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Abstract: The purpose of this study is to propose an efficient way to balance the u-shaped assembly lines with 
alternative subassembly graphs while minimizing the number of stations and maximizing the line efficiency. 
U-shaped assembly line balancing models with alternative subassembly graphs (uALB/sb) under 
consideration contains two kinds of special issues, i.e. the selection of a suitable subassembly graph among 
alternatives and the balancing according to the operational precedence constrained among the tasks in the 
selected subassembly graph.  To deal with the multiple objectives and the special issues, first we designed 
this uALB/sb as a network problem and then proposed a multi-stage decision based genetic algorithm 
(mdGA). Additionally, in order to improve the performance of mdGA, we use fuzzy logic controller for 
fine-tuning of genetic parameters. Finally, uALB/sb problem has been solved using the proposed solution 
approach to highlight the applicability and performance of the proposed solution approach. 

1 INTRODUCTION 

Traditionally, an assembly line is organized as a 
serial line, where stations are arranged along a 
conveyor belt serially. In modern production lines 
with the implementation of just-in-time (JIT) 
production principles, u-shaped lines are being more 
preferred among other line layouts, where serial 
lines are rather inflexible and have other 
disadvantages which might be overcome by a u-
shaped assembly line. The u-shaped line 
compliments the JIT principle by providing more 
alternatives. Namely, u-shaped lines provide more 
alternatives for assigning tasks to station (operators) 
than comparable serial lines because operators can 
handle not only adjacent tasks, but also tasks on both 
side of the u-shaped line. Further as more 
advantages, u-shaped line is crowded with work 
places and space is needed few. Operators work 
together in u-shaped line and it can make 
communication easier and trust each other.  

In u-shaped lines, the stations are arranged along 
a rather narrow U, where both legs are closely 
together, and the entrance and the exit of the line are 
on the same position. Stations in between those legs 
may  work  at  two  segments  of the line facing each 

other simultaneously. This means that the 
workpieces can revisit the same station at a later 
stage in the production process without changing the 
flow direction of the line. This can result in better 
balance of station loads due to larger number of 
task-station combinations where operators can 
handle adjacent tasks as well as tasks on both sides 
of the u-shaped line. Another advantage of u-shaped 
lines is that they simultaneously maximize both the 
use of operational workspace and operator 
communication and trust, such that machines take up 
less space and workers are closer to one another. 
Besides improvements with respect to job 
enrichment and enlargement strategies, a u-shaped 
line design might result in a better balance of station 
loads due to the larger number of task-station 
combinations (Miltenburg & Wijngaard, 1994; 
Monden, 1998; Scholl & Klein, 1999). Usually, in a 
u-shaped assembly line balancing model, researchers 
deal with the allocation of the tasks among stations 
so that the precedence relations are not violated and 
given objective functions is optimized. Additionally 
at the same time, there mostly exits alternative ways 
of doing these tasks, e.g., there may be two 
alternative ways to perform a cable assembly task. 
This kind of disjunctive assembly line balancing 
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problem has been receiving attention of researchers 
since it has been first identified by Capacho & 
Pastor (2005), However, all of the researchers 
considered only single model with serial lines such 
as Capacho & Pastor (2006, 2008), and Scholl et al. 
(2009). In this study, we considered U-shaped 
assembly line balancing models with alternative 
subassembly graphs (uALB/sb). The problem under 
consideration contains two kinds of special issues, 
i.e. the selection of a suitable subassembly graph 
among alternatives and the balancing according to 
the operational precedence constrained among the 
tasks in the selected subassembly graph.  

Traditionally to solve these kinds of u-ALB/sb 
problems, researchers first tries to identify the best 
alternative in the form of one precedence diagram 
and finally balance this problem using only this 
precedence diagram.  However, most of the time, 
researchers are giving the utmost importance to the 
balancing rather than the selection of alternatives. 
Particularly, the disjunctive relationship between 
these two problems is often neglected and they are 
solved separately in a hierarchical manner. 
Nevertheless, by using the traditional hierarchical 
approach, the u-ALB/sb problem can lose its 
integrity since the researchers are eliminating some 
features of the whole problem before balancing 
procedure.   

To maintain the integrity of the u-ALB/sb 
problem, in this study, an integrated monolithic 
approach, which considers selection together with 
balancing, is proposed. Particularly, a multi-stage 
decision based genetic algorithm (mdGA) approach 
is constructed in order to consider it as an exclusive 
problem while using a specific decoding procedure. 
The rest of the paper is organized as follows; In 
Section 2, the background information on the main 
features of u-ALB/sb are introduced. In Section 3, 
overall methodology of the proposed mdGA 
approach and its general features are discussed in 
detail. In Section 4, in order to evaluate the 
performance, the proposed mdGA approach is 
demonstrated on some problem instances, and the 
experimental results are analyzed. Finally, the 
concluding remarks and future research directions 
are given in the last section. 

2 BALANCING U-SHAPED 
ASSEMBLY LINES WITH 
ALTERNATIVE SUBASSEMBLY 
GRAPHS 

The  assembly  line  balancing  problems  are usually 

represented with precedence relations, which can be 
transformed into a more visual form as precedence 
diagrams. Precedence diagrams only model 
conjunctions (AND relations), not disjunctions (OR 
relations). However, in real-life, we usually come 
across assembly line balancing problems with 
alternative subassembly graphs. In this section, we 
considered uALB models with alternative 
subassembly graphs (uALB/sb). The uALB is a 
generalization of assembly line balancing problems 
and hence belongs to the class of NP-hard problems. 
Hence its decision version uALB/sb is NP-complete. 
As a disjunctive network optimization problem, in 
uALB, each subassembly graph represents 
subassembly, which is the alternative way for 
performing a subset of task or tasks and each node 
represents the tasks of a subassembly. The uALB/sb 
model consists of i=0,1,…, I+1 subassemblies and 
the precedence relations between each subassembly 
are taken into consideration according to the 
network structure. In each subassembly i, there are 
k=0,1,…, K+1 alternative  ways to perform that 
subassembly. Fig.1 illustrates the conceptual 
network for assembly line balancing problem with 
alternative subassembly graphs.  

In each alternative subassembly k, there are 
j=0,1,…, J+1 tasks with precedence relations, where 
pikj denotes the variable processing time of  task j in 
alternative k of subassembly i. Particularly, the 
detailed concepts of subassembly graphs and task 
are given in Fig.2. In this model, the activities are 
interrelated by two kinds of constraints; the 
precedence constraints which are known from 
traditional uALB, force a task no to be started before 
all its predecessors have been finished and the new 
constraints force a subassembly no to be started 
before all its predecessors have been finished.  

Specifically, the uALB/sb model considered in 
this study can be defined by the following 
assumptions:   

A1. The problem consists of multiple 
subassemblies. 

A2. There exists alternative ways to perform 
each subassembly.  

A3. Each subassembly alternative contains 
number of tasks with known processing 
time  

A4. The assembly line is used to assemble 
one homogeneous product in mass 
quantities.  

A5. The line is U-shaped, paced line with 
fixed cycle time and there are no feeder 
lines.  
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Figure 1: General concept of an assembly line balancing problem with alternative subgraphs. 

 
Figure 2: Subgraph and task concepts. 

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

336



A6. The processing times of tasks are 
deterministic. 

A7. All stations are equally equipped with 
respect to machines and workers. 

A8. A task cannot be split among two or 
more stations. 

A9. There are no assignment restrictions 
besides the precedence constraints. 

A10. All stations can process any one of the 
tasks and all have the same associated 
costs. 

A11. The processing time of a task is 
independent of the station and 
furthermore, they are not sequence 
dependent. 

A12. The problem model allows for the 
forward and backward assignment of 
tasks to stations; for example, the first 
and last tasks of an assembly can be 
placed in the same station on a u-shaped 
line, but not on a serial line system.  

A13. The objectives are to minimize the 
number of stations and maximize the line 
efficiency.  

For network complexity of alternative k of 
subassembly graph i, the following normalized 
complexity measure, Cik over [0,1] is adapted from 
Browning & Yassine (2010);  

max max
2

max

4 4 4
( 2)ik

A NC
N
′ − +

=
−

 (1)

where A’max represents the number of precedence 
relationships (non-redundant arcs), and Nmax 
represents the number of nodes. The network 
complexity of alternatives for subassembly graph i is 
defined by 

1 2 3,( , , )
ii i i i iKC C C C C= K . In this study, 

instead of using a composite network complexity 
such as using subassembly graph complexity 
averages, a vector of subassembly graph complexity 
measures, 

1 2 3,( , , )IC C C C C= K  will be used as the 
disjunctive network complexity measure.  

3 MULTI-STAGE DECISION 
BASED GA APPROACH  

The foundation of mdGA lies in the multi-stage 
decision making problem (mdmP) described as one 
process, which can be divided into several stages. At 
each stage, there exist a set of similar decision to be 

made that is called state. In the past decade this 
problem has captured the interest of researchers, 
which resulted in formation of various solution 
approaches such as mdGA. In the original mdGA 
approach, first the problem is constructed; second 
this problem is divided into several stages; third 
corresponding states are assigned to these stages; 
and finally an optimum state for each stage is found 
using genetic search procedure. For more 
information about the original mdGA, readers may 
refer to Osman et al. (2005), Gen & Zhang (2006) 
and Gen et al. (2008).  In this research, a GA 
approach will be constructed in order to solve the 
disjunctive network problems efficiently. Since there 
exist two sub-problems, i.e., selection and balancing, 
mdGA is going to be developed to reflect the sub-
problems together in the exclusive problem.   

However, since the u-ALB/sb problems consist 
of two sub-problems, a new kind of mdGA has been 
proposed. In the proposed mdGA approach, first the 
selection sub-problem is divided into the stages; 
second the corresponding states are assigned to these 
stages; third the scheduling sub-problem is 
constructed states; and finally the newly constructed 
scheduling sub-problems is solved by using genetic 
search procedure. The overall procedure of the 
proposed mdGA approach is planned as follows: 

overall procedure: mdGA for u-ALB/sb problems 
input: problem data, GA parameters 
output: the best balance 
begin 
 t ← 0; 

 initialize P( t ) by multistage-based and priority-
based encoding routines; 

 evaluate P( t ) by priority-based decoding routine; 
 while (not terminating condition) do 
  create C( t ) from P( t ) by crossover routine; 
  create C( t ) from P( t ) by mutation routines; 
  evaluate C( t ) by priority-based decoding routine; 
  if t > u then 
         regulate adaptive GA parameters pC and pM by 

using fuzzy logic parameter tuning routine; 
select P( t + 1) from P( t ) and C( t ) by selection 

routine; 
  t ← t + 1; 
end  
 output the best balance; 
end  
* P( t ) and C( t ) represents parent and offspring in current 
generation t, respectively. 
* u represents the number of generations needed to warn-up the 
genetic search procedure.  
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3.1 Genetic Representation and 
Initialization 

In the proposed mdGA, an individual, which is 
composed of two chromosomes, i.e. multistage-
based chromosome for representation of 
subassembly graph alternatives and priority-based 
chromosome for representing node sequences, is 
constructed (see Figure 3). The multistage-based 
chromosome is a fixed-length direct chromosome 
representation. However, the priority-based 
chromosome is variable-length indirect chromosome 
representation. To develop a genetic representation, 
there are three main phases, i.e. creating stages, 
creating a feasible disjunctive network, designing 
the schedule.  

 
Figure 3: Genetic representation for a u-ALB/sb problem. 

Phase 1: Creating stages  
step 1.1: Generate a random number to each 
alternative subassembly graph using multistage-
based encoding procedure 

In order to create multistage-based chromosome, 
permutation encoding given in Figure 4 is used. For 
each subassembly graph, a random integer number 
between [1, Ki) is generated. In the multistage-based 
chromosome, the position is used to denote a 
subassembly graph ID and the content of the gene v1 
( ) is used to denote the selected alternative way to 
perform this subassembly graph Ki (see Figure 3).  
procedure: permutation encoding routine 
input: number of subgraphs I, number of alternatives for 
subgraphs i, Ki 
output: multistage-based chromosome v1( ) 

begin 
    for i=1 to I 
            v1(i) ←0; 
    for i=1 to I 
       v1(i) ← random[1, Ki]; 
    output multistage-based chromosome v1() 

end  

Figure 4: Permutation encoding procedure for creating a 
multistage-based chromosome. 

Phase 2: Creating a feasible precedence network 
step 2.1: Generate a random priority to every node 
in selected alternative subassembly graph using 
priority-based encoding procedure  

Using the multistage-based chromosome, a 
network model can be constructed using priority-
based chromosome. In order to create a priority-
based chromosome, an indirect representation 
scheme called priority-based encoding method is 
used. Figure 5 presents the procedure for the 
priority-based encoding procedure where v2 ( ) is a 
priority value and m is number of total nodes in all 
subassembly graphs. In the priority-based 
chromosome, the position is used to denote a node 
ID and the priority value v2 ( ) is used to denote the 
priority associated with the node. The value of a 
gene is an integer exclusively within [1, m). The 
larger the integer value is the higher the priority 
becomes (see Figure 3).  

procedure: priority-based encoding routine 
input: number of subgraphs I, multistage-based 
chromosome v1 ( ) 
output: priority-based chromosome v2 ( ) 

1
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1
1
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2
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if then

end
end

  

output priority-based chromosome v2 ( ) 
end  

Figure 5: Priority-based encoding procedure for creating a 
priority-based chromosome. 

Phase 3: Designing the balance 
step 3.1: Decode a feasible node sequence that 
satisfies the precedence constraints using priority-
based decoding procedure. 

In order to decode the priority-based 
chromosome generated by encoding procedure in 
step 2.1, a special two-step priority-based decoding 
procedure is used for accommodating the 
characteristics of uALB/sb. In this procedure, first 
the priorities of each task are used to create a 
feasible task sequence that satisfies the precedence 
constraints in the uALB/sb model. Later, using the 
feasible task sequence found in the first step, tasks 
are assigned to stations. Figure 6 presents the two-
step priority-based decoding procedure.  
step 3.2: Draw a Gantt chart for this balance  
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Using the balance found in step 3.1, the Gantt 
chart for the balance can be easily designed.  

3.2 Genetic Operators 

Since an individual is composed of two parts and 
also the priority-based chromosome is variable in 
length, the usage of genetic operators, i.e. crossover, 
mutation and selection, becomes more complicated. 
The objective of applying crossover operator, which 
generates new solutions (offsprings) using parts 
contained in different solutions of the current 
population (parents), is to guide the search toward 
promising regions of the feasible domain while 
maintaining some level of diversity in the 
population. Crossover operator was used only for the 
priority-based chromosome representation. The 
position-based crossover (PMX) was adopted 
(Syswerda, 1991). Essentially, it takes some tasks 
from one parent at random and fills vacuum position 
with tasks from the other parent by a left-to-right 
scan. Since priority-base chromosome is variable in 
length, the parents with different lengths are used in 
PMX operation, which may result in offsprings with 
different lengths.  

As a mutation operator, for multistage-based 
chromosome random mutation is used and after that 
for priority-based chromosome swap mutation (SM) 
is used (Syswerda, 1991). In random mutation, a 
random gene is randomly selected and the content of 
this gene is randomly generated between the integer 
values of [1, Ki] are used. In swap mutation two 
positions are selected at random and their contents 
are swapped is used.  

To eliminate the drawback of classic selection 
operators, diversity preserving selection (DPS) 
operator is used in this research (Bosman & 
Thierens, 2003).  

Like elitist selection, DPS preserves the best 
chromosome in the next generation and overcome 
the stochastic errors of sampling. With the elitist 
selection, if the best individual in the current 
generation is not reproduced into the new 
generation, one individual is randomly removed 
from the new population and the best one is added to 
the population. However, DPS dynamically adjust 
itself to be more elitist when population’s diversity 
is high and less aggressive (less elitist) when the 
population includes solutions that are increasingly 
similar. In DPS procedure, the population diversity 
measure is represented by D where D ∈ [0,1] 
increases with the diversity of the population. 

 

procedure 1: priority-based decoding  routine (step 1: 
creating task sequence) 
input: number of tasks n, chromosome v(j) 
output: a task sequence TS 
begin 

 
S,s T←∅ ←∅ ; 

 0, 0n j← ← ; 
 while (j ≤ n) do 
  ( )Sucs j← ; 

  ( )Precs j← ; 

  ( ){ }* arg maxj v j j s← ∈ ; 

  s s← \ *j  ; 

  *
S ST T j← ∪ ; 

  *;j j←  
 end 
 output a task sequence TS 

end  
procedure 2: priority-based decoding routine (step 2: task 
to station assignment) 
input: processing time tj, chromosome v(j), the task 
sequence TS 
output: number of stations m, efficiency E, schedule S  
begin 
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  end 
 end 
 output number of stations m, efficiency E,  

end  

Figure 6: Two-step priority-based decoding procedure for 
designing a balance. 

3.3 Parameter Tuning Strategy by FLC 

In this research, a fuzzy logic controller (FLC) 
concept of Wang et al. (1997) is used to regulate the  
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Figure 7: Coordinated strategies of FLC and mdGA. 

parameter values as a auto-tuning strategy in the 
proposed mdGA. At the beginning of the genetic 
search procedure of mdGA, the parameter values for 
crossover rate (pC) and mutation rate (pM) are kept 
constant for a predetermined period of time (u), 
which represents the number of generations needed 
to warm-up the genetic search procedure before 
starting the FLC.  After uth generation, FLC auto-
tuning strategy recalculates the values of pC and pM 
while considering the changes in the average fitness 
value in each generation. Thus by fine-tuning of 
these parameters, much computational time can be 
saved and the search ability of mdGA in finding 
global optimum can be improved more than the 
conventional mdGA without FLC. The main idea of 
the concept used in this research consists of two 
FLCs; crossover FLC and mutation FLC that are 
implemented independently to adaptively regulate 
the crossover ratio and mutation ratio during the 
genetic search process (see Figure 7). The inputs of 
mutation fuzzy controller are the same as the 
crossover fuzzy controller, and the output of which 
is changed by the mutation ratio. 

4 COMPUTATIONAL 
EXPERIMENTS 

To investigate the performance of the proposed 
mdGA approach for solving uALB/sb, 
computational experiments have been performed on 
a set of problems, which consist of different number 
of subassemblies, different disjunctive network 
complexity measures and different cycle times. 
Since there exists no benchmark problem set in 
literature, five problems were randomly constructed 
to form the uALB/sb instances. The first two 

problems have subassemblies with low network 
complexity (Cik<0.6) and the following three 
problems have subassemblies with high network 
complexity (Cik≥0.6). Table 1 summarizes the 
information about problem instances.  

In the computational experiments, the proposed 
mdGA is compared to two traditional hierarch 
methods, which solve the uALB/sb in two steps. The 
first step includes the selection of alternative 
subassemblies with minimum number tasks in order 
to form one precedence diagram and the second step 
includes solving this precedence diagram. After the 
selection of subassemblies, to solve the u-shaped 
assembly line balancing problem, the first method 
uses IP and the second method uses priority-based 
GA proposed by Gen et al. (2008).  

For the computational experiments, the following 
values for mdGA parameters are used: Population 
size: popSize =1000, Crossover probability: pC 
=0.75, Mutation probability: pM =0.2, and 
Terminating condition: Maximum number of 
generations: maxGen = 100 or Convergence limit: 
conLim=40. In mdGA, the values of pM and pC are 
adaptively regulated by FLC during overall 
procedure. For each problem set, the traditional 
hierarchic method with priority-based GA and the 
proposed mdGA approaches were run 10 times with 
parameters mentioned and compared with the 
traditional hierarchic method with IP solved in 
Lindo. The results are summarized in Table 2.   

Based on the computational experiments while 
considering minimization of the number of stations 
and maximization of the line efficiency as 
objectives, it can be clearly seen that for uALB/sb 
with shorter cycle times (i.e. 14 and 33), lower 
number   of   subassemblies  (i.e. 2 and 3)  and lower 
disjunctive   complexities,  all   methods   performed 
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Table 1: Summary of uALB/sb instances. 

 
Table 2: Computational results of uALB/sb. 

 
 
similarly. However, in other problem instances with 
longer cycle times and higher disjunctive 
complexities, the proposed mdGA methods 
outperformed the other traditional hierarchic 
methods for both objectives. Particularly, this is due 
to the increased number of possible task-workstation 
assignments during mdGA while considering 
alternative subassemblies simultaneously.  

Overall, the proposed mdGA performs well for 
all uALB/sb instances.  

5 CONCLUSIONS 

In a highly competitive environment with rapidly 
changing requirements, researchers have to consider 
several alternatives when dealing with assembly line 
balancing problems. In these problems, it is expected 
that alternative networks under a single disjunctive 
network umbrella will deliver benefit, which is not 
achievable, if the alternative networks were solved 
independently. Particularly, most of the time, 
researchers are giving the utmost importance to the 
balancing rather than the selection of the 
alternatives. However, the relationship between 
these two problems is often neglected and they are 
solved separately in a hierarchical manner, which 
usually result in the loss of network integrity. 
Therefore, to maintain the integrity, there is a need 
for a solution method that can effectively handle and 
solve this kind of problems.   

For this purpose, the contribution of this research 
is threefold. First, the u-ALB/sb problem, which 
consists of alternative selection and balancing sub-
problems, were defined in detail. Second as a 
contribution to solution method, a new mdGA 
approach was proposed to handle and solve this kind 
of problems, while maintaining the integrity.  In the 
proposed mdGA, first, two chromosomes, i.e. fixed-
length multistage-based chromosome for 
representation of subassembly graph alternatives and 
variable-length priority-based chromosome for 
representing task sequence, were introduced in order 
to form an individual that is representing a problem 
solution. Following, advanced genetic operators 
adapted to the specific individual structure and the 
characteristics of the u-ALB/sb problem were used. 
Besides, FLC based auto-tuning strategy was used to 
regulate the genetic parameters during the genetic 
search process of mdGA. Third as a contribution to 
problem area, in order to accommodate the 
characteristics of uALB/sb, a new two-step priority-
based decoding procedure was used. Furthermore, in 
order to illustrate the performance of the proposed 
mdGA approach, a set of problems for u-ALB/sb 
were generated and the results found by the 
proposed mdGA approach were compared with two 
traditional hierarchic methods. From the solution 
performance perspective, computational experiments 
showed that the proposed mdGA approach is 
effective in finding good solutions for both problem 
types, especially for problems with high disjunctive 
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network complexities, while maintaining structural 
integrity of the problem by considering alternative 
subassembly graphs simultaneously. There are 
various future research directions related to this 
research. In order to illustrate performance of the 
proposed solution approach, new, adapted and 
adopted solution approaches can be constructed to 
solve the u-ALB/sb problems and their 
performances can be compared with the proposed 
mdGA. Furthermore, the proposed approach can be 
applied to real world problems that are usually 
complex and large.  
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