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Abstract: This paper presents a low-cost framework for non-intrusive home energy monitoring and research built on 
top of Non-Intrusive Load Monitoring (NILM) concepts and techniques. NILM solutions are already 
considered low-cost alternatives to the big majority of existing commercial energy monitors but the goal of 
this work is to make its cost even lower by using a mini netbook as a packaged solution. The mini netbook 
is installed in the home’s main circuit breaker panel and computes power consumption by reading current 
and voltage through the built-in sound card. At the same time, feedback to the users is provided using the 
11’’ LCD screen as well as other built-in I/O modules. The meter is also capable of detecting changes in 
power consumption and tries to find out which appliance lead to that change. It is believed that such a 
system will not only be important as a tool for energy monitoring and feedback, but also serve as an open 
system that can be easily changed to accommodate and test new or existing non-intrusive load monitoring 
techniques. 

1 INTRODUCTION 

Back in 1992 world leaders got together in Rio de 
Janeiro for the United Nations Conference on 
Environment and Development (UNCED). Two of 
the issues addressed were, the use of alternative 
sources of energy to replace fossil fuels and the 
growing scarcity of water. 

Twenty years later many actions have been taken 
to face those issues, with a big focus on improving 
and creating alternative sources of energy.  

The building industry has also been shifting 
gears towards more environmentally friendly 
practices. Energy and water efficiency are two key 
points of the so-called green buildings and many 
technological solutions have been implemented to 
improve these. Yet, although well intentioned, green 
buildings are still expensive to the average 
homeowner, and it did not take a lot of time to 
realize that representative savings come from a more 
efficient use of the building’s utilities and not from 
the building itself. But are humans ready to assume 
this major role in contributing to a more sustainable 
use of natural resources? The short answer is NO. 
And even if human beings are at the center of 
concerns for sustainable development, they are not 
really aware of how their actions and behaviors can  

affect sustainability.  
Electricity is a paradigmatic example of this lack 

of awareness and this is shown in a series of studies 
that present significant contradictions between 
consumer perceptions and their knowledge of energy 
efficiency. For example in (Attari, 2010) authors 
show that most humans have a wrong perception of 
the most effective thing to do when trying to be 
energy efficient. While there is strong evidence that 
generally efficiency-improving actions save more 
than reducing the usage of inefficient equipment, 
only 11.7% of participants refer to the former while 
55.2% pointed out the later.  

These wrong perceptions were also the subject of 
Chisiks’ work (Chisik, 2011), which focus on 
understanding how people perceive electricity. The 
findings are quite informative about the lack of 
perception regarding how much electricity is 
consumed by a particular device, which users tend to 
associate with the frequency and duration as well as 
with the size of the device. 

This working hypothesis, that most people lack 
awareness and understanding of how their everyday 
behaviors affect the environment, is the base for eco-
feedback technology, which is defined as technology 
that provides feedback on individual or group 
behaviors with a goal of reducing environmental 
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impact (Froehlich et al., 2010). Eco-feedback 
technology has been around for more than 40 years, 
and literature shows that providing feedback to the 
consumers, even at a low level of disaggregation, 
may result in savings between 10% and 15% (Parker 
et al., 2006). However there are other studies that 
show that this effect is not long lasting, and that 
consumers tend to return to previous consumptions 
values is a few weeks (Peschiera et al., 2010). 

Today the advances in sensing technology that 
promote the ability to disaggregate power 
consumption at a low-cost, combined with the 
widespread use of internet based social networks and 
the dissemination of handheld devices, open the 
potential of eco-feedback to millions of households. 
It is therefore important to understand how people 
will react to the feedback, and to what extent they 
are willing to change their behaviors in favor of a 
more sustainable lifestyle.  

This paper presents a low cost framework for 
non-intrusive home energy monitoring and research, 
which is capable of monitoring and disaggregating 
the electricity energy consumption from a single 
sensing point and at the same time provide eco-
feedback to the consumers using different 
communication channels. 

2 HOME ENERGY MONITORING 

As seen above, humans deeply misunderstand 
energy consumption, and perhaps its invisible nature 
is one of the main reasons for this. After all  the task 
of quantifying something that hides from the human 
senses is merely impossible. Lets face it, everybody 
knows electricity, but nobody has actually been in 
direct contact with it. 

The role of quantifying electric energy 
consumption is delegated to smart meters, which are 
electric devices that record the electric energy 
consumption in pre-defined intervals and 
communicate the measured results back to the 
utility. It is possible to find all kinds of smart meters. 
Single point (plug-level) meters are probably the 
easiest to find and their mode of operation is very 
simple. Basically the appliance is connected to the 
meter that in turn is connected to the outlet. Multi 
point (whole house) meters provide measurements 
at the service entrance and have extra channels to 
track sub-panels or larger electrical loads. These are 
installed in the main entry feed, and the feedback to 
the user can be provided in several ways, e.g. 
portable displays and http via built-in webservers or 
online services. Finally, the Circuit panels 

(Circuit-level) offer the possibility of measuring 
each individual circuit in the house, with up to 12 or 
16 circuits in each meter. These are considered, by 
far, the most expensive and difficult to install 
requiring the presence of a professional. 

Despite the fact that owning a smart meter will 
not necessarily decrease the energy consumption it is 
strongly believed that the ability to reason on top of 
power consumption data would be of great interest 
for consumers and would be a huge help in the 
process of engaging the consumers into having a 
more energy efficient behavior. “Does my new 
microwave spend more than my previous one?”, 
“Why do I spend so much electric energy at night if I 
am sleeping?”, “How much do I spend cooking 
dinner?” are just a few examples of possible 
questions that consumers would like to see answered 
by their smart meters.  

However this is not what smart-meters do 
because, although they can provide several different 
power metrics, their level of information 
disaggregation is not enough to answer such 
questions.  

It is therefore safe to say that future power 
meters must provide their information with very 
high levels of disaggregation, that go beyond the 
overall consumption and the time of the day. 

3 NON-INTRUSIVE LOAD 
MONITORING 

The process of measuring and disaggregating, 
electricity consumption from a single sensing point, 
is called Non-Intrusive Load Monitoring (NILM). 

NILM is not a new subject, its origins go back to 
the late 1980s, early 1990s (Hart, 1992), and it is 
built on top of the premise that every change in the 
power consumption is due to some appliance 
changing its state (either turning on, off or going to a 
different working mode), and that by analyzing these 
changes it is possible to determine the appliance that 
was responsible for them.  

The NILM process can be explained as the 
combination of six consecutive steps. First sensors 
measure the current and voltage signals at the main 
circuit breaker. Second, the acquired current and 
voltage signals are converted into traditional power 
metrics like real and reactive powers. Next an event 
detection algorithm is applied to the computed 
metrics and load changes are flagged as power 
events for further processing by the feature extractor 
that will extract a set of generalized features that can 
mathematically characterize the event. The set of 
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features that describe an event is called the event 
signature. In the next step previously trained 
machine-learning algorithms are applied to the 
unclassified signatures to obtain a classification. 
Finally in the last step it is possible to estimate how 
much energy each appliance is using by keeping 
track of all its events and associated power levels. 
Much research has undergone in this field 
throughout the years after Harts first approach of 
analysing real and reactive power steady state 
changes at the fundamental frequency and the 
advances in sensing technology allowed researchers 
to greatly improve the classification accuracies by 
using “microscopic” features such as current 
harmonics. For example, in (Laughman et al., 2003) 
authors have used harmonics as complementary 
features, in addition to changes in real and reactive 
power, and found that this would help to distinguish 
loads otherwise indistinguishable. In (Berges et al., 
2009) the authors have applied supervised machine 
learning algorithms, e.g. k-NN and decision trees, to 
classify the loads under different feature sets, which 
included harmonics powers. They have reported 
classification accuracies between 67% and 100% for 
different sets of appliances. 

In a very different approach  (Patel et al. 2007) 
proposed that by monitoring electric noise in a 
socket for transient signals they could detect most 
appliances that were connected to other sockets in 
the house. The same authors also presented 
ElectriSense (Gupta, Reynolds and Patel, 2010), a 
system that focuses on sensing very high frequency 
(36-500 kHz) electromagnetic interference (EMI), 
which is constantly generated by switch mode power 
supplies (SMPS) which are present in most modern 
consumer electronics, as well as fluorescent 
lightning.  

4 NON-INTRUSIVE HOME 
ENERGY MONITORING 

From a technical standpoint a non-intrusive energy 
monitor needs to commit to a set of requirements: 1) 
it has to sample both current and voltage from a 
single sensing location, 2) the data needs to be 
available for both offline and online analysis, and 3) 
it has to allow different representations of the 
measured energy trough different kinds of feedback.  

Additionally, and for research purposes, it also 
needs to be able to sense when humans are exposed 
to the feedback, and possibly their interactions with 
the feedback interfaces. A final requirement, which 
is also due to the research purposes of this monitor, 

is that the final solution must be very cost effective. 
Otherwise it will become too expensive to conduct 
research with a fair amount of simultaneous 
installations.  

To cope with these requirements, one opted to 
use a netbook as a whole-in-one solution. The laptop 
audio input Analog-to-Digital Converter (ADC) is 
used to sample current and voltage, the display and 
the speakers are used to provide the interactivity, 
while the Wi-Fi card enables communication over 
the internet and the built-in camera and microphone 
act as low-cost sensors for human activity. 

4.1 Eco-feedback User Interfaces 

The eco-feedback interfaces of this system were 
built on top of those studies, presenting consumption 
(in kW/h, € and CO2 emissions) over hour / day / 
week / month / year, total consumption of the day / 
week / month / year and also showing comparisons 
between different months / weeks and days.  

The interface also presents real time data to the 
user, namely power consumption in watts and power 
events. Figure 1 shows a snapshot of the eco-
feedback user interface. 

 

Figure 1: Eco-feedback user interface snapshots, from left 
to right: month view, year view, real time view 
(CO2/Month, kW/h and Euros/Month). 

Another very important feature of the user 
interface is the fact that it stores the user navigation 
history (mouse clicks) as well as the instant when 
motion is detected (using the webcam as a motion 
detector). 

4.2 System Architecture 

The system architecture is based on the “pipe-and-
filter” software architecture. Figure 2 shows the 
current system architecture. 
Current and voltage are continuously sensed and 
sent to the data acquisition filter to be sampled. As 
these are sampled they are sent to the power 
calculations filter. This filter is responsible for doing 
the power calculations and driving the resulting data 
to the splitter, which is an active filter that is 
responsible for sending the  power  samples  to  the  
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Figure 2: Framework architecture. 

filters that are connected to it. The GUI is 
responsible for plotting the power as it is being 
calculated and the Request / reply socket server 
provides real time information about the system 
measurements to external applications. The power 
storage filter role is to average the power samples, 
based on a predefined number of samples value, and 
drive the resulting sample to the database. The 
median filter is used to apply a median filter to the 
power samples, also based on a predefined window 
size, and send the filtered samples to the power 
event detector filter that will apply a detection 
algorithm to the filtered power samples, and trigger 
a programmable event when a power event is 
detected. The disaggregation filter is a composite 
filter that captures the events triggered by the power 
event detector and is composed by two filters that 
work together to disaggregate the load. The feature 
extractor is used to extract the features that will be 
used by the power event classifier to classify the 
power event. The event is then sent to the database 
and streamed to the Internet using the streaming 
socket filter. 

4.3 Data Acquisition 

In order to measure the power being consumed by 
the house two sensors are installed at the main 
breaker circuit: one split-core current transformer to 
be placed around the cable that carries the current 
and one voltage transformer to be connected to one 
of the existing voltage sources. These two sensors 
are then connected to the netbook built-in sound 
card using an audio splitter jack. Custom made 
software is used to sample the acquired signal using 
the sound cards’ ADC. 

4.4 Power Calculations 

The power metrics, real power, reactive power, 
voltage, amperage and power factor are computed 
by applying a Fast Fourier Transform (FFT) to each 

period of the current and voltage waveforms, which 
are represented by 160 samples each (considering a 
sampling frequency of 8000 Hz and a 50 Hz mains 
frequency). 

4.5 Event Detection 

In the current system, the event detector is a 
modified change of mean detector that uses a log 
likelihood ratio test (Luo, Norford and Shaw, 2002). 

In its essence the change of mean detector works 
with one sliding window, referred to as detection 
window that is used to calculate the likelihood of a 
change of mean in each sample, and a second sliding 
window, called voting window, that is used to select 
the edges with the highest likelihood.  

The detection window ሾl, kሿ can been seen as 
having two windows, ሾl, jሾ and ሾj, kሿ, pre-event and 
post-event respectively. The former is used to 
achieve a stable mean as the reference for coming 
events, while the later is intended to be very 
sensitive to events but yet robust to disturbances.  

For each sample in the power signal the 
likelihood is calculated according to equation 1: 

௝݈ = ௟ஸ௝ஸ௞ݔܽ݉ ෍൥ ఫܸ෡ × ௜ݕ) ଶߪ(௣௥௘ݑ	− −	 ෠ܸ௝ଶ2	 ଶ൩௞ߪ	×
௜ୀ௝ (1) 

 
Where ఫܸ෡ is the value of the mean change (ݑ௔௙௧௘௥  ௣௥௘) at which ௝݈ reaches its maximum. Additionallyݑ	−
a minimum change of interest ௠ܸ can be set, hence 
discarding changes in mean that are below this 
value. ఫܸ෡ is given by equation 2: 
 

ఫܸ෡ = ௠ܸ ݌݁ݐݏ	݂݅											 < 	 ௠ܸ1݇ − ݆ + 1 × ∑ ௜ݕ| − ଴|௞௜ୀ௝ݑ ݌݁ݐݏ	݂݅					 ≥ 	 ௠ܸ (2) 

 
The magnitude of l୨ will increase with the change in 
power and abruptness of the change, hence 
indicating the presence of a potential event of 
interest. 

There are five tunable parameters: Minimum step 
change ௠ܸ௜௡; pre and post event windows lengths, ݓ௣௥௘ and ݓ௣௢௦௧ respectively; voting window length ݓ௩௢௧௜௡௚; and the minimum votes an edge needs to be 
considered an event of interest ݏ݁ݐ݋ݒ௠௜௡.  

4.6 Feature Extraction 

The set of extracted characteristics is known as a 
power event signature and at the time of writing a 
very straightforward signature is being used, 
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consisting of four features extracted from both real 
and reactive power: real and reactive power mean 
change; and 4) real and reactive power polynomial 
coefficients (3rd degree polynomial). 

The mean power change refers to the amount of 
change that just happened, and it is calculated by 
simply subtracting the average power before from 
the average power after the change. This value will 
be either positive or negative, hence indicating if 
there was an increase or decrease in consumption. 

The polynomial coefficients are obtained by 
finding the best-fitting curve to the power samples 
using a least squares fitting procedure. It is believed 
that similar appliances will generate similar 
coefficients and that these will become very good 
features to add to the event signature. 

4.7 Event Classification 

Once the power event signature is extracted it is time 
to learn what appliance lead to such event. In this 
work a supervised learning method is being used. In 
the case, and due to good results reported in (Berges 
et al., 2009) the k-NN was chosen. 

The supervised learning algorithm analyzes the 
training data and produces a classifier that will then 
be used to assign class labels to future instances 
where the values of the predictor features are known 
but not the value of the class label.  

5 METER VALIDATION 

In order to test the event detection and load 
disaggregation algorithms an experimental setup 
consisting of 8 appliances was put together. The 
used appliances where: 1) Compact Fluorescent 
Lamp (CFL) - 10W; 2) Fan - 50W; 3) Hand blender 
- 250W; 4) Hand mixer - 250W; 5) Kettle 2kW; 6) 
LCD Monitor - 130W; 7) Microwave oven - 1,2kW; 
8) Toaster - 900W. For these appliances only two 
state transitions were considered, OFF to ON and 
ON to OFF. 

5.1 Event Detector 

The event detector was applied, to two consumption 
scenarios. In the first scenario three appliances 
where used: CFL, LCD monitor and FAN. In the 
second scenario five were used: CFL, Fan, Kettle, 
LCD Monitor and Microwave oven. Because very 
low consumption appliances are present, the 
minimum power change of interest was set to 15 
watts. The windows sizes are integer values 

referring to the amount of power samples. For 
example, at 50 Hz 150 samples represents 3 seconds. 
From these 150, 100 are used in the pre-event 
window and 50 in the after event. 

In the first simulation the algorithm was able to 
detect 5 of the 6 transitions, only the CFL being 
turned off was not detected (1 false positive) 
because the step is of about 10 Watts. Still, it is 
interesting to notice that the CFL turning ON was 
detected even though the minimum step change was 
of 15W, and this is because although the average 
consumption of the CFL is 10W, when turning ON 
the step change reaches more than 15 Watts that then 
go back to 10W. As for the second simulation data 
the results were as expected. The algorithm is still 
able to detect all the appliances (except the CFL 
being turned OFF), however, the number of false 
positives greatly increases. 22 false positives were 
found, from which 13 happened when the 
microwave oven was working. 

5.2 Event Classifier 

To test the classification algorithm the first step was 
to collect and classify 10 ON and 10 OFF power 
events from the appliances under test, except for the 
CFL that was excluded due the difficulties in 
detecting its ON and OFF events. Apart from these 
20 signatures, 4 others where extracted from them: 
1) averaging all the points, 2) selection the median 
among all the points, which are referred to as 
“Jokers”. In total there are 168 classified signatures, 
24 for every appliance (12 ON and 12 OFF), and all 
these are used as learners to k-NN classifiers. In total 
6 classifiers were created, 3 for each set of features, 
for 1, 5 and 9 nearest neighbors. 

The learners were tested using the leave-one-out 
cross validation. The results of the classification 
process are shown in table 1: 

Table 1: Results from classification using leave-one-out 
cross validation. 

Features Accuracy (%) 
1-NN 5-NN 9-NN

Step change P 90.48 91.67 92.26
Step change Q 64.29 67.26 70.24

P&Q 100 100 100
Poly P 98.02 98.40 99.78
Poly Q 98.94 99.40 99.40

Poly P&Q 99.51 99.51 99.51
 
Results show, in the first place, that there is not 
much variation when changing the number of 
neighbors. The second thing to notice is the low 
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classification accuracy that is obtained when using 
only reactive power as a feature. The results for just 
the real power step change are better, with an overall 
classification rate that is above 90%. And the 
explanation for these results lie in the fact that using 
just one metric does not work properly for 
appliances with similar power consumption. 
Nevertheless, the combination of real and reactive 
power yields very good results, 100% for this set of 
appliances, which is in accordance to results in 
previous research.  

As for the polynomial coefficients the 
classification accuracy is very high using any of the 
features, and the first thing that this shows is that 
this solution can overcome the difficulty of 
separating appliances with close consumption levels. 

6 CONCLUSIONS 

In this paper a low cost framework for non-intrusive 
home energy monitoring and research was 
presented. The final system is a very cost-effective, 
(less than 300 Euros), energy monitor with some 
load disaggregating capabilities and at the same 
time, provides a very flexible research platform for 
non-intrusive load monitoring. 

Despite the promising results of the implemented 
algorithms there is still a lot of room for 
improvement and the flexibility of this framework 
will allow the testing of different algorithms with 
bigger sets of appliances, and, if possible, in 
different houses. 

NILM offers a big field of research, for example, 
its concepts and techniques can be used in a lower 
scale to create a smart power strip that would be able 
to detect and turn-off appliances that are found to be 
in stand-by mode. Also, it cannot be forgotten that 
NILM can be easily exported to other domains, 
opening the possibility of creating lower-cost sensor 
networks. The ability to sense a whole house 
together with the possibility of inferring human 
activity will open various windows of research 
opportunities. For example home automation 
ambient intelligence and smart-grids are just three 
fields that can greatly benefit from NILM. 

Finally, it is also believed that there is still a lack 
of services that use this technology making it 
appealing not only for the consumers but also for the 
electric companies and appliance manufacturers. 
Which also opens a window of opportunity in the 
area of service design, where researchers can aim at 
creating innovative services on top of low-cost 
technologies.  
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