
HOW TO PROVIDE MONITORING FACILITIES TO SERVICES
WHEN THEY ARE DEPLOYED IN THE CLOUD?

Mohamed Mohamed, Djamel Belaı̈d and Samir Tata
Institut TELECOM, TELECOM SudParis, UMR CNRS Samovar, Evry, France

Keywords: Cloud Computing, Monitoring, Scalability, Service Containers.

Abstract: Cloud computing is a new maturing model providing efficient solutions in IT domain involving provisionning
of virtualized ressources. Meanwhile, monitoring issue remains an active field of research. In this paper,
we introduce a new scalable micro-container that enables different monitoring modes. Unlike the existing
initiatives in this field, we propose a framework that automatically adds monitoring capabilities to a given
service and encapsulate it in a scalable micro-container.

1 INTRODUCTION

In the last decade, Cloud Computing is gaining more
and more attention in the IT (Information Technolo-
gies) domain. Different levels of enterprises, are try-
ing to benefit the most from this revolutionary tech-
nology. However, a consensus on definition of Cloud
Computing is not yet obtained. The National In-
stitute of Standards and Technologies (NIST, 2011)
defines Cloud Computing as ”a model for enabling
ubiquitous, convenient, on-demand network access to
a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications and ser-
vices) that can be rapidly provisioned and released
with minimal effort or service provider interaction”.
Provisioning such a huge number of heterogeneous
resources needs an efficient management to fit cos-
tumers requirements. Many projects are addressing
issues of monitoring in the Cloud (e.g. RESERVOIR
(Metsch et al., 2010), mOSAIC (Rak et al., 2011)) at
different levels of granularities.

In the state of the art, there are different mod-
els of monitoring; we are interested in monitoring by
polling and monitoring by subscription. First, mon-
itoring by polling is the simplest way of monitoring.
In fact, in this model, a service can express its need to
know the state of a property provided by another ser-
vice. To make this possible, the interested service can
generally interact with a specific interface that pro-
vides a getter of the needed property.

Second, the monitoring by subscription in which
there are two modes: 1) the subscription on Interval:
it implies that the monitored service broadcasts the

state of its properties periodically to the subscribed
services and 2) the subscription OnChange: it im-
plies that the monitored service have to notify the sub-
scribed services whenever its properties change.

Almost all of the proposed solutions for monitor-
ing are shallow in the way of collecting data from its
producers and the way of using this data. Moreover,
in these solutions, to monitor a service in the Cloud,
this service must be designed to be monitorable and it
must offer an interface to answer monitoring queries.
However, some services may not offer any interface
to answer such type of queries. These services cannot
be monitored by any of the existing approaches.

In order to overtake this limit, we aim to render
services monitorable. Our work will ease the task of
services’ developers, so they can focus in the func-
tional properties of services and leave to our mecha-
nisms the non functional aspects of monitoring.

In our previous work (Yangui et al., 2011), we pre-
sented a scalable micro-container that enables deploy-
ing and executing services in the Cloud with a proven
efficiency and minimal resources consumption. And
due the need of monitoring, we aim at adding mon-
itoring facilities to services deployed on top of our
micro-container. We started by designing a frame-
work that allows to encapsulate services in a compos-
ite adding monitoring interfaces to original ones. We
integrated this framework with the micro-container to
offer monitoring services using this latter.

In this paper, we will describe how can our
new micro-container supports scalability and enables
monitoring capabilities in Cloud environments.

The remainder of this paper is structured as fol-

258 Mohamed M., Belaïd D. and Tata S..
HOW TO PROVIDE MONITORING FACILITIES TO SERVICES WHEN THEY ARE DEPLOYED IN THE CLOUD?.
DOI: 10.5220/0003940602580263
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 258-263
ISBN: 978-989-8565-05-1
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



low: the second section will describe briefly our pre-
vious work including the architecture of the micro-
container and the component model we used to rep-
resent services. Section 3 describes the monitor-
ing framework, different transformations we added to
render a service monitorable and the new architecture
of the micro-container that supports monitoring. Sec-
tion 4 describes implementation aspects. Section 5
presents related works. We end the paper with con-
clusions and our future work.

2 BACKGROUND

In this section, we will present the component model
we use in our work. Then, we will define the different
types of monitoring that we are interested in. Finally,
we will describe the micro-container that we use to
deploy components in the cloud.

In our work, we are interested in monitoring of
component-based applications in the Cloud. The key
element for these applications is the component which
is a unit of composition with contractually speci-
fied interfaces and explicit context dependencies only
(Szyperski, 2002). Figure 1 shows main characteris-
tics of a component that provides a service through an
interface and may require a service from other compo-
nents through a reference. The component also may
expose properties through which it can be configured.
In addition, the component also specifies its depen-
dency on a certain property. This required property,
which appears at the bottom of the component, will
be satisfied if we can link this component with an-
other component that offers the requested property,
thus, solving the dependency.

Components can be combined together in an as-
sembly of components to build complex applications
as represented in Figure 1.

Figure 1: Component-based Application.

2.1 Monitoring

Monitoring process consists in informing the inter-
ested component about the changes of required prop-
erties or notifying it on a regular way or for each prop-

erty variation. We consider two types of monitoring:
monitoring by polling or by subscription.

Polling is the simpler way of monitoring, as it
allows the observer to request the current state of a
property whenever there is a need. Subscription al-
lows an observing component to be notified about
changes of monitored properties. There are two
modes of monitoring by subscription: 1) subscription
on change which specifies that the subscribed com-
ponent is notified every time the value of the property
changes; 2) subscriptionon interval which specifies
that the subscribed component is to be notified after
a specified time interval. For notification on change,
a component must precise the starting time and the
duration of notifications. For notification on interval
it must specify the notification interval value. It may
also specify the starting time and the duration of no-
tifications. The component A must also implement
a notification callback through which it will receive
appropriate notification messages.

2.2 Scalable Micro-container

In (Yangui et al., 2011), we introduced a scalable
and platform independent micro-container that en-
ables services deployment and execution in the Cloud.

For optimality and performance constraints, fea-
tures of our micro-container are as minimal as pos-
sible. After studying the features provided by the
container architectures of Axis2 (Perera et al., 2006),
Tomcat 6 (Langlet, 2008) and WSCRA (Dhesiasee-
lan and Ragunathan, 2004), we drew up a list of basic
features that should satisfy our micro-container which
directly reflects the different modules that make up its
architecture. These basic modules ensure the mini-
mal main process of our micro-container (component
hosting, interaction with clients, etc.).

The platform contains a processing module to
ensure minimal micro-containers generation process
(WSDL Parser, Compiler, etc.) and a set of generic
elements on the submission and treatment of non-
functional features to be included in the micro-
container (HTTP, RMI or other generic Communi-
cators, service administration tools, service billing,
etc.). The global architecture of the performed sys-
tem is composed of several modules detailed in Fig-
ure 2: 1) a deployment platform for addressing the
component code and a deployment descriptor for the
generation of a corresponding micro-container within
the component to deploy, 2) micro-container to host
the deployed component and handle various clients
requests, and 3) thin clients to invoke services offered
by components via micro-containers.

The deployment framework is responsible of

HOW�TO�PROVIDE�MONITORING�FACILITIES�TO�SERVICES�WHEN�THEY�ARE�DEPLOYED�IN�THE�CLOUD?

259



Figure 2: Extension of the Micro container architecture with monitoring.

the generation of the micro-container.To generate a
micro-container with a component hosted in, one
must provide the component’s source and a deploy-
ment descriptor which describe how to assemble and
deploy the micro-container into a Cloud environment.

The micro-container is responsible of managing
the communication with the client, holding the com-
ponent and processing all the incoming or outgoing
messages of the micro-container. It is composed only
of the necessary modules for the offered services of
the hosted component.

The architecture of the generated micro-container
shows three main modules: 1) a Communication
module to establish communication and to support
connection protocols, 2) a Processing module to pro-
cess ingoing and outgoing data in the server (packing
and unpacking data), and 3) a Service module to store
and invoke the requested service.

To add monitoring capabilities to this micro-
container, we use the component model we described
earlier to represent components and their offered ser-
vices. Since some properties can be defined as non
monitorable, we integrated mechanisms that allow us
to transform these properties to monitorable ones.

In the next section, we describe the different trans-
formations to add monitoring facilities to services us-
ing our micro-container. Then, we present the result-
ing extended micro-container architecture.

3 MONITORING FRAMEWORK

Our objective is that given a component without mon-
itoring facilities that we would like to transform in or-
der to be aware in its properties changes. A transfor-

mation may apply to this component by encapsulat-
ing it in a new composite delivering the same services
of the original component and enhancing it with non
functional services of monitoring.

Assuming that these components are not moni-
torable by default, we need to make them monitorable
by transformation. We are interested in monitoring by
polling and monitoring by subscription.

A transformation of a component is applied dy-
namically when generating the associated micro-
container and is carried out by some predefined com-
ponents of our framework. For different types of
transformation, the framework defines different com-
ponents. In the next subsections, we introduce fea-
tures of the monitoring mechanisms and their trans-
formation processes.

3.1 Generic Proxy Service

The transformations that render a component moni-
torable uses a Generic Proxy Component that imple-
ments the Generic Proxy Interface presented in Fig-
ure 3 and can be applied to any component.

public interface GenericProxy {
Property[] getProperties();
Object getPropertyValue(String propertyName);
void setPropertyValue(String propertyName,

Object propertyValue);
Object invoke(String methodName,

Object[] params);}

Figure 3: Description of the Generic Proxy interface.

We have defined a general purpose interface
GenericProxy that provides four generic methods.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

260



Each implementation of this interface is associated
with a component for which the first methodgetProp-
erties() returns the list of the properties of the com-
ponent, thegetPropertyValue() returns the value of a
property, thesetPropertyValue() changes the value of
a property and theinvoke() method invokes a given
method on the associated component and returns the
result.

3.2 Monitoring Transformations

In (Belaı̈d et al., 2010), we have presented a monitor-
ing approach to allow a component to be aware of re-
quired properties changes. We have considered mon-
itoring by polling and monitoring by subscription.

3.2.1 Monitoring by Polling

A component may express its need to monitor by
polling a required property provided by another com-
ponent. The monitoring by polling of a property can
be made by calling its getter. However, the compo-
nent that wishes to monitor a property of another com-
ponent does not know a priori the type of this compo-
nent. To complete the monitoring of any component
from the name and type of a property, the interested
component uses an appropriate interface that provides
the methodgetPropertyValue(propertyName) to re-
quest the current state of a property (Figure 4).

However, the component to monitor may not de-
fine its offered properties as monitorable by polling
resources despite the request. So, we need to trans-
form the component to make its properties to be mon-
itorable by offering an appropriate interface of mon-
itoring. This can be done dynamically by our frame-
work by encapsulating the component with the pre-
definedGenericProxy component as defined above.
The two components are combined together in a sin-
gle composite that offers the services of the original
component as well as services of theGenericProxy
component. The component can be then monitored
using thegetPropertyValue() method provided by the
composite. The framework then replaces the origi-
nal service with the newly created composite in the
micro-container.

3.2.2 Monitoring by Subscription

For the monitoring by subscription we encapsulate the
original component with the two predefined compo-
nents: GenericProxy and MonitoringBySubscription.
For the monitoring with notification mode on interval,
as shown in the Figure 5, each time theMonitoringBy-
Subscription component have to notify the subscriber
(the component A), it gets (or monitor by polling) the

Figure 4: Monitoring by polling.

Figure 5: Transformation for monitoring by subscription.

value of the required property of the component B via
theGenericProxy component.

When the notification mode is on change for a re-
quired property of B (Figure 5), theMonitoringBySub-
scription component offers a (callback) service of no-
tification PCNotification to the component B so that it
can be notified of the changes of a required property
and in turn inform all the subscribers of this change.
To allow the component B to notify theMonitoring-
BySubscription for the change of its properties, our
framework adds the needed instructions in the byte-
code of the component B when generating the associ-
ated micro-container.

3.3 Monitoring within Micro-container

In order to integrate these transformations with our
micro-container, we added the new monitoring mod-
ule to the architecture described in section 2.

The extended architecture adds monitoring capa-
bilities to the scalable micro-container. In fact, as de-
scribed in section 2, the same steps of generating the
micro-container are followed. The processing mod-
ule follows actions from 1 to 7 as in the Figure 2, then
it instantiates the chosen monitoring module and ap-
plies the needed transformations to the service (Fig-
ure 2 Actions 8 and 9) before sending the new result-
ing code to the assembly module (Figure 2 action 10).
The latter generates the new micro-container integrat-
ing monitoring capabilities.

The client can interact with the micro-container

HOW�TO�PROVIDE�MONITORING�FACILITIES�TO�SERVICES�WHEN�THEY�ARE�DEPLOYED�IN�THE�CLOUD?

261



either to invoke the contained service (Figure 2 ac-
tions 12 and 13), or to request monitoring information
(Figure 2 action 14). It can also send subscription re-
quests to receive notification on change or on interval.

In order to prove the efficiency of our work, in the
next section we will describe the implementation of
our scalable micro-container renforced with monitor-
ing capabilities.

4 IMPLEMENTATION

To validate our work, we took the choice to exploit
Java Web services with WSDL 2.0 description. A
Web service is an elementary service-based applica-
tion. We have developed a minimal Java deploy-
ment framework which allows developers to deploy
a Java Web service on a micro-container before de-
ploying both of them in the Cloud. We have also
developed Java clients which invoke services in the
micro-container and display the result. Furthermore,
we defined a module that contains generic communi-
cation packages supporting different communication
protocols that can support a service. Later, during the
deployment, only necessary communication protocol
is encapsulated in the micro-container.

The last phase was implementing a prototype of
the monitoring framework as services that offer the
transformation mechanisms to the applications. To
allow a component to notify theMonitoringBySub-
scription for the change of its properties, we need to
inject the notification code in the byte-code of the
component implementation (class). For this required
dynamic manipulation at byte code level we used
the open source software JAVA programming ASSIS-
Tant (Javassist) library (JAVA programming Assis-
tant, 2010). Javassist is a class library for editing Java
byte codes; it enables Java programs to define a new
class and to modify a class file when the Java Vir-
tual Machine (JVM) loads it. The implementation of
theGenericProxy component is based on the Java re-
flection API which provides classes and interfaces for
obtaining reflective information about classes and ob-
jects.

5 RELATED WORK

The mOSAIC framework offers a Monitor-
ing/Warning system that monitors applications’
components and Cloud resources (Rak et al., 2011).
From their point of view, this system should realize
the following tasks: monitor Cloud resources, mon-
itor applications’ components and discover warning

conditions. The proposed framework contains four
basic elements: 1) monitoring event buses that col-
lects monitoring events from resources, 2) connectors
related to the event buses to enable the interception
of monitoring events by suitable components, 3)
connectors receiving the events from applications to
event buses, and 4) monitoring/Warning component.

In (Ferretti et al., 2010), authors proposed a design
of a middleware that supports SLA-driven resource
provisioning. This middleware supports monitoring
of virtual machine provisioning to honor the service
layer agreements (SLA). A load balancer is used to
forward requests to their suitable execution environ-
ment and to monitor the efficiency of the platform by
calculating the average response time. The load bal-
ancer analyses this time and can take decisions to add
or to retrieve resources in the environment.

Authors in (Huang and Wang, 2010) proposed an
approach to monitor resources in the Cloud using an
hybrid model combining the push model and the pull
one. In these models, there are three basic compo-
nents, the Producer, the Consumer and the Directory
services. In the Push model, whenever the producer
detects that the status of a resource changed, he sends
information to the consumer. Otherwise, in the Pull
model, it’s the consumer who ask the producer peri-
odically about the resources status. However, these
two models have advantages and weakness, the au-
thors are proposing an hybrid model that can switch
the suitable model to the user’s requirements. The
user can define his tolerance to the status inaccuracy
between the producer and the consumer. Switch this
value, an algorithm can swing between pull and push
models.

In (Brandt et al., 2009), authors proposed a
tool for monitoring Cloud resources enhancing high-
performance computing in Cloud computing environ-
ments. This tool can extract the application and re-
sources state, and based on that state can assign new
resources or retrieve unused ones during the runtime
of the application or for the next usage. The data is
collected from the resources using data collectors able
to collect information and save it in a distributed data
base. Then, a statistical analysis is necessary to take
decisions to keep or to reconfigure the resources’ as-
signment for the application.

In their work (Katsaros et al., 2011) proposed
an architectural approach spanning over virtualiza-
tion and physical levels to collect monitoring data.
They combined many existing open source solutions
to get one holistic application that cover different lay-
ers. They use collectors to extract data from different
layers and externalize it to the upper layer using an
external data collector. Moreover, a monitoring man-

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

262



ager serves as the orchestrator of the whole monitor-
ing process by controlling it and providing the needed
interfaces to add or to consume monitoring informa-
tion. In this approach, an aggregator is responsible of
aggregating and storing the collected data.

Almost all of these approaches expect monitoring
just for monitorable components and don’t suppose
the case where components are not designed to be
monitored. Moreover, in these works, the monitoring
system can form a bottleneck in the application since
they use just one component as a channel for send-
ing monitoring information (buse, channel, integrator,
etc). In contrast, in our approach, we provide transfor-
mations to apply on components to render them mon-
itorable even if they where not designed with moni-
toring facilities. Furthermore, in our work, we are not
limited to one channel since we propose a flexible so-
lution to use one channel for all micro-containers or
to use one channel per micro-container.

6 CONCLUSIONS

In this paper, we addressed the issue of monitoring in
Cloud environments. In this direction, we proposed
the architecture and the implementation of a scalable
micro-container that enables monitoring capabilities
avoiding bottlenecks problems. Our solution, pro-
vides needed mechanisms to monitor services. In fact,
we provided a framework that allows to add non func-
tional services of monitoring to the functional inter-
faces of components. The framework that we pro-
posed, chooses the needed components to generate
the micro-container that enables a scalable execution
of a service with monitoring capabilities. In our future
work, we will start by experimenting our architecture
in a Cloud environment using OpenNebula IaaS man-
ager to see the overhead of monitoring mechanisms
on our micro-container. Indeed we want to prove,
by experiments, the efficiency of our approach even
with complex applications. Then, we aim at adding
the needed mechanisms for monitoring capabilities in
micro-containers at their runtime and not only at de-
ployment time.

REFERENCES

Belaı̈d, D., Ben Lahmar, I., and Mukhtar, H. (Dec 2010).
A Framework for Monitoring and Reconfiguration of
Components Using Dynamic Transformation.Inter-
national Journal On Advances in Software, vol 3 no
3&4:pages 371–384.

Brandt, J., Gentile, A., Mayo, J., Pebay, P., Roe, D., Thomp-
son, D., and Wong, M. (2009). Resource monitor-

ing and management with ovis to enable hpc in cloud
computing environments. InParallel Distributed Pro-
cessing, 2009. IPDPS 2009. IEEE International Sym-
posium on, pages 1–8.

Dhesiaseelan, A. and Ragunathan, A. (2004). Web services
container reference architecture (wscra). InWeb Ser-
vices, 2004. Proceedings. IEEE International Confer-
ence on, pages 806–807.

Ferretti, S., Ghini, V., Panzieri, F., Pellegrini, M., and Tur-
rini, E. (2010). Qos #150;aware clouds. InCloud
Computing (CLOUD), 2010 IEEE 3rd International
Conference on, pages 321–328.

Huang, H. and Wang, L. (2010). P amp;p: A com-
bined push-pull model for resource monitoring in
cloud computing environment. InCloud Computing
(CLOUD), 2010 IEEE 3rd International Conference
on, pages 260–267.

JAVA programming Assistant (2010). http://
www.csg.is.titech.ac.jp/simchiba/javassist/.

Katsaros, G., Gallizo, G., Kübert, R., Wang, T., Fitó, J. O.,
and Henriksson, D. (2011). A multi-level architecture
for collecting and managing monitoring information
in cloud environments. InCLOSER, pages 232–239.

Langlet, E. (2008). Apache Tomcat 6 Guide
d'administration du serveur Java EE sous Win-
dows et Linux. ENI.

Metsch, T., Edmons, A., and Bayon, V. (2010). Using
cloud standards for interoperability of cloud frame-
works. Technical report, A technical Reservoi report.

NIST (2011). Final version of nist cloud comput-
ing definition published. http://www.nist.gov/itl/csd/
cloud-102511.cfm.

Perera, S., Herath, C., Ekanayake, J., Chinthaka, E., Ran-
abahu, A., Jayasinghe, D., Weerawarana, S., and
Daniels, G. (2006). Axis2, middleware for next gener-
ation web services. InWeb Services, 2006. ICWS '06.
International Conference on, pages 833–840.

Rak, M., Venticinque, S., Mahr, T., Echevarria, G., and Es-
nal, G. (2011). Cloud application monitoring: The
mosaic approach. InCloud Computing Technology
and Science (CloudCom), 2011 IEEE Third Interna-
tional Conference on, pages 758–763.

Szyperski, C. (2002). Component Software: Beyond
Object-Oriented Programming. Addison-Wesley/
ACM Press, Boston, MA, USA, 2nd edition.

Yangui, S., Mohamed, M., Tata, S., and Moalla, S. (2011).
Scalable service containers. In Lambrinoudakis, C.,
Rizomiliotis, P., and Wlodarczyk, T. W., editors,
CloudCom, pages 348–356. IEEE.

HOW�TO�PROVIDE�MONITORING�FACILITIES�TO�SERVICES�WHEN�THEY�ARE�DEPLOYED�IN�THE�CLOUD?

263


