
CONVERTING DB TO RDF WITH ADDITIONAL DEFINED
RULES

Mamdouh Farouk and Mitsuru Ishizuka
Creative Informatics Department, The University of Tokyo, Tokyo 1138656, Japan

Keywords: DB to RDF, Inference Rules, Searching RDF.

Abstract: In linked data, web resources and data are represented into RDF. The new web of linked data should be
completely machine-understandable. Moreover, since the start of Linking Open Data project, more and
more providers publish linked data. Therefore, converting DB into RDF is important because a large amount
of web data stored in databases. This work presents an approach for converting DB to RDF with additional
inference rules. The generated data contains not only RDF data that represents relational DB but also
additional discovered relation based on a set of predefined rules. Moreover, this paper proposes a simple
search engine, which consumes the generated data and the defined inference rules. A prototype for the
proposed approach and results of experiments show the effectiveness of the proposed approach.

1 INTRODUCTION

In Semantic web vision, web agents can understand
web data and do actions to help the user (Berners-Lee ,
2001). To enable web agent to understand web
content, web data should be represented into a
machine understandable format. Moreover, there are
many languages formalized to represent web data
and resources such as RDF, DAML and OWL.
The Resource Description Framework (RDF) is a
W3C recommendation that represents current web
into machine understandable format.

Further, a huge amount of web data is stored in
databases (Siegfried, 2003). Therefore, many
researchers pay much care to convert relational DB
to RDF triples. Moreover, many researchers try to
represent dynamic web pages, which retrieve their
content from underlying DB, into semantic format
(Zhuoming, 2006)(Mamdouh, 2005). In the other hand,
the process of converting DB to RDF should be
simple (Svihla, 2005) to encourage the DB owner to
convert his data.

There are different approaches to convert DB to
RDF (Siegfried, 2003) (Pan, 2003) (Ismael, 2004). A
common step in these approaches is mapping
between DB schema and ontology structure. Based
on this mapping, the DB can be accessed
semantically either by generating RDF triples
corresponding to original data or by keeping the data
in the DB, where it can be managed better, and

generating RDF on demand. There are different
approaches for the latter way. One approach is
converting SQL query result to RDF on the fly when
the DB is queried (Svihla, 2005). This approach is
suitable in case of dynamic web pages that retrieve
content from underlying DB. Another approach is
developing a semantic access layer as an intermediate
layer between web agents and normal DB (Ismael,
2004).

Although, the main objective of converting
relational DB to RDF is to enable web agents to
understand this data, there are some difficulties
facing web agents to understand this data. One
important issue that should be faced is finding
implicit data. In other words, how the web agent can
infer the implicit data like a human who read the
normal web pages. Showing this implicit data will
enables web agent to deeply understand web data.
For example, a query asks about an author who is
interested in semantic web that is run over a corpus
such as semantic web conference corpus may return
no result. The answer of such query already exists in
the RDF data but the query answering process cannot
get the answer because the answer implicitly exist.

Although, DB is an excellent tool to store and
manage data, it needs simple inference to improve its
performance of querying data (Pan, 2003). This work
is an extension to DB2RDF approach that converts
DB to RDF data. This paper does not focus on
converting DB to RDF. However, it focuses on

709Farouk M. and Ishizuka M..
CONVERTING DB TO RDF WITH ADDITIONAL DEFINED RULES.
DOI: 10.5220/0003939907090716
In Proceedings of the 8th International Conference on Web Information Systems and Technologies (WEBIST-2012), pages 709-716
ISBN: 978-989-8565-08-2
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: System architecture.

adding extra knowledge (user-defined rules) during
mapping process. These rules are useful to discover
extra relations. Using these rules, web agents can
understand web data easily. In the proposed
approach, the generated RDF data contains not only
original DB data but also inferred data that supports
query answering process.

This paper proposes an approach to convert
relational DB to RDF with additional relations
discovered based on user-defined rules. Unlike other
approaches, our approach provides not only mapping
and generating RDF but also adding extra
knowledge, which is very useful in query answering
process. In other words, this work proposes adding
extra knowledge (user-defined rules) to the mapping
schema level to improve the query-answering
process. The generated RDF semantic representation
together with the added knowledge can be used by
intelligent search engines to infer more data and
obtain accurate search results. Moreover, an
extension to SPARQL search engine which exploits
the added rules to answer more queries is presented.
One approach that maps and converts DB to RDF is
D2R (Chris, 2010). D2R tool auto-generates the
mapping file and the user should modify this
generated file to fit the appropriate meaning.
Moreover, D2R server enables the user to query the
DB using SPARQL queries. Dumping RDF data that
represents DB is also supported by D2R.

Moreover, a related approach, which tries to
express rules and infer additional RDF data, is SPIN
(Holger, 2011). SPIN is a group of RDF properties that
can be used to express rules. These rules attached to a
specific ontology class and can be applied to infer
data, or modify the current data. spin:rule property
can be used to defined an inference rule using
SPARQL construct or insert/delete.

Moreover, SPIN adds rules to ontology level.
However, our approach separates between rules level
and ontology level. Separation between ontology and

rules levels gives the user flexibility to add rules. In
other words, it is difficult for the user to update the
standard shared ontology to add his rules. Moreover,
there are many users may add rules to infer the same
property depending on their own data. The user
wants to extend his data depending on the semantics
of the data and the expected queries to be asked.
Therefore, the users have different data want to make
many rules even for the same ontology. Attaching
rules to dataset gives flexibility to the users and
avoids rules conflicts on ontology level.

The remainder of this paper is organized as
follows. Section 2 describes the overall system
architecture. Section 3 explains the proposed
approach for converting DB to RDF. Section 4
describes an extension for SPARQL search engine
that exploits the generated RDF and defined rules.
The experiments and results are discussed in section
5. Finally, section 6 provides the conclusion of this
research.

2 SYSTEM ARCHITECTURE

The proposed system is divided into two main parts.
The first part is converting relational DB to RDF.
The second part is searching the generated RDF
triples using SPARQL queries.

As shown in figure 1, there are three tasks for
representing DB into RDF: the first task is mapping
between DB schema and ontology. The second
process is adding user-defined rules to the generated
semantic schema. The last task is generating RDF
data. This task includes two sub-processes which are
generating RDF data represents relational database
and generating RDF data represents the inferred RDF
triples using the defined rules. A simple search
engine is designed to query the generated RDF using
SPARQL queries. The search engine exploits the

Search

Mapping DB to
web ontology

Adding user‐
defined rules

Dumping DB into RDF
Inferring extra data

Mapping
schema

Mapping
schema+rules

 RDF

DB

Ontology SPARQL query

Query result

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

710

predefined rules to improve query answers.
Moreover, two ways for using the user-defined

rules are applied. Forward chaining is applied during
the process of generating RDF to add the inferred
RDF triples. However, backward changing is applied
during the searching process to use the rules without
storing the inferred data.

3 CONVERTING RELATIONAL
DB TO RDF

In the proposed approach, the mapping between
relational DB and RDF is a manual process in which
the user maps between schema of DB and ontology
structure. The user uses the developed tool, figure 2,
to map between DB and different ontologies. The
generated mapping is expressed into XML
intermediate format.

3.1 Mapping DB to Ontology

There are three steps for this mapping process. The
first step is mapping DB tables to ontology classes.
In this step, the user selects ontology class
corresponding to each table. The user can select
classes belong to different ontologies. The second
step is mapping between DB fields and ontology
properties. The user selects a suitable property for
each field. The mapping tool helps users to do this
mapping easily and correctly. The last step is
mapping relations of the DB. In this step, the user
represents M-M and 1-M relation in terms of

Figure 2: The mapping tool.

ontology relations. M-M relation is considered as
two relations each one is 1-M relation. The user
maps the foreign key field to the appropriate
ontology property that represents same relation

between ontology classes. For example, consider a
DB for university researchers contains two tables:
researchers, and departments. The field deptID in
researchers table is a foreign key refers to
departments table. In such case, the user may map
deptID field to hasaffiliation property in person
class. The domain of hasaffiliation property is
organization class. hasaffiliation property represents
the relation between researchers table and
departments table.

3.2 Adding Rules

The next step after mapping between DB schema and
ontology is adding extra knowledge to the mapping
file. This extra knowledge is considered as an
extension for the original data stored in the DB.
Moreover, this knowledge is used to infer more data
from the DB and to support query answering process.

To clarify the idea of adding user-defined rules,
consider this scenario. The database of international
semantic web conferences (ISWC) contains
information about some conferences in semantic web
field and other related data such as published papers,
authors and so on. Figure 3 shows the schema of
ISWC DB. Normally, this database is queried about
authors and their interest points or their publications.
For example, who is interested in “semantic
representation”?. Who knows Prof. John? The DB or
the traditionally generated RDF data cannot properly
answer these questions based on the available data.
Moreover, neither in DB nor in the generated RDF
data contains knows relation in foaf ontology.
However, a human can suggest an answer based on a
simple inference. Consequently, adding some
inference rules helps web agents to understand the
data and answer such queries. For example, the
following rules can be added:
• If a person A is an author to a paper Y, and a

person B is an author to the same paper Y A
knows B.

• If a person A is an author to a paper Y, and the
main topic of Y is T then A is interested in T.
Using these rules is considered as a DB extension

that adds more relations to the original relational
database. For example, the above DB contains little
information about research points of authors.
However, the second rule enriches this information
by discovering more research points for authors
depending on their publications. As a result, these
rules enable search engines to answer more queries.
Adding user-defined rules depends on the meaning of
the DB schema and the queries that used to be asked.

CONVERTING�DB�TO�RDF�WITH�ADDITIONAL�DEFINED�RULES

711

Figure 3: ISWC DB schema.

Figure 4: Example of user-defined rules.

These rules are added during the mapping
process, which occurs only once. Using these rules
solves the problem of finding the implicit
information and enables web agents to go one more
step to understand web data.

Production rule format, “condition action”, is
used to represent the user defined rules. The syntax
of production rule is carefully designed to be easy for
implementation of generating extra data and to be

easy for reasoning. The condition part syntax is the
same as SPARQL query condition syntax. The action
part is also represented into SPARQL syntax to be
easy for execution. Figure 4 shows an example for
the added rules. The first part of the rule is xml
namespaces for the used vocabularies. The second
part is the conditions of the rule represented into
SPARQL syntax. The last part is the action part,
which is true if the conditions are true.

<rule id="2" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"
 xmlns:foaf="http://xmlns.com/foaf/0.1/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:iswc="http://annotation.semanticweb.org/iswc/iswc.d
aml#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" >
 <text>
 if two people are authors for the same paper, then they
know each others.
 </text>
<condition>
<con>
{
 ?ppr rdf:type iswc:InProceedings.
 ?person rdf:type foaf:Person.
 ?person2 rdf:type foaf:Person.
 ?ppr dc:Creator ?person.
 ?ppr dc:Creator ?person2.
 FILTER (?person != ?person2)
}
</con>
</condition>
<action>
{ ?person foaf:knows ?person2. }
</action>
 </rule>

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

712

Moreover, there are two approaches to use these
rules. The first one is using forward chaining to
expand the original data with adding new inferred
information. For example, adding the inferred
relations between DB objects to RDF data. In this
way, the generated RDF data contains more relations
than relational DB. One advantage of this approach is
that there is no need for new web agents that can use
the new added rules. In other words, a normal
semantic agent can make the use of these rules and
consume the new added data in the same way as the
original data without change its behavior. However,
adding new data to the original one increases the size
of data. However, size of data should be in a
reasonable range that does not affect the web agent
performance (Minsu, 2004).

The other approach to use the defined rules is
using these rules during the processing of original
data to infer more data on the fly without storing the
new data. This approach keeps the size of the
original data. However, there is overhead processing
of using inference rules during searching or
processing the original data. The proposed system
supports both approaches.

3.3 Dumping RDF Data

The process of dumping or generating RDF data
corresponding to DB contains two steps. The first
step is automatic generation for RDF triples that
represent the relational DB. This step is based on the
mapping between DB schema and ontology. The
second step is applying the user-defined rules on the
generated RDF and adding the inferred data to the
original RDF.

3.3.1 Dumping Relational DB into RDF

This process auto-generates RDF data corresponding
to the data stored in the DB. Moreover, the proposed
system dumps RDF data based on the mapping file
generated by the developed mapping tool. The
following steps should be executed to generate RDF
data.

1- From the mapping file, get all tables mapped to
ontology classes.

2- For each table
a) Create an SQL select query to retrieve all

data in the table
b) For each retrieved record, create an

instance of the corresponding ontology
class of the current table. // uri of the
created instance is constructed from the
following pattern (table name/ auto-

increment number). i.e papers/23.
c) For each mapped field belongs to this table

in mapping file, create an instance of the
corresponding property inside the created
class instance

d) Assign a value to the created property from
the retrieved data.

e) If the field represents a foreign key, the
value of the created property will be a
reference to another class instance

This algorithm is implemented using Java. It
generates the corresponding RDF of a DB including
the relations between DB objects depending on
mapping schema file.

3.3.2 Adding Extra Inferred RDF Data

Using the user-defined rules, our approach inferred
additional RDF triples. These triples are added to
RDF data that represents DB. Rule syntax that
facilitates the process of inferring and adding extra
RDF is adopted. The decided format quoted from
SPARQL syntax. As a result, it is easy to use
SPARQL engine in inference process.

Furthermore, the proposed algorithm for inferring
extra RDF data uses forward chaining to fire the
rules. This means that if the condition part of a rule is
true based on the available RDF data then the action
part should be inserted as a new RDF triple into the
RDF data. The algorithm of adding RDF triples
based on the user-defined rules is as follows.

Inputs: RDF data, user-defined rules
Output: new RDF data

For each user-defined rule
1- Get condition part of the rule
2- Construct a SPARQL select query
3- Execute the SPARQL query on RDF data
4- Replace variables in the action part of the

rule with the values from the query result
5- Construct a SPARQL update query using

the action part
6- Execute the update query to insert the new

information to the RDF data.
This algorithm takes RDF data that represents DB

and the extra rules as inputs and adds inferred RDF
triples to RDF data based on rule execution. The
second step in the above algorithm constructs a
SPARQL query from the condition part of the current
rule. The query construction process is simple in
which, the common variables in the condition part
and action part of the rule are extracted and a select
query for these variables is constructed with the same
conditions stated in condition part of the rule. The

CONVERTING�DB�TO�RDF�WITH�ADDITIONAL�DEFINED�RULES

713

variables in the action part are replaced with the
resulted values. In addition, a new SPARQL query
(insert query) is constructed from action part after
replacing the variable with its values. The new query
adds inferred data to the RDF data.

Moreover, the process of adding discovered
relations in the proposed approach is simple and
powerful. This process implemented as execution of
two SPARQL queries: a select query to check rule
conditions, and an insert query to execute the action
part of the rule. These two queries are constructed
directly based on the adopted SPARQL syntax rule
format. Consequently, adding discovered relations to
RDF data is easy to implement and can be executed
in a high performance way based on SPARQL
engine.

4 SEARCHING RDF

The proposed engine is an extension to the normal
SPARQL engine. An inference step is added to the
SPARQL engine to make the use of the generated
RDF data and the user-defined rules. The proposed
engine can answer some queries that cannot be
answered using normal engines. In other words,
sometime the dataset contains the desired result but
the engine cannot extract it. Using inference, the
engine goes behind the raw data to find query
answer.

The proposed engine is developed based on Jena
SPARQL API with additional inference step. The
actual usage of the added inference step is not to
infer more data. However, the inference step is used
for query expansion process to get more detailed
queries that can be answered using the normal
engines.

The user can custom the engine behavior though
options panel. The user determines when the engine
should apply inference and to what extent. For
example, the engine can be adapted to run inference
only in case of no result returned by normal search.
In addition, the user may stop the inference
whenever a result comes. The default is that the
engine will get all possible solutions.

4.1 Query Expansion

The proposed approach applies backward chaining
in query answering process for query expansion. The
algorithm of SPARQL query expansion is a
recursive algorithm that gets all possible queries
based on a set of predefined rules. Indexing for the
defined rules are established to link different rules

based on the inferred relations. This index for the
published rules facilitates finding the appropriate
rules to expand a SPARQL query. The basic idea of
this query expansion is to replace query condition
with other conditions based on backward chaining of
the rules.

Query expansion based on backward chining
algorithm is as follows:
Input: SPARQL query, rules
Output: list of new queries equivalent to the inputted
query
- Get list of properties (predicates) used in query
conditions.
- Get related rules that can be used to expand the

inputted query (based on rule index)
- For each rule in the related rules list
• Match between rule actions and query

conditions
• Bind matched variables and keep them in a

mapping state
• Replace the matched query conditions with rule

premises
• Recursive call to expand the new query // this

call starts matching the new query and only the
rest of rule set

- Combine all new queries in one list
A mapping state holds the mapping between

different matched objects in order to construct a
proper query that gets the answer of the user query.
The resulted queries are executed using the normal
SPARQL query engine. The results of these queries
are combined and sent back to the client.

5 EXPERIMENTS

In these experiments, a large DB is converted to
RDF using the proposed approach. Moreover, a set
of queries are tested to show the effectiveness of
adding rules to the original dataset. In addition, we
applied both ways of using user-defined rules. A
comparison between both approaches is presented.

5.1 Converting DB to RDF

A prototype for the proposed approach of converting
DB to RDF is implemented using C#. In this
experiment, the proposed approach applied on a
large DB, International Semantic Web Conferences
(ISWC) DB, which contains information about
papers and authors involved in some conferences
related to semantic web field. Figure 3 shows the
schema of this DB. The total numbers of records in
ISWC DB is 11213 records. It contains information

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

714

about 2595 authors and more than 1100 published
papers.

The first step to convert ISWC DB to RDF is to
map between DB schema and ontology. In this
mapping, we used eight different ontologies:
rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#
foaf=http://xmlns.com/foaf/0.1/
iswc=http://annotation.semanticweb.org/iswc/iswc.daml#
rdfs=http://www.w3.org/2000/01/rdf-schema#
dc=http://purl.org/dc/elements/1.1/
swrc= http://swrc.ontoware.org/ontology#
swc=http://data.semanticweb.org/ns/swc/ontology#
owl= http://www.w3.org/2002/07/owl#

Figure 5: Mapping between DB and ontology.

A part of the mapping result is shown in Figure 5.
In this mapping, the DB table papers is mapped to
Inproceedings class in iswc ontology. Fields of
papers table are mapped to ontology properties as
shown in Figure. 5. For example, the field title in the
table papers mapped to Title property in Dublin Core
(dc) ontology.

In addition, we add user-defined rules to the
mapping file to be used as an extension to the
original data. According to the meaning of ISWC DB
and the queries to be asked, we added some rules to
the mapping file. The following rules are added
during the experiment.

1. If a person A is an author to a paper Y, and
a person B is an author to the paper Y then A
knows B.

2. If a person A is an author to a paper Y, and
the main subject of Y is T A is interested in T.

The first rule adds knows relation to the DB.
Knows is a relation in foaf standard ontology that
relates two people. ISWC DB does not contain

relations between people. The second rule adds
author’s interest_points relation, which relates
between person and topic.

The next step after mapping DB to ontology and
adding rules is auto-generation for RDF triples
represent the DB. The developed tool, figure 2, is
used to generate RDF triples. The total number of
generated RDF triples is 29703. This conversion
process takes 7.757 seconds. Moreover, by applying
the algorithm of adding inferred data to RDF, more
relations are added to the original data. The number
of inferred RDF triples is 18063 using the previous
two rules. Execution time of the inferring and adding
new triples is 39.440 seconds

A large number of RDF triples represent inferred
relations are added to the original data. This extra
data improves query answering process and enables
web agents to get implicit information.

Our approach provides conversion from
relational DB to RDF in an efficient way within
reasonable execution time. In addition, it uses extra
user-defined rules to generate more RDF data.
Finally, our approach generates more information
represented into RDF that helps semantic search
engines to answer more queries.

5.2 Querying RDF Data

We prototype the query engine proposed in section
four using java and Jena API (http://jena.sourceforge
.net/ARQ). The generated RDF data were queried
using different SPARQL queries to test different
cases. Table 1 shows some queries that are used in
this experiment. In this experiment, we run these
queries three times against different datasets. The
first is the RDF data that represents relational DB.
The second dataset is the same as the first with
additional inferred RDF triples. The last experiment
runs the queries against the RDF that represents
original DB and using the user-defined rules to
expand the user queries. Table 2 shows the results of
these experiments.

For example, the following SPARQL query, Q1,
asks about people who know Prof. Evgeniy
Gabrilovich.

Table 1: List of queries used in the experiment.

Number Query
Q1 Who knows Prof. Deepa Arun Paranjpe
Q2 Who is interested in Semantic search
Q3 Get all papers in Semantic web topic

Q4 Who is interested in ranking for search and knows
Evgeniy Gabrilovich

Q5 Get all papers in WWW 2010 conference
Q6 Who knows Prof. Evgeniy Gabrilovich

<DB>
 <bridge_table name="rel_person_paper">
 <foreignkey field="PersonID"
belongToClass="InProceedings" mapToProp="Creator"
refToClass="persons" corespondFK="PaperID"
ontoIndex="dc" />
 </bridge_table>
 <table name="papers" RTClass="InProceedings"
ontoIndex="iswc">
 <primarykey>
 <field name="PaperID" />
 </primarykey>
 <foreignkey name="Conference"
RTProperty="conference" RTTable="conferences"
ontoIndex="iswc" />
 <field name="Title" RTProperty="Title" ontoIndex="dc" />
 <field name="Abstract" RTProperty="Abstract"
ontoIndex="dc" />
 <field name="Year" RTProperty="Date" ontoIndex="dc" />
 </table>
….

CONVERTING�DB�TO�RDF�WITH�ADDITIONAL�DEFINED�RULES

715

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT distinct ?x
WHERE
 {
 ?per foaf:name Evgeniy Gabrilovich.
 ?x foaf:knows ?per .
 }

By running this query on the original data, no
result will be returned. However, after applying our
approach the query returns 20 results. This means
that there are 20 people know Prof. Edward Benson
in our dataset.

Table 2: Query result using normal technique and the
proposed approach.

Dataset/
size

Query
number

RDF data that
represent DB

RDF + inferred
triples RDF + rules

(2.71 MB) (3.39 MB) (2.71 MB)
Number

of
results

Execution
time

Number of
results

Execution
time

Number of
results

Execution
time

Q1 0 0.0040 2 0.0040 2 0.159
Q2 0 0.0040 39 0.0070 39 0.037
Q3 119 0.0100 119 0.0110 119 0.012
Q4 0 0.0040 9 0.0060 9 0.385
Q5 105 0.0090 105 0.0100 105 0.013
Q6 0 0.0040 20 0.0040 20 0.227

Using the user-defined rules in SPARQL engine
gets better result and improves the query answer
process. Moreover, the execution time of querying
the RDF with additional inferred data is almost the
same as RDF dataset only. However, querying RDF
with additional data gives better results. On the other
hand, query RDF dataset with the added rules gives
same results in a little higher execution time. The
execution time of the last dataset depends on the
number of expanded queries not the number of
results. The last dataset saves storage space.
However, the second dataset saves execution time.
Finally, the proposed approach can answer some
queries that cannot be answered by normal
approaches.

6 CONCLUSIONS

This paper proposes an approach for converting DB
to RDF. Moreover, to enable web agent to deeply
understand the generated data, we propose adding
user-defined rules. The added rules are very useful
for query answering process. Using forward
chaining the proposed approach adds inferred RDF
triples to the original RDF. On the other hand, the
propped system uses backward chaining for query
expansion and run these queries on the original
dataset that represents the DB. The experiments

show the effects of the proposed approach in
answering queries. Moreover, the effects of using
both approaches (adding inferred data and using rule
in the querying process) are shown in the
experiments.

REFERENCES

T. Berners-Lee, J. Hendler, O. Lassila, “The Semantic
Web,” Scientific American, Vol. 284, No. 5, 2001, pp.
34-43.

Siegfried Handschuh, Raphael Volz, Steffen Staab,
Annotation for the Deep Web, IEEE Intelligent
Systems, v.18 n.5, September 2003, pp.42-48.

Zhuoming Xu, Shichao Zhang, and Yisheng Dong,
Mapping between Relational Database Schema and
Owl Ontology for Deep Annotation, WI'06:
Proceedings of the 2006 IEEE/WIC/ACM
International Conference on Web Intelligence, IEEE
Computer Society, 2006, pp. 548-552.

Mamdouh Farouk, Samhaa R. El-Beltagy, Mahmoud
Rafea, "On-the Fly Annotation of Dynamic Web”
Proceedings of the First International Conference on
Web Information Systems and Technologies (WEBIST
2005),” Miami (USA), may 2005, pp 327-332.

Svihla, M., Jelinek, I.: The Database to RDF Mapping
Model for an Easy Semantic Extending of Dynamic
Web Sites. Proceedings of IADIS International
Conference WWW/Internet, Lisbon, Portugal, 2005,
pp.27-34

Pan, Z. and Heflin, J.: DLDB: Extending Relational
Databases to Support Semantic Web Queries, In
Workshop on Practical and Scaleable Semantic Web
Systems, The 2nd International Semantic Web
Conference (ISWC2003) (2003).

Ismael Navas Delgado, Nathalie Moreno Vergara, Antonio
C. Gomez Lora, María del Mar Roldán García, Iván
Ruiz Mostazo, José Francisco Aldana Montes:
“Embedding Semantic Annotations into Dynamic Web
Contents”. Proceeding of 15th international workshop
on database and Expert Systems Applications, 2004,
pp. 231-235

Chris Bizer, and Richard Cyganiak: D2R server
Publishing Relational Databases on the Semantic Web,
www4.wiwiss.fu-berlin.de/bizer/d2r-server/, 2010

Holger Knublauch, James A. Hendler, Kingsley Idehen
“SPIN - Overview and Motivation”, http://www.w3.
org/Submission/2011/SUBM-spin-overview-2011022
2/, February 2011.

J. Minsu and J. C Sohn, "Bossam: An Extended Rule
Engine for OWL Inferencing," In Proc. RuleML 2004,
pp. 128-138, 2004.

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

716

