environments," Parallel Computing, 2001.

Sun Microsystems. Lustre. http://www.lustre.org
Amazon Elastic Compute Cloud. http://aws.amazon.com/

ec2/
Google App Engine. http://code.google.com/appengine/
Nimbus Science Cloud. http://workspace.globus.org/clouds

/nimbus.html
(2010). FutureGrid. http://www.futuregrid.org/
G. B. Berriman, E. Deelman, et al, "Montage: A Grid

Enabled Engine for Delivering Custom Science-Grade
Mosaics On Demand," in SPIE Conference 5487:
Astronomical Telescopes, 2004.

Montage. Available: http://montage.ipac.caltech.edu
R. W. G., Paul G. Somerville, et al, "Ground motion

environment of the Los Angeles region," The
Structural Design of Tall and Special Buildings, vol.
15, pp. 483-494, 2006.

J. Dean and S. Ghemawat, "MapReduce: Simplified data
processing on large clusters," Communications of the
ACM, vol. 51, pp. 107-113, 2008.

E. Deelman, J. Blythe, et al, "Pegasus : Mapping Scientific
Workflows onto the Grid," in 2nd European Across
Grids Conference, Cyprus, 2004.

E. Deelman, G. Mehta, et al, "Pegasus: Mapping Large-
Scale Workflows to Distributed Resources," in
Workflows in e-Science, I. Taylor, E. Deelman, D.
Gannon, and M. Shields, Eds., ed: Springer, 2006.

A. Ramakrishnan, G. Singh, et al, "Scheduling Data -
Intensive Workflows onto Storage-Constrained
Distributed Resources," in CCGrid 2007.

G. Singh, K. Vahi, et al, "Optimizing Workflow Data
Footprint " Scientific Programming Journal, Special
issue on Dynamic Computational Workflows, vol. 15,
2007

S. Miles, E. Deelman, et al, "Connecting Scientific Data to
Scientific Experiments with Provenance " Third IEEE
e-Science 2007, India. , 2007.

S. Miles, P. Groth, et al, "Provenance: The bridge between
experiments and data," Computing in Science &
Engineering, vol. 10, pp. 38-46, 2008.

P. Groth, E. Deelman, et al, "Pipeline-Centric Provenance
Model, "The 4th Workshop on Workflows in Support
of Large-Scale Science, Portland, OR, 2009.

E. Deelman, "Grids and Clouds: Making Workflow
Applications Work in Heterogeneous Distributed
Environments," International Journal of High
Performance Computing Applications, 2009.

G. Juve and E. Deelman, "Automating Application
Deployment in Infrastructure Clouds," CloudCom
2011,

G. Juve and E. Deelman, "Wrangler: Virtual Cluster
Provisioning for the Cloud (short paper), HPDC'11,
2011.

E. Deelman, D. Gannon, et al, "Workflows and e-Science:
An overview of workflow system features and
capabilities," Future Generation Computer Systems,
vol. 25, pp. 528-540, 2009.

I. Krsul, A. Ganguly, et al, "Vmplants: Providing and
managing virtual machine execution environments for
grid computing," 2004, pp. 7-7.

StarCluster. http://web.mit.edu/stardev/cluster/.
M. A. Murphy, B. Kagey, et al, "Dynamic provisioning of

virtual organization clusters," 2009,
J.-S. Vöckler, G. Juve, et al, "Experiences Using Cloud

Computing for A Scientific Workflow Application,"
ScienceCloud, 2011.

M. Burgess, "A site configuration engine," USENIX
Computing Systems, vol. 8, 1995.

L. Kanies, "Puppet: Next Generation Configuration
Management," Login, vol. 31, 2006.

Opscode, Chef. Available: http://www.opscode.com/chef.

USING�CLOUDS�FOR�SCIENCE,�IS�IT�JUST�KICKING�THE�CAN�DOWN�THE�ROAD?

133

C. Sapuntzakis, D. Brumley, et al, "Virtual Appliances for
Deploying and Maintaining Software," USENIX 2003.

Nimbus. Available: http://workspace.globus.org
K. Keahey, R. Figueiredo, et al, "Science clouds: Early

experiences in cloud computing for scientific
applications," Cloud Computing and Applications,
2008.

J. Bresnahan, T. Freeman, et al, "Managing Appliance
Launches in Infrastructure Clouds," Teragrid
Conference, 2011.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

134

