WEB SERVICE CAPABILITY META MODEL

Sami Bhiri, Wassim Derguech and Maciej Zaremba
Digital Enterprise Research Institute, National University of Ireland, Galway, Ireland

Keywords:

Abstract:

Capability Modelling, Web Services, Business Process, RDF.

The concept of capability is a cornerstone element in service description. Nevertheless, despite its fundamental

role little effort has been seen to model service capabilities. Current approaches either fail to consider capa-
bilities as feature-based entities and confuse them with annotated invocation interfaces or fail in modelling
capabilities at several abstraction levels and establishing links between them. In particular, they are not able
to model and deal with concrete capabilities (i.e., capabilities that reflect real customers’ needs). In this paper,
we propose a conceptual model as an RDF-schema for describing service capabilities. Our model defines
capabilities as an action verb and a set of attributes and their values. It is also able to define capabilities at
different levels of abstractions/concreteness and establish links between them. Most importantly, our model
enables describing concrete capabilities which directly correspond to consumer needs. Our meta model is
based on RDF and makes use of Linked Data to define capability attributes as well as their values.

1 INTRODUCTION

From IT perspective, the concept of service has
evolved from the notion of remote invocation inter-
face (such as WSDL) to a more comprehensive en-
tity. In this paper, we share the same vision of OASIS
Reference Model® and consider a service as an ac-
cess mechanism to a capability. Within this vision the
invocation interface is only one aspect of the whole
service description. Another core aspect of a service,
in which we are interested in this paper, is the notion
of capability which describes what a service can do.
The notion of capability is a fundamental concept
not only for SOA (Service Oriented Architecture) but
also for enterprise information systems. The ARIS
architecture (Scheer and Schneider, 2006) recognizes
the importance of the functional perspective in en-
terprise information systems and considers it as one
of its views. The concept of capability is the glue
point between services and business processes. A ser-
vice gives access to a certain capability which can be
achieved by a business process. Despite its impor-
tance, this concept has not drawn the research com-
munity attention as it deserves. Current approaches
for capability modeling were in fact part of efforts for
describing related concepts such as business process-

10ASIS Reference Model for Service Ori-
ented Architecture 1.0, http://www.oasis-
open.org/committees/download.php/19679/soa-rm-cs.pdf

Bhiri S., Derguech W. and Zaremba M..
WEB SERVICE CAPABILITY META MODEL.
DOI: 10.5220/0003935800470057

es, service descriptions and search requests.

A capability denotes what an action does either in
terms of world effects or returned information?. In
the literature, we can distinguish three families of ap-
proaches that tackled the problem of capability mod-
elling either directly or indirectly. The first family in-
cludes semantic Web services models (WSMO (Ro-
man et al., 2006) and OWL-S (Martin et al., 2007))
which model capabilities as Input, Output, Precon-
ditions and Effects (IOPE paradigm). Modelling ca-
pabilities following the 10OPE paradigm does not al-
low to capture different levels of abstractions of capa-
bilities, easily, and consequently cannot capture any
link between them. In particular, these approaches are
not suitable for modelling concrete capabilities espe-
cially when they are highly configurable. Moreover,
they do not feature in an explicit and easily accessible
way domain-specifc features of the capabilities which
makes their discovery difficult and heavily dependant
on reasoning.

The second family of related efforts concern se-
mantic annotations of invocation/interaction inter-
faces (SA-WSDL and SA-REST) (Kopecky et al.,
2007b; Lathem et al., 2007). While these approaches
do not directly target capability modelling, they at-
tempt to provide alternative solutions to top-down se-
mantic approaches (WSMO and OWL-S) by starting
from existing descriptions such as WSDL and an-
notate them with semantic information. These ap-

47

In Proceedings of the 8th International Conference on Web Information Systems and Technologies (WEBIST-2012), pages 47-57

ISBN: 978-989-8565-08-2

Copyright ¢ 2012 SCITEPRESS (Science and Technology Publications, Lda.)

WEBIST 2012 - 8th International Conference on Web Information Systems and Technologies

proaches define a semantic (business) description of
syntactic interaction interfaces.

The third family includes frame-based approaches
for modelling capabilities. Oaks et al., (Oaks et al.,
2003) give a nice overview of related approaches and
propose a model for describing service capabilities
following the same principle. The proposed model
distinguishes in particular the corresponding action
verb and informational attributes (called roles in the
paper (Oaks et al., 2003)) in addition to the classical
IOPE. While this model makes a step beyond the clas-
sical IOPE paradigm, the semantics of capabilities re-
main defined via the IOPE paradigm and therefore has
the same problems as the first family of approaches
described above.

In this paper, we propose an alternative approach,
to the classical IOPE paradigm, for modelling capa-
bilities. The semantics of a capability is not captured
at a fine-grain level via preconditions and effects. It is
rather captured at a coarse-grain level via a combina-
tion of (shared meaning of) an action verb, semantic
links to other capabilities (which can be defined in an
ontology) and, particularly, a set of domain-specific
attributes which reflect the business features of the ca-
pability. Interestingly enough, our model enables to
capture capabilities at different levels of abstraction
and establish links between them. Concrete capabil-
ity descriptions are generated dynamically from more
abstract capability descriptions.

The remainder of the paper is organized as fol-
lows. Section 2 motivates our work. Section 3
presents our conceptual model for describing capabil-
ities, introduces our attribute-featured principle and
details the different types of attributes we consider.
It shows also how abstract capabilities can be de-
fined while respecting the attribute-featured principle
and serving as declarative specifications for generat-
ing concrete capabilities. Section 4 shows how we
distinguish different levels of abstractions and shows
the relation that may exist between abstract and con-
crete capabilities and presents semantic links that may
exist between them. Section 5 illustrates the relation
between the customer request and the capability cat-
egories and offers by sketching a matching scenario
between the customer request and the capability cat-
egories. Section 6 discusses some related work and
Section 7 concludes our paper.

2 MOTIVATION

A capability corresponds to what an action (a pro-
gram, a task, a Business Process etc.) does from a
functional perspective. There are different levels of

48

abstraction/concreteness of capabilitiess. A capability
can be as abstract as a category and denotes a class of
actions, as it can be very concrete and corresponds to
a specific consumer request. For instance the category
“Shipping” that denotes all functions for shipping is a
capability. “Shipping a package of 10 Kg from Ire-
land to Singapore on the 15" of January 2012 for the
price of 200 Dollars” is also a capability but less ab-
stract than the previous one.

In real world settings it is quite often very hard,
even impossible, to model statically concrete capabil-
ities due to the following reasons:

Combinatory explosion: at concrete level, one
needs to take care of all possible combinations
which may lead to a combaniatory explosion of
capabilities (services). For example, a shipping
service serves only certain routes (combination of
the source and destination attributes). Defining
statically the corresponding concrete capabilities
means defining a capability for each route.

Dynamicity: an aspect of a given capability (the
value of an attribute) may depend on a dynamic
variable. For instance, the price of a concrete
shipping capability may depend on the exchange
rate or on the company workload.

Sensitivity: for business reasons, providers do not
want to reveal the values of certain sensitive at-
tributes as part of the static service description.
They rather require to engage in a certain interac-
tion before revealing the concrete value of a sen-
sitive attribute.

In this paper, we propose a solution to the above
mentioned problems. We propose a conceptual
model, as an RDF-Schema, for describing capabili-
ties. Our meta model defines capabilities as an ac-
tion verb and a set of domain-specific attributes. It is
also able to describe capabilities at different levels of
abstractions/concreteness and establish links between
them. Most importantly, our model enables describ-
ing concrete capabilities which are directly consum-
able by and delivered to consumers contrary to cur-
rent meta models which describe the abstractions of
these descriptions. Our model enables taking into ac-
count attributes dynamicity, sensitivity and interde-
pendency. Our model is based on RDF and makes
use of Linked Data to define capabilities attributes as
well as their values.

Throughout the whole paper, we will consider the
shipping domain for illustrating several parts of our
conceptual model. In such domain, from the ser-
vice consumer perspective, it is much more valuable
to operate on concrete, consumable shipping offers
such “Shipping using FedEx Europe First, price 100

EUR, from Germany to Ireland, delivery within 1 day”
rather than to operate on abstract service descriptions
such “FedEx shipping company ships packages up
to 68 Kg, between various source and target desti-
nations”. Current service descriptions require man-
ual work in order to move to the service offer level.
Our conceptual model aims at making this step auto-
mated.

3 CAPABILITY META MODEL

In this Section, we introduce the concept of capability,
then we explain our attribute-featured principle that
we consider for modelling the capability attributes
and we present the possible attribute types covered by
our meta-model.

Definition 1 introduces the concept of capability
in our meta-model.
Definition 1. (Capability) A tuple Cap = (Action-
Verb,Attributes) is a capability, where:

ActionVerb: This concept has been previously in-
troduced by (Oaks et al., 2003) in order to de-
fine, in a natural language, what is the action be-
ing described. Different to (Oaks et al., 2003), we
consider the action verb as a concept from a do-
main related ontology that comes form a shared
aggreeement on its semantics.

Attributes: Represents a set of pairs (Attribute, At-
tributeValue) that corresponds to the set of char-
acteristics of the capability. An Attribute corre-
sponds to a particular property of the capability
and AttributeValue corresponds either to the value
or the possible values that this Attribute can have.

Figure 1 shows a detailed UML class diagram of
the capability metal model. It depicts the concepts
previously introduced (i.e., Capability, ActionVerb,
Attribute and AttributeValue) as well as other ones
that will be introduced in the rest of this section.

Additionally, in our work, we distinguish between
several abstraction levels of capabilities. As shown
in Figure 1, we consider the relations “specify” and
“extend” to express the relations between capabilities.
These relations will be detailed later in this paper.

In the rest of this section, we will discuss our
attribute-featured principle in Section 3.1 as well as
the possible AttributeValue types in Section 3.2. Sec-
tion 4, will define the capability abstraction relations.

3.1 Attribute-featured Principle

We have, recently, noticed a wide adoption of the
Linked Data (Bizer et al., 2009; Sheridan and Tenni-

WEB SERVICE CAPABILITY META MODEL

son, 2010) principles, and a growing amount of data
sets specified in RDF. It is clear that Linked Data pro-
vides the best practices for publishing structured data
on the Web. Linked Data is published using RDF
where URIs are the means for referring various en-
tities on the Web giving the possibility to interlink
them. Currently, organizations are highly interested
in publishing their data in RDF (Lebo and Williams,
2010) as well as various public vocabularies (ontolo-
gies) are being released. Consequently, we have de-
cided to define our meta model based on RDF and
make use of Linked Data principles in order to define
capability attributes as well as their values. Listing 1
shows a fragment of the capability Ontology in RDF
using a human readable N3 notation.

In Listing 1, we define the concept cap:Capability
as an rdfs:Class. We define the concept
cap:ActionVerb as a sub class of skos:Concept.
“The skos:Concept class allows to assert that a
resource is a conceptual resource. That is, the
resource is itself a concept’?2. And we define the
concept cap:AttributeValue as an equivalent class to
owl:Thing because we need it to be the most general
class to allow for the reuse of existing vocabularies
for possible attribute values for example using vcard
open vocabulary for defining addresses.

Listing 1: Capability ontology snippet.

1 | @prefix rdf: <http://ww.w3.0rg/1999/02/

2 22 rdf syntax ns#=>.

3 | @prefix owl: <http ://www.w3.0rg/2002/07/owl
#>.

4 | @prefix rdfs: <http ://www.w3.0rg/2000/01/

5 rdf schema#=.

6 | @prefix skos: <http ://www.w3.0rg/2004/02/skos
/

7 core#>.

8 | @prefix cap: <http://.../ontology/capability
#>.

10 | cap:Capability a rdfs:Class.
11
12 | cap:ActionVerb rdfs:subClassOf skos:Concept.
13
14 | cap: AttributeValue owl:equivalentClass owl:
Thing .

15
16 | cap:do a rdf:Property;

17 rdfs:domain cap: Capability;
18 rdfs:range cap:ActionVerb.
19
20 | cap:attribute a rdf:Property;

21 rdfs:domain cap: Capability;
22 rdfs:range cap: AttributeValue.

2SKOS Core Guide, W3C Working Draft 2 November
2005, http://www.w3.0rg/TR/2005/WD-swbp-skos-core-
guide-20051102/

49

WEBIST 2012 - 8th International Conference on Web Information Systems and Technologies

ActionVerb

0.1

v f g

0.1

spedifies

Capability

extgnds

1
0.*

Attribute

% T
hasElement \I/

hasMax

hasMin |

EnumerationValue

AttributeValue

— D

RangeValue

hasEvaluator DynamicValue

ConstrainedValue .
constr |nedBy

hasEvaluator

ConditionalValue

hasCondition

Expression

hasExpression

Constrain

-ExprType : string
-ExprValue : string

Figure 1: Capability UML class diagram.

The property cap:do allows linking a
cap:Capability to its corresponding cap:ActionVerb.
We created the property cap:attribute even though we
are going to redefine it for each created attribute its
corresponding range. This will have the advantage to
create properties where the domain is always set to a
cap:Capability. In other words, all attributes that will
be created as an rdfs:subProperty of cap:attribute
will be interpreted as a property of a capability.

We can define a domain related ontology in order
to define a particular capability (i.e., its action verb
and attributes). Taking as example the shipping do-
main, Listing 2 shows a snippet of such ontology. In
order to define the action verb, we use skos:prefLabel
(Line 6). The rest of the listing illustrates how
two attributes cap:from and cap:pickUpDate are de-
fined in our shipping ontology. Both attributes are
rdfs:subProperty of cap:attribute (Line 8 and 11).

The range of the attribute cap:from is
vcard:VCard to refer to an address. The range
of the attribute cap:pickUpDate is a concept defined
in the same shipping ontology. Other attributes in
subsequent listings are defined similarly.

50

Listing 2: Shipping domain ontology snippet.

1 | @prefix vcard: <http ://www.w3.0rg/2006/vcard
Ins#=>.

2 | @prefix cap: <http ://.../ ontology/
capability#=.

3 | @prefix ship: <http://.../ontology/
ship_domain#=>.

4

5 | :shipment a cap:ActionVerb;

6 skos:prefLabel “*Ship”’’.

7

8 | ship:from rdfs:subProperty cap:attribute;

9 rdfs:range vcard:VCard.

10

11 | ship:pickUpDate a rdfs:subProperty cap:
attribute ;

12 rdfs:range ship:date.

3.2 Attribute Value Types

This section details how the set of attributes of a cer-
tain capability can be defined from a service provider
perspective. As depicted in Figure 1, we consider five
classes used for describing the values of a capability

attributes.

Using these classes separately or in combination,
a capability can specify (i) the possible values at-
tributes can have, (ii) and how to compute their val-
ues. We use a capability, called BlueCap, as an exam-
ple to illustrate the use of these classes. Before detail-
ing these classes, we need to introduce the concepts of
Constraint and Expression which some attribute val-
ues may refer to.

3.2.1 Constraint and Expression

A constraint enables to specify the possible values an
attribute can have. The class Constraint represents
all constraints. The class Expression enables to spec-
ify expressions among them the value of a given con-
straint. The class Expression has two attributes/prop-
erties, ExprType which specifies the type of the ex-
pression and ExprValue which defines the expression
itself. The type of the expression, ExprType, indi-
cates how to build the corresponding queries during a
matching process. Currently, the only type of expres-
sion our meta model supports is SPARQL (queries).
Listing 3 shows an example for expressing a con-
straint on the weight of the package. The constraint
PackgConstraint is defined in line 1. This constraint
has an expression of type SPARQL. The value of the
constraint expression (line 6) indicates that the weight
of the package has to be lower than or equal to 50 Kg.

Listing 3: Example of a constraint.

1 | :PckgConstraint a cap:
Constraint;
2 cap:hasExpression
PckConstraintExpr.
3
4 | :PckgConstraintExpr a cap:
Expression;
5 cap:exprType "SPARQL”;
6 cap:exprValue "?weight
=< 507
7 &% ?weightUnit =
dbpedia:KG”.

3.2.2 Constrained Value

The class ConstrainedValue enables defining the pos-
sible values an attribute can have by specifying a set
of constraints on its value. As depicted in Figure 1,
a ConstrainedValue is constrained by a set of con-
straints. Listing 4 shows how BlueCap can specify
that it can ship packages of weight under 50 Kg. The
value X, of the attribute Item, is a ConstrainedValue
(lines 1 and 3). X is constrained by the constraint
PckgConstraint (line 6) which is detailed in Listing 3.

WEB SERVICE CAPABILITY META MODEL

Listing 4: Example of a constrained value.

1 | :BlueCap ship:ltem :X.
2
3 | :X a ship:Package, cap:
ConstrainedValue;
4 ship:hasWeight [ship:hasValue ?
weight;
5 ship:hasUnit ?
weightUnit];
6 cap:constrainedBy
PackgConstraint.

3.2.3 Dynamic Value

A DynamicValue defines how to compute the value
of an attribute which value depends on (i) consumer
provided attributes, (ii) dynamic values, or (iii) hid-
den variables. As shown in Figure 1 a DynamicValue
refers to an expression that defines how to compute it.
Listing 5 shows an example of how to compute
the shipping price. The value Y, of the attribute price,
is a DynamicValue. It has as evaluator the expression
PriceExpression (lines-6) which isa SPARQL expres-
sion (line 9). Line 10 specifies the formula for com-
puting the price based on the weight of the package.

Listing 5: Example of a dynamic value.

1 | :BlueCap ship:price Y.

3 1Y a ship:ShippingPrice, cap:
DynamicValue;

4 ship:hasValue ?price;

5 ship:hasUnit dbpedia:USD;

6 cap:hasEvaluator :PriceExpression.
7

8 | :PriceExpression a cap:Expression;

9 cap:hasType ”"SPARQL”;
10 cap:exprValue ”?price :=
11 fn:ceiling (?weight)

5.5+41".

3.2.4 Conditional Value

A ConditionalValue assigns an Attribute Value to the
corresponding attribute if a certain condition holds.
As shown in Figure 1, a ConditionalValue has a con-
dition expressed as a constraint and an element which
corresponds to the corresponding attribute value.
Listing 6 gives an example showing how to spec-
ify a shipping price when the target country is a Eu-
ropean country. The value Y, of the attribute price, is
a ConditionalValue (lines 3). It assigns the Attribute
Value, EuropeanPrice (line 6), when the PriceCon-
dition holds (line 5). PriceCondition is a Constraint
which requires that the target country is in Europe
(Lines 8-12). EuropeanPrice is a DynamicValue (line

51

WEBIST 2012 - 8th International Conference on Web Information Systems and Technologies

14) and has as evaluation expression PriceExpression
(line 15) which is detailed in Listing 5.

Listing 6: Example of a conditional value.

1 | :BlueCap ship:price Y.
2
3 1Y a ship:ShippingPrice, cap:
ConditionalValue;
ship:hasValue ?price;
5 cap: hasCondition
PriceCondition;
6 cap:hasElement :EuropeanPrice

8 | :PriceCondition a cap:Constraint;

9 cap:hasExpression [cap:hasType ”
SPARQL™;
10 cap:hasValue ”?
trgCountry
11 skos:subject
dbpedia
12 cat:European

_countries ”].
13
14 | :EuropeanPrice a cap :DynamicValue;
15 cap:hasEvaluator

PriceExpression.

4 DIFFERENT LEVELS OF
ABSTRACTIONS

In our meta model the semantic of a capability derives
not only from the Action Verb concept but also from
its relations (semantic links) with other capabilities.
These relations are established based on capabilities
attributes for some, and on their attribute values for
others.

As mentioned above, capabilities can be defined
at several abstraction levels. A capability that is pro-
posed to an end user is actually the least abstract (i.e.,
a concrete) capability that we call Capability Offer.
In contrast, each abstract capability is called Capabil-
ity Category. Navigation between different abstrac-
tion levels is made through semantic links between
the various capabilities.

In this paper, we present three special relations:
variantOf, specifies and extends, which enable
defining a hierarchy of capabilities in a given domain,
from the most general and abstract one to the most
concrete ones. Definitions 2, 3 and 4 define respec-
tively the relations variantOf, specify and extend.

Please note:

For abbreviation purposes and by misnomer we
say that a certain capability cap has an attribute
at.

52

We refer to the attribute at of cap by cap.at.

We refer to the set of attributes of cap by
cap.attributes.

We say that two capabilities cap, and cap; (or
more) share the same attribute at if both of them
have the attribute at (but possibly with a different
value).

Definition 2. (variantOf) this relation holds between
two resources (A capability is itself a resource.).
It unifies, in fact, the two properties rdf:type and
rdfs:subClassOf3. A resource r; variantOf a re-
source ry if ry is an instance (rdf:type) or a subclass
(rdfs:subClassOf) of r,.

Definition 3. (specifies) Given two capabilities cap;
and capa, cap; specifies cap, if (i) all the attributes
of cap, are also attributes of cap; (In other terms
cap; inherits all the attributes defined in capy), (ii) for
every shared attribute at, the value of cap; :at is either
equal to or variantOf the value of cap,:at, and (iii)
there exists at least one shared attribute at’ such that
the value of capy:at’ variantOf cap,:at’.

Definition 4. (extends) Given two capabilitites cap;
and capy, cap; extends cap; if (i) capsy has all the
attributes of cap, and has additional attributes, and
(ii) for every shared attribute at, the value of cap;:at
is equal to the value of capy:at.

The relations specifies, extends enable defin-
ing a hierarchy of capabilities. In Figure 2, we show
an example of a hierarchy of capability descriptions.
As a root of this hierarchy, we define Capability A. It
represents an abstract capability description for ship-
ping goods from any source and destination at an in-
ternational scale. This capability can be extended ei-
ther to Capability B or Capability C. Both extend the
initial capability by 1 or 2 attributes. As an exam-
ple of specification relation between capabilities, we
refer to the link between Capability D and Capability
B. Capability D specifies Capability B as it becomes a
European shipping capability instead of International.
It is also quite clear that Capability E extends Capa-
bility D.

Similar to domain ontologies which define shared
concepts and shared attributes/properties, top level ca-
pability in a given domain can also be defined as an
ontology where an agreement about their meaning is
reached and shared. Like any other ontology con-
cepts, this capability top level layer can be reused to
define other capabilities.

While this coarse-grain semantics is adequate for
conducting discovery, it is insufficient when auto-

3We consider instantiation a special kind of sub class-
ing where the instance is in fact no more than a sub class
(subset) with only one element.

Capability A
(e.g., an International
shipping service)
Action verb = “ship”
From = International
To = International

extend \%nd

Capability B Capability C
(e.g., an International (e.g., an International
shipping service for heavyweight and freight
packages and documents) shipping service)
Action Verb = “ship” Action Verb = “ship”
From = International From = International
To = International To = International
MaxWeight = “68 Kg” MaxWeight = “1 t”
MinWeight = “68 Kg"

specify T

Capability D
(e.g., a European shipping
service for packages and
documents)
Action Verb = “ship”
From = Europe
To = Europe
MaxWeight = “68 Kg”

extend /'\

Capability E
(e.g., a European shipping
service for packages and
docs with pick up option)
Action Verb = “ship”
From = Europe
To = Europe
MaxWeight = “68 Kg”
PickUpDate = Date

Figure 2: Example of shipping capabilitities hierarchy.

mated chaining is required such as in composition
and planning scenarios. By coarse grain semantics we
mean defining shared agreement on coarse grain enti-
ties such as capability in our case. Automated chain-
ing requires finer-grained semantics. For that pur-
pose, we consider two additional attributes cap:before
and cap:after. That we are not discussing in detail in
this paper. But simply put, taken together these two
attributes capture the change to the state of the world
that the corresponding action performs.

5 CUSTOMER REQUEST,
CAPABILITY CATEGORY AND
CAPABILITY OFFER

An important concept, complementary to the concept
of capability in many scenarios, is the concept of Con-
sumer Request which specifies what the client wants
to achieve. This concept deserves a conceptual model
for its own. In the following, we need to refer to some
parts of the customer request, in an informal way, to
show the interplay between it and capabilities. But we
do not elaborate beyond that informal description.

WEB SERVICE CAPABILITY META MODEL

In order to illustrate the relation between capabil-
ity category, offer and customer request, we give an
overview of the matching process between a customer
request and a capability category. The purpose is not
to cover in detail the matching or discovery phase.

Let’s consider for our case a shipping company
called Blue that has a special shipping offer called
BlueOffer. Listing 7 illustrates how we can define
the capability BlueOffer according to our capability
model. BlueOffer consists of offering: “a shipping
service from Ireland to Singapore of a package of 10
Kilograms. The shipping will cost 200 USD and the
package will be delivered the earliest on the 12th of
December 2011.”

The description of concrete capabilities such as
BlueOffer (See Listing 7) depends on the correspond-
ing customer request. More specifically the values
of certain attributes are in fact defined in the cus-
tomer request. For instance the values of the attributes
ship:from and ship:to of the capability BlueOffer (de-
scribed in Listing 7) are specified in the given cus-
tomer request.

Before going into detail about the matching phase
(See Section 5.2), we need to introduce the attribute
types based on who is providing the value of that at-
tribute in Section 5.1.

Listing 7: BlueOffer capability description snippet.

1 | :blueOffer a cap:Capability;
2
3 cap:do [a cap:ActionVerb;
4 skos:prefLabel “*‘Ship’’];
5
6 ship:from [a ship:SourceAddress;
7 vcard:address dbpedia:
Ireland];
8
9 ship:to [a ship:TargetAddress;
10 vcard:address dbpedia:
Singapore];
11
12 ship:item [a ship:Package;
13 ship:hasWeight [ship:
hasValue 10;
14 ship:hasUnit dbpedia:
Kilogram]];
15
16 ship:price [a ship:ShippingPrice;
17 ship:hasValue 200;
18 ship:hasUnit dbpedia:
usD];
19
20 ship:deliveryDate [a ship:
ShippingDeliveryDate;
21 ship:earliest
£€2011 12 13
22 ““xsd:date].

53

WEBIST 2012 - 8th International Conference on Web Information Systems and Technologies

5.1 Attribute Types

We distinguish three types of attributes depending on
the source of their values. In general, three sources
are involved in a scenario of capability consumption.
These sources are the consumer who has a request and
is looking for a (concrete) capability to achieve, (ii)
the provider who provides capabilities for achieving
consumer requests and (iii) the interaction context.

The values of a concrete capability attributes are
provided/computed by one of these players. Accord-
ing to who provides the value of an attribute, we dis-
tinguish three subclasses of attributes namely Co, Pro
and Co&Pro attributes. It is important to emphasize
that this classification is based on which role provides
the value of the corresponding attribute:

Consumer or Context (Co) attributes are attributes
which values are specified by the consumer or
provided by the interaction context. For instance
the attributes ship:to and ship:from in the BlueOf-
fer capability are Co attributes.

Provider (Pro) attributes are attributes which val-
ues are specified or computed by the capability
provider. For instance the attribute ship:Price in
the BlueOffer capability is a Pro attribute.

Consumer then Provider (Co&Pro) attributes are
attributes which values are firstly specified by the
consumer but may be changed by the provider.
For instance, the attribute ship:DeliveryDate is
a Co&Pro attribute; the consumer can select
his preferred delivery date and the provider can
change it if some of his working constraints do
not fit the exact proposed date.

5.2 Matching

By analogy to Object Oriented Programming, a capa-
bility category can bee seen as a class and capabil-
ity offers as objects. Similar to objects, which are
instantiated from classes, capability offers are gen-
erated from capability categories. Certain capability
categories are, declarative specifications for generat-
ing capability offers for particular consumer requests.
If possible, a capability offer is dynamically generated
from a capability category for a particular consumer
request. We say that a particular capability offer is
variant of the capability category it derives from.

Figure 3 gives an overview of the matching pro-
cess and shows which artifact is used in each step.
The matching phase has as input the customer request
and a capability category and as output the customer
offers variant that matches the request.

As shown in Figure 3, a consumer request speci-
fies (i) the values of Co attributes, (ii) hard constraints

54

on some Pro and Co&Pro attributes, and (iii) prefer-
ences on Co, Pro and Co&Pro attributes. A capabil-
ity category specifies (i) the possible values Co and
Co&Pro attributes can have while considering their
interdependencies, and (ii) the values or how to com-
pute the values of Pro and Co&Pro attributes.

The matching process consists of:

The First Step checks whether the capability cat-
egory supports the values of the Co and Co&Pro
attributes specified in the customer request. If the
answer is negative then there is no capability of-
fer variant of the given category that matches the
customer request. If the answer is positive, the
process moves to the following step.

The Second Step consists of generating the ca-
pability offers that correspond to the customer re-
quest. A capability category and its offers have
the same attributes but with different values for
some of them. The generated capability offers
will be constructed as follows. The value of Co at-
tributes will be those specified by the customer re-
quest. The value of the Pro and Co&Pro attributes
will be specified or computed as described in the
capability category.

The Third Step consists of checking which of
the generated offers satisfy the hard constraints
specified by the customer. Those capability offers
which do, will be maintained as candidates. The
matching phase should be followed by a ranking
phase where the capability offer candidates will
be ranked based on the consumer preferences.

6 RELATED WORK

Even though the concept of capability has a central
role in enterprise information systems, it has not got
much attention and few works have been interested in
modelling capabilities as such.

The Semantic Web uses ontologies and languages
allowing several ways to describe web services.
For example WSDL-S* and its successor SA-WSDL
(Kopecky et al., 2007b; Lathem et al., 2007) use
ontologies to enrich WSDL description and XML
Schema of Web services with semantic annotations.
Such techniques consider a capability as an invocation
interface. However, as explained in this paper a capa-
bility is not an interface. It is an entity featured via a
set of attributes. We believe that our vision and un-
derstanding of capability is more accurate. The back-
ground of the genesis of SOA, which is distributed
method invocation, has influenced these techniques.

4http:/Avww.w3.0rg/Submission/WSDL-S.

WEB SERVICE CAPABILITY META MODEL

Consumer Request

BF Category

Hard Values of Possible Values Values or how to compute
. Co Preferences of Co and CoPro | | the values of Pro and CoPro
Constraints -) .
attributes attributes attributes
\ / A
1. Does the BF category support the input NO_ There is
values requested by the consumer? no match
Yes
Y y
2. Generate the BF offer(s) that corresponds to the consumer
request B
Yes V
BF offer
y v

3. Does the generated BF offer satisfy the hard
constraints specified by the consumer request?

N -
0| There is
no match

Control flow i
BF Offer(s)

=P R
fffffff » Data flow

v

BF offer

That matches the CR

Figure 3: Overview of the matching process of a customer request and a capability.

In a more refined fashion, languages such as
OWL-S (Martin et al., 2007), WSMO (Roman et al.,
2006), SWSO®, provide a semantic description of
Web services. However, these approaches do not go
beyond the classical Input, Output, Precondition and
Effect paradigm to define services capabilities. They
do not feature the business aspects of a capability.
In addition, they describe capabilities at an abstract
level. They are not able to model concrete capabil-
ities that correspond to specific needs of consumers.
However, what clients are interested in are concrete
capabilities. The matching of consumer requests has
to be against concrete capabilities.

Oaks et al., (Oaks et al., 2003) propose a model
for describing service capabilities going one step bey-
inf the IOPE paradigm by distinguishing in particular
the corresponding action verb and informational at-
tributes (called roles in the paper (Oaks et al., 2003)).
However, the semantics of capabilities remain defined
via the IOPE paraddigm and therefore has the same
problems of the previously described approaches.

The notion of (service) offer is currently not ad-
dressed in service description languages such as Uni-
versal Service Description Language(USDL®). Ser-
vice descriptions have a varying level of concreteness

Shttp://www.w3.0rg/Submission/SWSF-SWSO
B\www.internet-of-services.de

depending on the stage of a matchmaking and con-
figuration. This notion is currently missing from the
USDL. Introducing different levels of concreteness in
USDL Functional Module should make USDL appli-
cable for describing highly configurable services.

Other related works worth mentioning are
(Kopecky et al., 2007a; Vitvar et al., 2007; Zaremba
et al., 2006). These works have identified the gap
between current modeling techniques and real world
requirements and initiated the discussions about ab-
stract services and concrete offers descriptions. Sim-
ilar to all related work, the concept of capability was
not tackled as first-class entity. The focus was rather
on the service model. In addition, (Vitvar et al., 2007)
and (Zaremba et al., 2006) rely on and extend the In-
put, Output, Precondition and Effect paradigm with-
out making explicit and clear the business features of
services functionalities. They also do not explicitly
distinguish between abstract services and service of-
fer, nor do they define the links between them.

7 CONCLUSIONS

In this paper, we presented an original meta model for
describing Capabilities which presents several advan-
tages.

55

WEBIST 2012 - 8th International Conference on Web Information Systems and Technologies

First, contrary to the Input, Output, Precondition
and Effect paradigm it features the business and func-
tional characteristics which consumers are mostly in-
terested in and which are specified in their requests.

Second, our meta model can deal with capabilities
at different abstraction levels in a uniform way. In ad-
dition, it establishes relations between Capabilities at
different abstraction levels. In particular, it provides
the required declarative specification to dynamically
generate concrete Capabilities from abstract ones.

Furthermore, our meta model defines semantic
links between Capabilities. By using these relations
Capability owners can rapidly and easily define new
Capabilities by reusing previous definitions. In ad-
dition, these relations define a cloud of Capabilities
where navigation techniques can be developed as an
alternative to goal based discovery techniques.

A cloud of capabilities description can be easily
queried using SPARQL. Actually, we use RDF as a
lightweight language for describing and linking capa-
bilities descriptions whereas we can use SPARQL for
advanced querying-including the usage of SPARQL
as a rule language (Axel Polleres, 2007).

Finally, since our meta model is RDF based it
can be easily extended, while preserving the attribute-
featured principle, by considering other types of at-
tributes (such as optional and mandatory attributes)
and other types of attribute values.

We did not give much attention in this paper to
the concept of Action Verb. We do not want to tight
the use of this concept to a simple verb. It can be an
expression describing the actual service action. It is
also possible to enrich this concept by other related
terms such as synonyms. Natural Language Process-
ing (Sugumaran and Storey, 2003) can be applied to-
gether with WordNet verb synsets for generating pos-
sible synonyms to enrich the action verb concept of
the capability description.

It is possible to use concepts from a domain re-
lated ontology/taxonomy or a categorization schema
like NAICS’ or UNSPSC? for this Action Verb in or-
der to be more compliant to the domain vocabulary.

Otherwise, as it has been stated by (Oaks et al.,
2003), we can use the MIT Process Handbook (Mal-
one et al., 2003) for determining the action verb of a
service capability. A capability can be matched to a
particular process in the process handbook. We can
also use the meronymy and the hyponymy relations
described in that process handbook for creating the
hierarchy of capabilities.

"North American Industry Classification System,
http://www.census.gov/eos/www/naics/

8United Nations Standard Products and Services Code,
http://www.unspsc.org/

56

As part of our future work, we plan to:

investigate other relations that might be useful for
creating the capabilities hierachy/cloud. The pos-
sible other relations under definition are: share,
shareSame, shareDifferent, differMore and differ-
Less. Some of these relations do not bring much
information on themselves. They are used in fact
to compute other relations.

explore what we call extended relations in con-
trast to basic relations that we are currently con-
siderering. Basic relations are coarse-grain rela-
tions/links while extended relations are more fine-
grained. An extended relation specifies which at-
tribute the basic relation, it derives from.

provide an automation support for maintaining the
capabilities hierarchy. We aim to provide an au-
tomation support to add or remove any capability
from the hierarchy/cloud.

ACKNOWLEDGEMENTS

This work is funded by the Lion Il project supported
by Science Foundation Ireland under grant number
08/CE/11380.

REFERENCES

Axel Polleres (2007). From SPARQL to rules (and back).
In WWW 2007, Banff, Alberta, Canada. ACM.

Bizer, C., Heath, T., and Berners-Lee, T. (2009). Linked
Data - The Story So Far. 1JSWIS, 5(3).

Kopecky, J., Simperl, E. P. B., and Fensel, D. (2007a). Se-
mantic Web Service Offer Discovery. In SMRR, vol-
ume 243 of CEUR Workshop Proceedings.

Kopecky, J., Vitvar, T., Bournez, C., and Farrell, J. (2007b).
Sawsdl: Semantic annotations for wsdl and xml
schema. IEEE Internet Computing, 11(6).

Lathem, J., Gomadam, K., and Sheth, A. P. (2007). Sa-rest
and (s)mashups : Adding semantics to restful services.
In ICSC. IEEE Computer Society.

Lebo, T. and Williams, G. T. (2010). Converting govern-
mental datasets into linked data. In I-SEMANTICS.
ACM.

Malone, T. W., Crowston, K., and Herman, G. A., editors
(2003). Organizing Business Knowledge: The MIT
Process Handbook. The MIT Press, 1st edition.

Martin, D., Paolucci, M., and Wagner, M. (2007). Bringing
semantic annotations to web services: Owl-s from the
sawsdl perspective. In ISWC/ASWC, volume 4825 of
LNCS. Springer.

Oaks, P., ter Hofstede, A. H. M., and Edmond, D. (2003).
Capabilities: Describing What Services Can Do. In
ICSOC, volume 2910 of LNCS. Springer.

Roman, D., de Bruijn, J., Mocan, A., Lausen, H.,
Domingue, J., Bussler, C., and Fensel, D. (2006).
Www: Wsmo, wsml, and wsmx in a nutshell. In
ASWC, volume 4185 of LNCS. Springer.

Scheer, A.-W. and Schneider, K. (2006). ARIS Architec-
ture of Integrated Information Systems. Bernus Peter
Mertins Kai Schmidt Gunter.

Sheridan, J. and Tennison, J. (2010). Linking UK Govern-
ment Data. In LDOW 2010.

Sugumaran, V. and Storey, V. C. (2003). A semantic-
based Approach to Component Retrieval. SIGMIS
Database, 34.

Vitvar, T., Zaremba, M., and Moran, M. (2007). Dy-
namic Service Discovery Through Meta-interactions
with Service Providers. In ESWC, volume 4519 of
LNCS. Springer.

Zaremba, M., Vitvar, T., Moran, M., and Haselwanter, T.
(2006). WSMX Discovery for the SWS Challenge. In
ISWC, Athens, Georgia, USA.

WEB SERVICE CAPABILITY META MODEL

57

