
THE X-CREATE FRAMEWORK
A Comparison of XACML Policy Testing Strategies

Antonia Bertolino, Said Daoudagh, Francesca Lonetti and Eda Marchetti
Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR

via G. Moruzzi, 1, 56124 Pisa, Italy

Keywords: XACML, Policy Testing, XACML Requests Derivation.

Abstract: The specification of access control policies with the XACML language could be an error prone process, so
a testing is usually the solution for increasing the confidence on the policy itself. In this paper, we compare
two methodologies for deriving test cases for policy testing, i.e. XACML requests, that are implemented in
the X-CREATE tool. We consider a simple combinatorial strategy and a XML-based approach (XPT) which
exploit policy values and the XACML Context Schema. A stopping criterion for the test cases generation is
also provided and used for the comparison of the strategies in terms of fault detection effectiveness.

1 INTRODUCTION

XACML has become the de facto standard for spec-
ifying policies for access control decisions in many
application domains such as Service Oriented Archi-
tectures (SOAs) and Peer-to-Peer (P2P) systems. Ac-
cess control policies need to be carefully designed and
tested to protect data from unauthorized access. A
common approach for testing XACML policies is the
derivation of test inputs (XACML requests) that are
used for probing the XACML policy implementation
engine, called the PDP (Policy Decision Point), and
checking the PDP’s responses against the expected
ones. However the XACML requests generation is
a particular process that could require a quite big ef-
fort to be manually managed, due to the complexity
of XACML requests.

In (Bertolino et al., 2010) we proposed a XPT test-
ing strategy for deriving test inputs. It exploits the
XACML Context Schema representing the format of
the XACML requests and the policy values combi-
nations defining the XACML policy functionalities.
We observed a higher or similar effectiveness of the
proposed approach with respect to that of the exist-
ing ones. This is due to the higher structural vari-
ability of the derived requests by the XPT strategy.
This higher variability is also a limitation of the XPT
strategy since it sets a too high upper bound to the
test set. Thus the idea of this paper: the definition of
a more effective stopping criterion in the automated
XACML requests generation based on the coverage

of the input domain of a XACML policy. For this we
limit the number of generated requests to the number
of possible combinations of the values of the subject,
resource, action and environment of the XACML pol-
icy. In (Bertolino et al., 2012) we detailed a simple
testing strategy, called Simple Combinatorial, target-
ing the proposed stopping criterion. In this paper we
present a comparison of its effectiveness with that of
the XPT testing strategy proposed in (Bertolino et al.,
2010). Experimental results confirm that the higher
structural variability of the derived requests improves
the effectiveness of the XPT strategy and that the cov-
erage of the input domain of a XACML policy repre-
sents a suitable upper bound for the stopping crite-
rion of the XPT strategy and the Simple Combinato-
rial one.

The rest of this paper is structured as follows. Sec-
tion 2 briefly presents the background and some sim-
ilar works. Section 3 illustrates the motivations of the
proposed approach. In Section 4 we provide a brief
description of the two strategies. Section 5 reports the
experimental results. Finally, Section 6 concludes the
paper and gives related discussions.

2 BACKGROUND AND RELATED
WORK

XACML (OASIS, 2005) is a platform-independent
XML based standard language designed by the Or-

155Bertolino A., Daoudagh S., Lonetti F. and Marchetti E..
THE X-CREATE FRAMEWORK - A Comparison of XACML Policy Testing Strategies.
DOI: 10.5220/0003938301550160
In Proceedings of the 8th International Conference on Web Information Systems and Technologies (WEBIST-2012), pages 155-160
ISBN: 978-989-8565-08-2
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



ganization for the Advancement of Structured Infor-
mation Standards (OASIS). The root of all XACML
policies is a Policy or a PolicySet. A PolicySet can
contain other Policies or PolicySets. A Policy con-
sists of a Target, a set of Rules and a Rule combining
algorithm. The Target specifies the Subjects, the Re-
sources, the Actions and the Environments on which
a policy can be applied. If a request satisfies the tar-
get of the policy, then the set of rules of the policy is
checked, otherwise the policy is skipped without ex-
amining its rules. A Rule is the basic element of a
policy. It is composed by a Target, that is similar to
the policy target and specifies the constraints of the
requests to which the rule is applicable. The heart
of most rules is a Condition that is a boolean func-
tion evaluated when the rule is applicable to a request.
The result of the condition evaluation is the rule ef-
fect (Permit or Deny) if the condition is evaluated to
be true, NotApplicable otherwise. If an error occurs
during the application of a policy to the request, In-
determinate is returned as decision. More than one
rule in a policy may be applicable to a given request.
The rule combining algorithm specifies the approach
to be adopted to compute the decision result of a pol-
icy containing rules with conflicting effects. The ac-
cess decision is given by considering all attribute val-
ues describing the subjects, the resources, the actions
and the environments of an access request and com-
paring them with the attribute values of a policy.

Some existing approaches consider the policy val-
ues in the test cases derivation. In particular, (Martin
and Xie, 2006) presents the Targen tool that derives
the set of requests satisfying all the possible combi-
nations of truth values of the attribute id-value pairs
found in the subject, resource, and action sections
of each target included in the policy under test. A
testing strategy implemented into X-CREATE frame-
work (Bertolino et al., 2010) exploits the potentiality
of the XACML Context schema defining the format
of the test inputs, and also applies combinatorial ap-
proaches to the policy values. A different approach is
provided by Cirg (Martin and Xie, 2007a) that is able
to exploit change-impact analysis for test cases gener-
ation starting from policies specification. In particu-
lar, it integrates the Margrave tool (Fisler et al., 2005)
which performs change-impact analysis so to reach
high policy structural coverage. Other approaches for
policy testing are based on representation of policy
implied behavior by means of models (Traon et al.,
2007). Usually these approaches provide methodolo-
gies or tools for automatically generating abstract test
cases that have to be then refined into concrete re-
quests for being executed.

A different research direction focuses on the de-

velopment of engines for testing XACML policy. In
particular, the authors of (Liu et al., 2011) propose a
XACML Policy Evaluation Engine that is faster and
more scalable than commonly used Sun PDP (Sun
Microsystems, 2006).

3 MOTIVATION AND RESEARCH
QUESTIONS

The testing scenario considered in this paper is fo-
cused on XACML policies and is represented in Fig-
ure 1. We suppose that the policy developer needs
to check the correctness of a policy specification.
The actors of this scenario include: a Test Generator,
which takes as input the XACML Context Schema
and the Policy specification and applies the set of
available test strategies to generate XACML requests;
a PDP which executes the requests and provides the
responses, and the Policy developer which collects the
responses and checks their correctness. In this sce-
nario the PDP is considered correct, as highlighted by
the cockade, and the SUT is the policy specification.

In (Bertolino et al., 2010) we discussed about the
effectiveness of a test strategy based on a XML-based
methodology, called XPT, in terms of fault detection.
In particular, we provided a comparison of the per-
formance of the XPT testing strategy with that of the
Targen tool (Martin and Xie, 2006) that represents
the most similar existing approach to the XPT testing
strategy. Observing the obtained results we deduced
that the effectiveness of the XPT testing strategy is
comparable with, or higher than, that provided by the
test suites derived by Targen tool.

As evidenced by the analysis of the results of
that experiment, the most important advantage of the
XPT-based testing is the structure variability of the
derived requests: i.e., a request may include more
than one subject or resource or action, or environ-
ment entity. This feature is especially important for
testing policies or rules in which the access decision
involves simultaneously more than one subject or re-
source or action or environment. However, the pos-
sibility of having a high variability in the structure of
requests is also the main limitation of the XPT testing
strategy. As described in (Bertolino et al., 2010), the
total amount of different requests that could be gen-
erated by varying the structure only of the XACML
Context Schema was MAXREQ = 118098 1, which
is extremely high for any kind of policy specifica-
tion. Even if in the XPT testing strategy are consid-
ered some n-wise approaches for ordering and select-

1This number refers to XACML 2.0 Context Schema.

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

156



ing the instances that maximize the fault detection ca-
pability, a generic stopping criterion is missing. In
particular, once the intermediate requests are gener-
ated, by construction they are filled with values taken
from the tested policy, but no guarantee is provided
that the values of the subjects, resources and actions
of the policy are all covered if an arbitrary number of
requests is derived.

Figure 1: Testing scenario.

For this, we introduce in this paper the following
stopping criterion: generate as many requests as the
number of possible combinations of the values of the
subjects, resources, actions and environment of the
XACML policy. This criterion focuses on the cover-
age of the input domain of a XACML policy since the
policy input domain is represented by the combina-
tions of its values. Following this new stopping crite-
rion, as natural consequence, we defined a new strat-
egy (Bertolino et al., 2012) for requests generation:
derive a request for each combination of the subject,
resource, action and environment values of the policy.
We called this new strategy Simple Combinatorial.

We compared the effectiveness of the Simple
Combinatorial with that of the XPT testing strategy
by answering to the following research questions:

TSEff. Adopting the proposed stopping criterion, is
the fault detection of the Simple Combinatorial strat-
egy similar to that of the XPT-based one?

TSDecr. Is it possible to reduce the test suites main-
taining the same level of fault detection?

We provide in Section 5 an experimental evalua-
tion and discuss about the obtained results.

4 TESTING STRATEGIES
COMPARISON

For aim of completeness, in this section we provide a
brief description of the two testing strategies remark-
ing their main advantages and limitations.

4.1 XPT Strategy

The XPT strategy as presented in (Bertolino et al.,
2010) consists of three main steps: intermediate-

request generation; policy-under-test analysis; re-
quest values assignment.

In the XPT strategy, given the XACML Context
Schema, a set of conforming XML instances is gen-
erated by applying a variant of the Category Partition
(CP) method (Ostrand and Balcer, 1988) and tradi-
tional boundary conditions. In particular, the occur-
rences declared for each element in the schema are
analyzed and, applying a boundary condition strategy,
the border values (minOccurs and maxOccurs) to be
considered for the instances generation are derived.

Combining the occurrence values assigned to each
element, the set of intermediate instances are gen-
erated. In such manner, given the Context Schema,
up to 3Y � 2Z intermediate instances can be derived,
where Y is the number of schema elements with un-
bounded cardinality, and Z is the number of elements
having [0,1] cardinality.

In particular, in the XACML 2.0 Context Schema,
only for the part concerning the requests specification,
there are 10 elements with unbounded occurrence and
1 having [0,1] cardinality. The other elements have
cardinality 1. Thus, the application of XPT to the
XACML 2.0 Context Schema (only for the part con-
cerning the requests specification), will generate a
maximum number of 310 � 21 = 118098 structurally
different intermediate requests. This huge number of
generated intermediate requests is obviously unman-
ageable for testing purposes. X-CREATE gives to
the tester the possibility to choose the generation of
a lower number of requests. Those requests are se-
lected starting by a set of intermediate instances, de-
rived by applying the well-known pair-wise approach
(Cohen et al., 1997), that has been shown to be effec-
tive in picking a test subset with good fault detection
capability.

Once derived the set of intermediate requests, the
values of elements and attributes of the policy under
test are used so to obtain executable and meaningful
final requests. In particular subject entities, resource
entities, action entities and environment entities are
generated (for more details about the entities genera-
tion procedure see (Bertolino et al., 2010)) and they
are used for filling the intermediate requests.

The combinations of subject entities, resource en-
tities, action entities and environment entities are used
to fill the values of elements and attributes of the sub-
ject, resource, action and environment of an interme-
diate instance respectively. Specifically, depending
on the number of intermediate requests to complete,

THE�X-CREATE�FRAMEWORK�-�A�Comparison�of�XACML�Policy�Testing�Strategies

157



the values entities are selected by applying an incre-
mental combination approach (Cohen et al., 1997;
Pretschner et al., 2008) so that all the possible combi-
nations of the values of subject entities, resource en-
tities, action entities and environment entities can be
considered.

Taking then one by one the combinations of en-
tities values the set of the intermediate requests is
completely filled according to the following consid-
erations:

� take the values defined for subject entity, resource
entity, action entity and environment entity of each
combination and use them to fill the values of el-
ements and attributes of the subject, resource, ac-
tion and environment of an intermediate instance
respectively;

� if all the combinations of subject entity, resource
entity, action entity and environment entity have
been already used for filling a subset of intermedi-
ate requests, then start again by selecting the sub-
ject entity, resource entity, action entity and envi-
ronment entity combinations in the same order till
the completion of the intermediate requests set;

� in the case in which the structure of an intermedi-
ate request requires more than one entity in the
subject, resource, action and environment, then
the necessary entities are randomly taken from the
available ones avoiding duplicates.

4.2 Simple Combinatorial Strategy

In this section we describe the Simple Combinatorial
(Bertolino et al., 2012) strategy that has been imple-
mented into the X-CREATE framework.

In this strategy, we apply a combinatorial ap-
proach to the policy values. We define the SubjectSet,
ResourceSet, ActionSet, and EnvironmentSet sets as
described in (Bertolino et al., 2010), considering also
random entities for robustness and negative testing
purposes. In particular, we define a subject entity as a
combination of the values of elements and attributes
of the SubjectSet set, and similarly the resource en-
tity, the action entity and the environment entity as
a combination of the values of the elements and at-
tributes of the ResourceSet, ActionSet, and Environ-
mentSet respectively.

Then, we generate all combinations of subject en-
tities, resource entities, action entities and environ-
ment entities contained in these sets in the following
way:

� First, we apply the pair-wise combination and we
obtain the PW set

� Then, we apply the three-wise combination and
we obtain the TW set

� Finally, we apply the four-wise combination and
we obtain the FW set
These sets have the following inclusion propriety

PW� TW� FW.
For eliminating duplicated combinations we con-

sider the following set of combinations: PW called
Pairwise, TWnPW called Threewise and FWn (TW[
PW) called Fourwise. For each combination included
in the above sets, we generate a simple request con-
taining the entities of that combination. The derived
requests are first those obtained using the combina-
tions of the Pairwise set, then those ones using the
combinations of the Threewise set and finally those
using the combinations of the Fourwise set. In this
way, we try to generate a test suite guaranteeing a
coverage first of all pairs, then of all triples and finally
of all quadruples of values entities derived by the pol-
icy. The maximum number of requests derived by this
strategy is equal to the cardinality of the FW set. This
number represents the stopping criterion for the pro-
posed testing strategy. However, by the X-CREATE
framework the user can choose a number of requests
lower than the maximum one.

The main advantage of the proposed strategy is
that it is simple and achieves the coverage of the pol-
icy input domain represented by the policy values
combinations.

5 EXPERIMENTAL RESULTS

In this section, we discuss about the effectiveness of
the Simple Combinatorial strategy and the XPT one
in terms of fault-detection capability. The test suites
of the two test strategies were derived by the tool X-
CREATE. For the comparison we used (see column
1 in Table 1) three policies presented in (Martin and
Xie, 2006) (specifically demo-5, demo-11, demo-26)
and some real policies taken from the employability
and health care services implemented in the EC FP7
TAS3 project (TAS3 Project, 2011).

We applied mutation analysis (DeMillo et al.,
1978) to introduce faults into the policies and con-
sequently assess the quality of a test suite in terms of
fault detection. We generated the mutants set using
the mutation operators for XACML policies indicated
in (Martin and Xie, 2007b) that include: insert syn-
tactic faults into the policy and rule target elements
and condition elements; changing logical constructs;
emulate semantic faults.

Table 1 in the second column, shows the total
amount of mutants obtained for the policies. The

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

158



Table 1: Mutant-kill ratios achieved by test suites of Simple Combinatorial and XPT.

Simple Combinatorial XPT
TSEff TSDecr TSEff TSDecr

policy # Mut # Req Mut Kill % # Req Mut Kill % # Req Mut Kill % # Req Mut Kill %
demo-5 23 84 100 % 56 100 % 84 95.65 % 35 95.65 %

demo-11 22 40 95.45 % 13 95.45 % 40 95.45 % 18 95.45 %
demo-26 17 16 58.82 % 6 58.82 % 16 94.11 % 9 94.11 %

read-patient 25 30 40 % 2 40 % 30 40 % 13 40 %
university-admin-1 20 80 50 % 2 50 % 80 50 % 20 50 %

student-application-2 15 32 60 % 2 60 % 32 6 % 5 6 %
university-admin-3 20 76 50 % 2 50% 76 50 % 22 50 %

mutants have been used for answering the Research
Questions of Section 3 and labeled TSEff and TS-
Decr. Experimental answers to these questions are
described below.

RQ TSEff. Applying the Simple Combinatorial
methodology we obtain seven test suites having car-
dinality as reported in Table 1 third column. For a
fair comparison we generated the same number of re-
quests for each policy also using the XPT test strat-
egy. All the test suites obtained by the application of
Simple Combinatorial and XPT one have been exe-
cuted on the associated policies and on their mutants.
The Sun XACML engine has been used for the exper-
iment (Sun Microsystems, 2006). For each request, if
the responses obtained by the execution of the request
on the policy and one of its mutants are different, then
the mutant policy is considered killed. For each pol-
icy under test, Table 1 reports the percentage of mu-
tants killed using Simple Combinatorial strategy (4th
column), and XPT strategy (8th column).

Observing the obtained results we can deduce that
the effectiveness of the XPT derived test suites is sim-
ilar to that of the test suites derived by the Simple
Combinatorial strategy. Note that there are cases in
which XPT has a better (see demo-26) and a lower
(see student-application-2) performance than the Sim-
ple Combinatorial. A deep analysis of these anoma-
lous situations showed that the test suites derived by
the Simple Combinatorial strategy were not able to
detect situations where the access decision of the pol-
icy rules depends concurrently on the values of more
than one subject or resource or action or environment
entity (this is the better performance of XPT for demo-
26). On the contrary by construction the request de-
rived by the Simple Combinatorial strategy contains
almost a subject, a resource, an action and an envi-
ronment entity. This can be a point of strength when
the policies are very simple and the satisfiability of
the policy rules depends on the combinations of a sin-
gle subject, resource, action and environment entity as
in the case of student-application-2. In this case, the
high variability of the XPT requests prevents to have

a good performance of the XPT strategy if a stopping
criterion is assumed. This is because having many in-
termediate requests, those that allow for a good fault
detection go beyond the limit given by the stopping
criterion of the Simple Combinatorial strategy.

RQ TSDecr. The next point we analyzed was the
possibility of reducing the test suites of the two test
strategies maintaining the same level of fault detec-
tion. Thus, wherever the test suite reduction was ap-
plicable, starting from the first request ahead, follow-
ing the order in which the requests have been gener-
ated, we incrementally derived the score of mutants
killed of the two test sets till we reached the values
reported in the 4th and 8th columns of Table 1. The
cardinality of the subsets are in 5th and 9th columns
of the Table 1. As shown, for the Simple Combina-
torial strategy the maximum reachable percentage is
reached with a few number of requests for all policies,
while for XPT strategy an higher number of requests
is needed. Thus the considered stopping criterion is
a good upper bound assuring a good fault detection
effectiveness with a manageable low number of re-
quests.

6 CONCLUSIONS AND
DISCUSSION

In this paper we proposed a comparison of two testing
strategies implemented into X-CREATE framework,
named XPT strategy and Simple Combinatorial. In
addition, we proposed a stopping criterion for the au-
tomated generation of the test inputs for the XACML
policy, focused on the coverage of the policy input do-
main. The preliminary conclusions we can draw from
this initial evaluation are:

� A good fault detection percentage of the XPT test-
ing strategy due to the variability of the structures
of the generated requests, which could result in
improved effectiveness of the derived test suites
when the satisfiability of the policy rules depends

THE�X-CREATE�FRAMEWORK�-�A�Comparison�of�XACML�Policy�Testing�Strategies

159



on more than one subject, resource, action and en-
vironment.

� It is possible to reduce the number of requests
for both strategies keeping the same test effective-
ness. That means that the introduced stopping cri-
terion is a good upper bound. However, further
criteria for test reduction could be conceived.

� The high variability of the XPT strategy can limit
its performance when policies are very simple and
the stopping criterion of Simple Combinatorial
strategy is assumed. For this, it is needed further
study for achieving a trade-off between the struc-
ture variability and the cardinality of the test suite.
Preliminary results about this have been presented
in (Bertolino et al., 2012).

Note that, the percentage of mutants killed by the
test suite derived by Simple Combinatorial strategy
is the maximum reachable. As it was conceived, it
is not possible to include additional test cases to the
test suite and consequently to get higher value of fault
detection.

Of course such conclusions must be taken in light
of the threats to validity of the performed experiment.
We need to make larger experiments to generalize the
statement as well as consider further mutation opera-
tors than those of (Martin and Xie, 2007b).

From the performed analysis we noticed an im-
pact of the policy specification on the effectiveness
of the derived test suite. Thus, we would like to in-
vestigate other methodologies for requests generation
taking into account this.

In particular, a limitation of Simple Combinato-
rial strategy was that it is not able to detect situa-
tions where the satisfiability of the policy rules de-
pends simultaneously on the values of more than one
entity. We would like to force by construction the re-
quests derived by this strategy to contain all the possi-
ble combinations of more than one subject, resource,
action and environment entity. In this way, the num-
ber of requests increases exponentially and could be
soon comparable to the maximum number of requests
obtained by the XPT testing strategy, i.e MAXREQ
introduced in Section 3.

As a future work, we plan to investigate about the
comparison between XPT approach and this new test
inputs derivation proposal in terms of fault detection
effectiveness.

ACKNOWLEDGEMENTS

This work has been partially funded by the Network
of Excellence on Engineering Secure Future Inter-

net Software Services and Systems (NESSoS) FP7
Project contract n. 256980. We also thank the EC FP7
TAS3 (Trusted Architecture for Securely Shared Ser-
vices) project for providing us with XACML policies.

REFERENCES

Bertolino, A., Lonetti, F., Daoudagh, S., and Marchetti, E.
(2012). Automatic XACML requests generation for
policy testing. submitted to The Third International
Workshop on Security Testing 2012.

Bertolino, A., Lonetti, F., and Marchetti, E. (2010). Sys-
tematic XACML Request Generation for Testing Pur-
poses. In Proc. of 36th EUROMICRO Conference
on Software Engineering and Advanced Applications
(SEAA), pages 3 –11.

Cohen, D. M., Dalal, S. R., Fredman, M. L., and Patton,
G. C. (1997). The AETG system: An approach to
testing based on combinatiorial design. IEEE Trans.
on Soft. Eng., 23(7):437–444.

DeMillo, R., Lipton, R., and Sayward, F. (1978). Hints on
test data selection: Help for the practicing program-
mer. Computer, 11(4):34–41.

Fisler, K., Krishnamurthi, S., Meyerovich, L., and
Tschantz, M. (2005). Verification and change-impact
analysis of access-control policies. In Proc. of ICSE,
pages 196–205.

Liu, A. X., Chen, F., Hwang, J., and Xie, T. (2011). Design-
ing fast and scalable xacml policy evaluation engines.
IEEE Transactions on Computers, 60(12):1802–1817.

Martin, E. and Xie, T. (2006). Automated test generation
for access control policies. In Supplemental Proc. of
ISSRE.

Martin, E. and Xie, T. (2007a). Automated test generation
for access control policies via change-impact analysis.
In Proc. of Third International Workshop on Software
Engineering for Secure Systems (SESS), pages 5–12.

Martin, E. and Xie, T. (2007b). A fault model and mutation
testing of access control policies. In Proc. of WWW,
pages 667–676.

OASIS (1 Feb 2005). eXtensible Access Control Markup
Language (XACML) Version 2.0. http://docs.oasis-
open.org/xacml/2.0/access control-xacml-2.0-core-
spec-os.pdf.

Ostrand, T. J. and Balcer, M. J. (1988). The category-
partition method for specifying and generating func-
tional tests. Commun. ACM, 31(6):676–686.

Pretschner, A., Mouelhi, T., and Le Traon, Y. (2008).
Model-based tests for access control policies. In Proc.
of ICST, pages 338–347.

Sun Microsystems (2006). Sun’s XACML Implementation.
http://sunxacml.sourceforge.net/.

TAS3 Project (2011). Trusted Architecture for Securely
Shared Services. http://www.tas3.eu/.

Traon, Y., Mouelhi, T., and Baudry, B. (2007). Testing se-
curity policies: going beyond functional testing. In
Proc. of ISSRE, pages 93–102.

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

160


