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Abstract: Microprocessors increasingly execute multiple tasks in step with the increasing complexity of modern embed-
ded applications. Shared by multiple tasks, conventional on-chip L1 instruction cache (I-cache) usually suffers
a high cache miss ratio due to inter/intra task interferences and is the most energy-consuming component of
the processor chip. This paper presents a power-efficient loop instruction cache design for multitasking em-
bedded applications, which is a two-fold technique that can significantly reduce the L1 I-cache accesses for
energy saving and reduce the I-cache misses caused by task interference. Experiments on a case study show
that our scheme reduces energy consumption in the I-cache hierarchy by 36.5% and I-cache misses can be
reduced from 6.0% to 18.3%, depending on the frequency of context switch in the multitasking system.

1 INTRODUCTION

Microprocessors are widely used in the computing
systems of our daily life, from desktop PCs, worksta-
tions, and servers, to portable consumer-electronics
devices such as PDAs, mobile phones, MP3/video
players and digital cameras. In step with the shrink-
ing size of deep submicron process technology, power
dissipation in processors are exponentially increasing.
It has been reported that, microprocessors globally
used in data centers consume 1.5% of the worldwide
energy (Pan, 2009). Therefore, low power is partic-
ularly important in the design of embedded systems
such as portable and handheld electronics devices.
These systems are mostly battery-driven and thus re-
ducing power consumption can prolong the lifetime
of batteries that have limited energy resources.

As on-chip caches increasingly occupy a larger
die size, power consumption in these components ac-
counts for a dominant portion of the overall processor
energy. Work in (Dally et al., 2008) investigates the
breakdown of microprocessor power and concludes
that energy consumption in caches can amount to al-
most 70% of the total energy dissipated in the proces-
sor chip. Apparently, the cache components are the
good targets for energy optimization.

The state-of-the-art embedded applications tend to
incorporate multiple tasks running on a single proces-
sor in order to fully exploit the computing resources.
In multitasking environment, several tasks run simul-
taneously and share all resources of the processor. Si-

multaneous running can be achieved by allocating a
time slice for each task and executing the tasks at in-
tervals. When a task yields its time slice or is pre-
empted by another task with higher priority, a context
switch needs to be performed, which involves saving
the state of the current (preempted) task and retriev-
ing the state of the next (preempting) task. Execu-
tion state of a task includes the program counter (PC)
value, stack pointer (SP), register file (RF), program
code and data in the caches. Saving the values of PC,
SP and RF incurs small cost so it can be done by con-
text switch. Cache state for a task, however, might be
rather large and thus infeasible to be saved or retrieved
during context switch. Therefore, while shared be-
tween several tasks, cache may suffer significant in-
terference when code and data of a task are frequently
overwritten by other tasks in the cache, which leads to
a large number of cache misses. Since cache misses
result in accesses to the lower level memory, which
incurs even more energy consumption and larger de-
lay, multitasking interference is problematic in terms
of energy consumption and performance of the sys-
tem.

To improve the energy efficiency of the multitask-
ing systems, existing schemes attempt to reducing
multitasking interference by allocating tasks to differ-
ent partitions of the shared cache (Reddy and Petrov,
2010) (Paul and Petrov, 2011) or scratch-pad memory
(Gauthier et al., 2010). While these approaches are ef-
fective in reducing cache interference for low energy,
the design complexity is very high and most of them
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require the large design space exploration at design
time. For example, to decide the optimal size of cache
partition for an individual task, a large space of cache
configurations needs to be searched. With more and
more tasks involved in a single multitasking appli-
cation, such scheme becomes rather time-consuming
and thus infeasible in practice.

In this paper, we propose an energy-efficient Par-
titioned Loop Instruction Cache (PLIC) design to re-
duce the energy consumption of the shared cache in
the embedded multitasking systems. The proposed
PLIC is motivated by a previous work (Gu and Guo,
2010) targeting the energy efficiency of single-task
based system, and improved in this paper for mul-
titasking systems. The partitioned loop instruction
cache can be shared with multiple tasks without any
interferences. In comparison with I-cache partition
for multitasking applications(Paul and Petrov, 2011),
partitioning the loop instruction cache has lower de-
sign complexity yet can effectively reduce the task in-
terference in the shared I-ache. With our PLIC design,
access of the shared cache in the multitasking system
can be significantly reduced such that cache misses
due to interference can be effectively reduce as well,
which, as a consequence, can efficiently reduce the
energy consumption and improve the performance of
the multitasking systems.

2 DESIGN OF PLIC

The proposed PLIC is designed for multitasking em-
bedded processors, based on the loop instruction
cache (Gu and Guo, 2010) for single-task based pro-
cessors. In order to be shared with multiple tasks and
address the features of context switch of the multi-
tasking applications, the proposed PLIC has extended
and improved the loop instruction cache design as fol-
lows:

1. PLIC introduces a partitioned structure of the loop
instruction cache and a hardware-based task state
table to manage the sharing of PLIC with multi-
ple tasks. With the proposed architecture, differ-
ent tasks can exploit the PLIC without interfering
each other during their executions.

2. Instead of caching the decoded instructions, our
PLIC design caches the encoded (original) in-
structions. Size of decoded instruction is highly
machine dependent and can be several times
larger than the encoded instruction, which may
result in a large PLIC design size for the multi-
tasking application. Hence, as smaller cache size
is more energy-efficient, we opt for a PLIC archi-
tecture design for encoded instructions.

2.1 PLIC Architecture

The PLIC proposed in this paper is an extra level of
small loop cache designed for multitasking proces-
sors. Fig. 1 (a) shows the PLIC design in a pipelined
processor. For the sake of simplicity, only three typi-
cal pipeline stages, IF (instruction fetch ), ID (instruc-
tion decode) and EX (execution), are given in the fig-
ure. The PLIC component is placed at the ID stage
and controlled by special instructions at the software
level.

The architecture design of PLIC can be seen in
Fig. 1 (b). PLIC takes inputs from the IF, ID and
EX pipeline stages at the hardware level and inputs
from the OS at the software level. While inputs from
the pipeline are received during task execution, inputs
from OS are received only when context switch oc-
curs. The PLIC for the multitasking processor is com-
posed of five components: a task sate table, a PLIC
index table, a PLIC branch target table, the branch
address logic, and the local PC logic.

The task state table stores the information of the
PLIC cache partition allocated for each task. It also
has a field for the local program counter (L-PC) of
each task, which is used to save the execution state of
the preempted task and retrieve the state of the pre-
empting task during context switch. The PLIC index
table and PLIC branch target table are the components
for caching the loop instructions, each of which is par-
titioned for the multitasking application. When a task
is using the PLIC during its execution, only the allo-
cated partition of each table is used. The size of each
partition to be allocated for tasks is decided at compile
time, based on a static loop profiling of the multitask-
ing application. And such partition information will
be loaded into the task state table at the beginning of
the program execution.

The PLIC branch target table is used to cache
the flow control instructions (such as jump/branch)
of a loop and the PLIC index table is used for other
loop instructions. These two tables, together with the
branch address logic, the local PC logic, and the four
special instructions (slp, elp, brb andbrf as shown in
Fig. 1(b)) are used to handle the complex flow control
of loop executions after the loop has been cached in
the PLIC after the first loop iteration. A description
about such loop execution control can be seen in (Gu
and Guo, 2010) and thus will not be discussed in de-
tail here. This paper focuses on the PLIC operation
for context switch, which is the feature of the mul-
titasking system and will be elaborated in following
section.
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Figure 1: The proposed PLIC design based on (Gu and Guo, 2010): (a) PLIC in a processor pipeline, (b) The architecture of
PLIC.

2.2 Context Switch and PLIC
Operation

In multitasking systems, context switch occurs when
a task yields its time slice, or a task is preempted by
another task with higher priority. That is, only one
task is running in the system at any point of time be-
fore and/or after context switch.

When context switch is not taking place, the PLIC
is operated dynamically by the running task, with the
allocated partition being used. In this case, the PLIC
operation can be classified into three states: non-loop
execution, first loop iteration, and following loop it-
eration (second to the last). In non-loop execution,
the PLIC is not activated and instructions are fetched
form the I-cache. In first loop iteration, the instruc-
tions are fetched from I-cache and loaded into PLIC
at the same time. During following loop iteration, in-
structions are fetched from the PLIC only.

When a context switch occurs, state of the pre-
empted task needs to be saved first, and then state
of the preempting task needs to be retrieved for run-
ning. In the proposed PLIC based multitasking sys-
tem, apart from the conventional context switch oper-
ations (i.e., saving PC, register values etc.), the PLIC
operation state (non-loop execution, first loop itera-
tion, or following loop iteration, as described above)
of current task also needs to be saved for future recov-
ery. For context switch, the PLIC operation depends
on if the preempted task is using PLIC (Case 1) or not
(Case 2).

• Case 1. Apart from performing conventional con-
text switch and saving the PLIC operation state,
local PC (L-PC) of the preempted task needs to
be saved into the PLIC task state table for future
recovery.

• Case 2. Conventional context switch at the OS
level is performed, and the PLIC operation state
(non-loop execution) of the preempted task is
saved.

After saving all states of the preempted task, the
preempting task can be put into execution based on
its retrieved states.

3 EXPERIMENTAL RESULTS

3.1 Experimental Setup

We applied our partitioned loop instruction cache
(PLIC) design to a multitasking application, as a case
study, to evaluate the energy efficiency of our scheme
in multitasking embedded systems. The multitask-
ing application is composed of five benchmarks (i.e.
tasks, adpcm, jpeg, rawdaudio, sha, stringsearch)
from MiBench (Guthaus et al., 2001) and Powerstone
(Scott et al., 1998) suites, which are widely used in
the embedded domain of telecommunication, image
processing, audio/vedio coding, and security.

We use a multiprocessor system with a task sched-
uler to emulate the multitasking system since there
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Figure 2: Experimental platform.

are no OS supporting context switch available for us.
The platform can be seen in Fig. 2, which is com-
posed of five processor cores, five main memory com-
ponents, the shared L1 I-cache, the PLIC design, the
task scheduler and some switching logic controlled by
the task scheduler.

Each task is stored in one of the five memory com-
ponents after compilation. At any time, only one pro-
cessor is running by executing the task from its cor-
responding memory. Context switch is performed by
the task scheduler by clock-gating the active proces-
sor and putting another processor into running, which
is similar to saving states for the preempted task and
retrieving states for the preempting task. During con-
text switch, the task scheduler also needs to send a
signal and ID of the preempting task to PLIC, for
which to update the task state table and perform con-
text switch in the PLIC cache (see Section 2.2). Since
the L1 I-cache and the PLIC design is shared by mul-
tiple processors, their behavior is the same as used in
a multitasking uniprocessor.

The processor cores in our platform are homoge-
neous and based on Simplescalar PISA (Burger and
Austin, 1997). We use VHDL to specify the platform
at RTL level for simulation. In this paper, we focus on
the I-cache of multitasking processor and the mem-
ory hierarchy is assumed two levels with I-cache and
main memory. The task scheduler utilizes a round-
robbin scheme for tasks scheduling, with switching
intervals of 5K, 10K, and 20K clock cycles.

Size of our PLIC design is decided by the three ta-
bles as discussed in Section 2.1. We use a PLIC index
table (PIT) of 128 entries and a PLIC branch target ta-
ble (PBTT) of 32 entries for partition. The task state
table (TST) is set 8 entries, which is large enough for
the 5 tasks in our experiment. The parameters setting
of our platform is given in Table 1.

Table 1: System settings.

Processor PISA RISC processor, 6-stage single pipeline

Instr. width 64bits

PLIC PIT: 128x(1+64)bits

PBTT: 32x(6+6)bits

TST: 8x(3+3+6)bits

I-cache 8KB, 2-Way, 32B block, 1-cycle latency

Memory 64MB SDRAM, 30 cycles

Task scheduling Round-Robbin, 5K, 10K, 20K cycles interval

3.2 Reduction of I-cache Access and
Miss

We first investigate how much of the I-cache access
and miss can be reduced by the proposed PLIC design
for the multitasking application, since such reduction
is attributed to the energy savings in the system. Fig. 3
reports the reduction rate of I-cache access and miss
over the baseline system which does not have a PLIC
design. The given results are based on three differ-
ent switching intervals (5K, 10K, and 20K cycles)
with different orders of task scheduling(system start-
ing with T0, T1, T2, T3 or T4).

I-cache access can be reduced by 50.9% and such
reduction is independent on the scheduling policy of
the multitasking system. This is due to that, sharing
the partitioned PLIC, tasks do not interfere with each
other so that hit rate of PLIC is identical for each run-
ning. In contrast, the frequency of context switch im-
pacts much on the task interference in I-cache. With
higher switching frequency, the I-cache miss becomes
larger and more miss reduction can be achieved by our
scheme. On average, our PLIC design can reduce the
I-cache miss from 6.0% to 18.3%.

3.3 Energy Savings

To evaluate the energy efficiency of our scheme,
we calculate energy consumption in the memory
hierarchy of the baseline architecture and the PLIC
design. We use the following energy model for the
calculation:

Baselineenergy = I-cacheaccess × I-cacheenergy/access
+ I-cachemiss × Memoryenergy/access

PLICenergy = I-cacheaccess × I-cacheenergy/access
+ I-cachemiss × Memoryenergy/access

+ (PLICwrite + PLICaccess ) × PLICenergy/access

where values of I-cacheaccess, I-cachemiss, PLICwrite
and PLICaccess are obtained by simulating the appli-
cation on our VHDL model. Energy consumption
per access of I-cache and main memory are calcu-
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Figure 3: Reduction of I-cache accesses and misses.

lated in CACTI 5.1 (Thoziyoor et al., 2008) using
65nm process technology. For our PLIC cache, the
PLIC index table can be implemented as a tagless
direct-mapped cache with cache line of one instruc-
tion word, and thus we also use CACTI to calculate
the energy. The other two tables (PLIC branch target
table and task sate table) can be implemented as reg-
ister files. Therefore, these two tables and other con-
trol logic of PLIC are synthesized in Synopsys Design
Compiler for the energy values, also using the 65nm
process technology. Energy consumption of caches
and memory is given in Table 2.

Table 2: Energy consumption per access.

Energy/Acess [pJ]

PLIC 56.3

I-cache 227.3

Memory 6332.5

Fig. 4 reports the energy consumption of our PLIC
design normalized to the baseline system. As can be
seen, PLIC can reduce energy consumption by 36.5%
for the multitasking system. Note that, though reduc-
tion of cache misses varies for each task scheduling
(see Fig. 3), the energy reduction is almost identical.
This is because, even cache misses have increased due
to task interference, the miss ratio (cache misses over
cache references) is still small in the multitasking ap-
plications. As a result, energy reduction due to cache
miss reduction accounts for a minor portion of the
overall energy savings.

4 RELATED WORK

Several low-power techniques for embedded systems
have been focused on improving the cache hierarchy
for power and energy efficiency. Work in (Malik et al.,
2000) makes the set-associative cache behave like a
direct-mapped cache such that tag comparison can be
reduced for power efficiency. The way-halting cache
(Zhang et al., 2005) design uses some least significant

tag bits for comparison, an un-match of which can fil-
ter the full tag comparison for power saving. Ishihara
and Fallah (Ishihara and Fallah, 2005) propose a soft-
ware/hardware co-design of a non-uniform cache ar-
chitecture, where the cache can have different number
of ways for different cache sets. The unused cache
ways are disconnected from the sense-amplifiers for
power saving. Techniques in (Tang et al., 2002) (Yang
and Lee, 2004) (Gu and Guo, 2010) attempt to re-
ducing cache energy by introducing an extra level of
tiny and low-power cache structure in front of the con-
ventional cache so that the power-expensive cache ac-
cesses can be mostly filtered.

For multitasking systems, work in (Reddy and
Petrov, 2010) and (Paul and Petrov, 2011) propose
to allocate tasks to different partitions of cache such
that cache misses due to task interferences can be re-
duced. Gauthier et al. (Gauthier et al., 2010) attempt
to finding the optimal allocation of scratch-pad mem-
ory space between tasks, which can effectively reduce
accesses of the main memory and hence reducing en-
ergy consumption. In contrast, our PLIC design uses
the filtering scheme to reduce the power consump-
tion of embedded multitasking systems. By filtering
the I-cache assesses, the PLIC can also reduce the
cache misses caused by task interferences. In addi-
tion, as our technique is orthogonal to the technique
of (Reddy and Petrov, 2010) (Paul and Petrov, 2011),
they can be applied in combination for energy reduc-
tion in a multitasking system.

5 CONCLUSIONS

This paper targets the multitasking processors and
attempts to reducing energy dissipation of the in-
struction cache hierarchy in processors. With our
proposed partitioned loop instruction cache (PLIC)
shared by multiple tasks, a significant amount of
energy-expensive I-cache access can be filtered. Fur-
thermore, filtering I-cache access leads to effective
reduction of I-cache misses caused by task interfer-
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Figure 4: Energy consumption normalized to the baseline design.

ence, and hence reducing energy and delay of lower-
level memory access. Experiments on a case study of
multitasking application reports an energy reduction
of 36.5% with the PLIC design. The reduction on I-
cache misses ranges from 6.0% to 18.3%, depending
on the frequency of context switch in the multitasking
system.
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