
INTEGRATING COMMUNICATION SERVICES
INTO MOBILE BROWSERS

Joachim Zeiß1, Marcin Davies1, Goran Lazendic1, Rene Gabner1 and Janusz Bartecki2
1FTW Telecommunications Research Center Vienna, Vienna, Austria

2Kapsch CarrierCom, Vienna, Austria

Keywords: Convergence, VoIP, Browser-APIs, SIP, IMS, HTML5, Websockets, Real-time Communication.

Abstract: This paper introduces a novel approach on how to integrate communication services into Web applications
running in the browser. The solution is based on two major design decisions: To resolve the need for a
business-to-business (B2B) relationship between Web provider and communication service provider, and to
distribute the Model, View and Controller components of an application across different processes. Our ap-
proach helps to answer the question on how to efficiently integrate network operator’s assets into applications
from over the top (OTT) players. The separation between application control by the Web page and the actual
command execution by the native capabilities of the user device opens new opportunities for global reacha-
bility of telco services, easy deployment and re-deployment of applications with zero configuration need for
users and developers as well as privacy protection by keeping sensitive data within the user domain, e.g. the
user’s communication device.

1 INTRODUCTION

More and more innovative applications created for the
Web are integrating typical telco services. Users in
turn, get accustomed to the business model of the Web
and perceive telecommunication services offered out-
side the web context as reliable and of high quality
although being a bit old fashioned, detached from the
social web community and too technical. Application
developers concentrate on globally marketable prod-
ucts with simple and unified interfaces. Telcos, even
when operating globally, serve a smaller community
compared to Google, Apple, Facebook or other over
the top service providers. They struggle to unify their
activities to participate in the application business and
to avoid becoming only bit pipes.

Therefore, the following question needs to be an-
swered: How can telco assets be efficiently and com-
mercially feasible integrated in applications from over
the top (OTT) players? Or, to put it down in a more
provocative statement: OTT players providing Web
applications use other OTT player communication
technologies to accomplish their services. How can
operators achieve that Web applications from OTT
players and content providers preferably use their
communication services? In order to make this possi-
ble the ”Advanced Prosumer Service Integration Inte-

lligence” project, called APSINT, provides a software
architecture that integrates seamlessly into the mobile
operators network infrastructure.

Telco operators do a good job in reliability, qual-
ity of service, network convergence and interoperabil-
ity when it comes to connecting people by text, voice
and video. On the other hand operators lack in of-
fering their services globally and easy to be used by
Web developers and in delivering simple yet powerful
human interfaces to end-users. The APSINT architec-
ture resolves the need for B2B relationships between
operator and application providers and developers for
them to use operators services. This is done by intro-
ducing the user as a man-in-the-middle between telco
service and Web page. While browsing a Web site,
pages rendered in the users browser will use commu-
nication facilities of the local device but which are
programmed and controlled by Javascript code within
the Web page. By this way the users B2C business re-
lationship to the telco is acting on behalf of a B2B
relationship between Web application and operator.
This separation between control (by the Web page)
and actual execution (on the user’s device) has the ad-
vantages of (i) global reachability of telco services,
(ii) easy deployment, (iii) zero configuration need for
user and developer as well as (iv) privacy protection
as there is no need for the user to share authentica-

753Zeiß J., Davies M., Lazendic G., Gabner R. and Bartecki J..
INTEGRATING COMMUNICATION SERVICES INTO MOBILE BROWSERS.
DOI: 10.5220/0003934907530762
In Proceedings of the 8th International Conference on Web Information Systems and Technologies (WEBIST-2012), pages 753-762
ISBN: 978-989-8565-08-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

tion credentials with Web pages for 3rd party service
usage.

The remaining paper is organized as follows: Sec-
tion 2 provides an overview over related work in this
area, Section 3 describes our solution and architec-
ture, Section 4 provides implementation details, Sec-
tion 5 discusses our outcome and experiences made
while evaluating the prototype and finally Section 6
gives an outlook on further work.

2 RELATED WORK

This section aims to introduce and compare existing
solutions to enable mobile browser-based communi-
cation. There are two main approaches to realize
real-time communication via the Web browser. The
first one (A) takes advantage of remote communica-
tion services offered by 3rd parties via the Web. In
this case, as mentioned in Section 1, a B2B relation-
ship is needed between the developer of the Web site
and the telco. Approach (B) utilizes communication
capabilities available at the client device (e.g. smart
phone).

As depicted in Figure 1, method (A), the devel-
oper of a Web site uses a well defined Javascript li-
brary to access server side communication features
(e.g Tropo (Tropo.com, 2011)). Real-time commu-
nication is initiated by sending an HTTP request to
the Web server, which establishes a network initiated
call between the two users. Another approach to en-
able media handling in the browser is to use Adobe’s
generic Flash Plugin, which is more flexible as almost
every browser is Flash enabled. This way it is possi-
ble to stream media directly to and from the browser.
However Adobe announced in a blog post (Winokur,
2011) that they will discontinue the development of
their mobile Flash plugin because of the increasing
popularity of HTML5.

3rd

party

Web
Smart
Phone

Smart
Phone

1) request

2a) initiate 2b) initiate

3) established

Web
Browser

Figure 1: Communication initiated remotely (method A).

Looking at method (B) as shown in Figure 2, a
common solution to integrate local telephony fea-
tures into the browser is via plugins for already in-
stalled applications like Skype. This way the user can
access the locally installed application via the Web

Smart
Phone

Smart Phone

2) initiate
3) established

Web Browser

Local App

1) request

specific Plugin

Figure 2: Communication initiated locally (method B).

browser. Main drawbacks for plugin-based solutions
are: (i) only browsers with the plugin installed are
supported, (ii) media (e.g. voice) cannot be handled
by the browser directly, (iii) the communication soft-
ware has to be installed at the client, and (iv) most
plugins are not available for mobile browsers.

A hybrid solution of (A) and (B) is offered by Sip-
gate (Sipgate.com, 2011). Sipgate is using a browser
plugin to interface with their locally installed soft-
phone, but offers also the integration of SIP based
hardware phones. Thus by using the Sipgate plugin,
it is possible to trigger calls either originated locally,
or remotely at the 3rd party infrastructure at Sipgate.

Integration with the existing communication
provider as for method (A) has the obvious advantage
of an easy way to achieve terminal connectivity, qual-
ity of service and interworking with other services to
provide users with a mature solution. The obstacles
of this approach are resulting as mentioned from the
necessity to enter into a B2B relationship with every
provider who would like to enable browser based real-
time communication for his users. APSINT’s goal
was exactly to remove this obstacle. The proposed so-
lution is generic enough to be applied with different
types of telecommunication architectures, e.g. VoIP.
Special attention was paid to integration with the IMS
architecture. IMS is the most advanced carrier-grade
service delivery architecture which becomes the stan-
dard used by all mobile network operators.

Lately a couple of people pushed the standard-
ization of browser based APIs to access local mo-
bile device capabilities including real time commu-
nication. A team from the Mozilla foundation started
to work on their WebAPI (Mozilla.org, 2011) which
allows access to telephony and messaging APIs via
JavaScript, besides that WebAPI also offers interfaces
to battery status, contacts, camera, filesystem, ac-
celerometer, and geo-location. WebAPI can control
local communication, but audio is not handled in the
browser.

Furthermore, (Nishimura et al., 2009) suggest a
system that uses an architecture similar to the one pre-
sented in this paper. They also envisioned the pos-
sibility to deploy such software either locally on the
client or remote at a server. However their Web-IMS

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

754

cooperation is based on flash plugins and transcoding
of media. Our solution presented in this paper does
not need any modification or additional plugin in a
browser and uses HTML5 instead. Also transcoding
is not necessary in our solution.

Another initiative is W3C WebRTC (Google,
2011), whose main purpose is to enable streamed real-
time communication from and to the browser without
interacting with local device capabilities.

3 OUR SOLUTION &
ARCHITECTURE

This section gives an overview of the APSINT archi-
tecture. Its components and interfaces are depicted
in Figure 3. An APSINT enabled Web site is down-
loaded from Webserver A via a standard HTTP con-
nection (a). A Web browser, running on a smart-
phone, renders and executes a Javascript (JS) as soon
as it is downloaded to the client. The developer of
the Web site can easily integrate real-time commu-
nication by just using JS API calls. The APSINT.js
connects to the endpoint via local Websockets (b).
This communication is transparent to the Web site
developer. There is a 1:1 relationship between Web
browser and endpoint. Only one Web site can con-
nect to the endpoint at the same time. Usually this is
the last page which sent a communication request to
the endpoint. In case of an existing session (e.g. an
active call) the Web site used to initiate/terminate the
call would keep full control over the endpoint. The
phone’s local features are accessed via the endpoint
which uses device specific APIs (c) e.g. for SMS mes-
saging or circuit-switched (CS) voice calls. An inter-
face (d) connects the endpoint with the Telco operator.
In our case this is realized via SIP/IMS signaling.

3.1 APSINT Protocol

The software architecture of APSINT is shown in
Figure 3, which contains the endpoint component
to link communication between a Web browser and
a signalling stack for real-time communication such
as SIP. In general the endpoint must implement
asynchronous event driven communication between
Javascript on browser side and the SIP stack on the
other side. Browser side communication is interfaced
by Websockets (Fette and Melnikov, 2011) as the
transport protocol for bidirectional message delivery
to and from the SIP stack. Websockets avoid strong
binding of the endpoint to the browser on the one side,
like with browser specific plugins, and minimize pro-
tocol specific overhead on the other side, as it is the

Smart Phone A
Webserver

A
Web Browser

APSINT.js

A.html,
A.css / A.js

Websocket
Client

Endpoint

Stack
e.g.:
SIP

Websocket
Server

Device
HW

MSG

GPS

(a)

(b)

(c) Telco
Provider

(d)

Figure 3: APSINT system architecture.

case when long polling is used.
The Websockets protocol as proposed in (Fette

and Melnikov, 2011) enables Web browsers to estab-
lish a bidirectional channel to servers by upgrading
a HTTP connection using an initial handshake. In
APSINT the endpoint software component is required
to implement a Websocket server, while the client
side of Websockets is implemented by Web browsers.
As the Websockets protocol is part of the HTML5
standard all major browsers offer a Websocket client.
Hence the APSINT solution benefits from bidirec-
tional connections and the low latency of the Web-
sockets protocol while making browser specific plug-
ins obsolete.

In the APSINT endpoint the Websocket server and
the SIP stack run independently in their own event
loops. Messages originating from Javascript are re-
ceived by the Websocket server stack and passed over
to the SIP stack in an asynchronous manner. In the
opposite direction SIP events are interpreted by the
SIP stack and passed as messages to the Websocket
server service.
Messages originating from Javascript are
� RESERVE, Web page is registered to the end-

point,
� INITIATE, call is initiated by the Web page,
� MESSAGE, message is sent by the Web page,
� END, call is ended by the Web page.

Messages originating from the SIP stack consist of
� CALL EVENT, triggers various events in a call

session,
� STATUS, forward states of endpoint and SIP stack

to the registered Web page,

INTEGRATING�COMMUNICATION�SERVICES�INTO�MOBILE�BROWSERS

755

ep

oco ico

1

1

1 1

n n
ws

ws

mx

ws
web
page

1
1

Figure 4: APSINT Javascript call objects.

� MESSAGE, forward received message by SIP
stack to Web page,

� END, ending call session by remote party.
The APSINT architecture relies on SIP for sig-

nalling purposes. Although other signalling protocols
exist, SIP was adopted by most telephony providers
in connection with IMS. Hence for the APSINT end-
point it is necessary to integrate a SIP stack to make
use of the telco IMS infrastructure. The SIP stack
is an integrated service of the APSINT endpoint run-
ning uncoupled from the Websocket service, to pro-
vide asynchronous event triggering coming from the
SIP layer. Furthermore the SIP stack service controls
the media engine within the APSINT endpoint. The
media engine is responsible for receiving and trans-
mitting RTP media streams, and to play ring tones and
ringback tones when triggered by the SIP stack.

3.2 Javascript Library and API

The APSINT Javascript library and API (apsint.js) is
composed out of a set of object types and their rela-
tions as shown in Figure 4. A Web page would obtain
a single endpoint object (ep) on successfully reserv-
ing the endpoint service. This ep object may be used
to initiate new calls or sending messages. As well,
call backs to be overriden by the Web page will in-
form about incoming calls and messages.

Initiating a new call via the ep object will instan-
tiate a new outgoing call object oco which is handed
over to the Web page. One oco object per call session
will exist. Same as for the ep object the Web page is
responsible to override the callbacks of that object to
get notified on important call events.

On receiving a new incoming call the APSINT li-
brary will invoke a dedicated callback on the ep object
passing along a newly created incoming call object
(ico). For each incoming call session one ico object
is instantiated. Similar to the oco this object contains
callback methods for notifying the Web page on cer-
tain events and to provide utility methods to answer
or end a call.

In case a callback function in any of the ep, ico
or oco objects is not overriden by the Web page, the
APSINT library will invoke a default implementation
which may lead to automatically accepting or declin-
ing a call or displaying information in a default man-
ner.

The mixer object (mx) is instantiated with the ep
object at the time the Web page grabs the endpoint
and is responsible for coordinating multiple call ses-
sions, keeping track of active calls and other call han-
dling tasks. By setting certain coordination methods
to different (predefined) functions, behavior of how to
deal with multiple session can be influenced. The ar-
chitecture also gives respect to future enhancements
of the library for toggling between calls or setting up
three-way calls or conferences. Currently options for
declining and reporting new calls to the Web page or
taking over new calls while quitting existing sessions
is implemented. The mixer object does its job by in-
tercepting and manipulating the messages of endpoint
end call objects towards and from the endpoint.

All objects except the mx object contain their own
Websocket (ws in figure 4) for communication with
the endpoint. Lifetime of the ep, oco and ico ob-
jects is tightly coupled to the lifetime of their Web-
socket. As long as the Websocket towards the end-
point is open the related object exists.

4 IMPLEMENTATION

4.1 Endpoint

The APSINT endpoint is designed as a background
service. As shown in Figure 5 the endpoint imple-
ments three services:

� Websocket Server, for receiving and sending mes-
sages to the Web page and the SIP stack. The
Websocket server is an asynchronous task in non-
blocking mode.

� SIP Stack, for handling SIP protocol messages
and controlling the media engine. The SIP stack
has to be an asynchronous service like the Web-
socket server.

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

756

� Media Engine, for sending/receiving RTP media
streams and for audio playback of ringtones. The
media engine is completely controlled by the SIP
stack.

Media engine

Websocket
Server

SIP Stack

ENDPOINT

Async messaging

Figure 5: Overview of the APSINT endpoint.

A prototype of the APSINT endpoint was imple-
mented for x86 personal computers on Linux and for
Android 2.2 and above. Software and libraries used
for the Linux PC prototype are:

� Sofia-SIP (Pessi et al., 2011), a SIP stack to imple-
ment SIP functionality in the APSINT endpoint
software,

� libwebsockets (Green, 2011), a C library imple-
menting the Websockets protocol,

� GStreamer framework for the media engine im-
plementation.

A second prototype for the Android platform utilizes
the following software components:

� IMSDroid (Diop, 2011), an IMS compliant SIP
stack with integrated media engine for Android
phones and tablets.

� Java-Websocket (Rajlich, 2011), a pure Java li-
brary implementing the Websockets protocol both
for servers and clients.

On both platforms the endpoints can handle multiple
SIP sessions and support simple SIP messaging. The
endpoint on Android was extended and is capable to
access system services offered by the phone platform.
As an example, messaging on Android includes SMS
sending and receiving.

4.2 Javascript Library

Any Web page on the system, even across browsers,
may reserve the endpoint. However, only one Web
page at a time may use the endpoint services. The
last one asking for the endpoint may use it, if it is not

busy with serving another Web page. The rules for
reserving the endpoint are:

� If no other Web page has reserved the endpoint
then the actual requesting Web page can use the
endpoint

� If some other Web page has reserved the endpoint
but is no longer present (i.e. the page forgot to
free the endpoint or crashed before freeing) then
the actual requesting Web page can use the end-
point. The endpoint running in a separate process
will detect that the Web page that has reserved it
is no longer present because it lost the Websocket
connection.

� If some other Web page has reserved the endpoint
but is not using it any more, i.e. has no open com-
munication session, then this Web page loses its
reservation. It may regain the endpoint services
by reserving the endpoint again some time later.

� If some other Web page has a communication ses-
sion still running the reservation request will be
denied

The initial call to obtain endpoint services is the
invocation of the reserve function as part of the END-
POINT class. User ID and user credentials may be
passed depending on optional security mechanisms.
In addition, any local or remote Websocket URL to-
wards the endpoint can be configured. If not provided
a default local address will be used. However, the
website must provide an activation callback for reser-
vation. Once connection with the endpoint is estab-
lished this function is called by the APSINT library
providing the target function with the actual endpoint
object (ep as depicted in figure 4).

The ep object may in turn create ico and oco, in-
coming and outgoing call objects depending on who
is the call originator (ico for incoming calls, oco for
self initiated outgoing calls). The three objects have a
common basic structure, which is related to the need
of communicating independently with the APSINT
endpoint. This is guaranteed by each object instance
using its own Websocket. The following list shows
common and distinct functions of the APSINT com-
munication objects:

Common functions for ep, ico and oco objects
are:

� parseEvent and dispatchEvent for message
and event handling in interaction with the end-
point

� makeWebSocket used by the object creation fac-
tory to obtain and connect the instance to a Web-
socket

� sendMSG for sending a (SIP or SMS) message

INTEGRATING�COMMUNICATION�SERVICES�INTO�MOBILE�BROWSERS

757

� onDestroy - is called when the object is about
to be released by the library or if the Websocket
connection went down.
Functions of the ep object only are:
� initiateCall to make a new call (session) pro-

viding address string media (audio and/or video)
and a notification callback which will deliver the
new oco call object for the session once the end-
point started to process the connection

� sendMessage to send a text message via SIP or as
SMS (Android only)

� onIncomingCall invoked on being called via au-
dio or video providing the new ico object used to
deal with the new connection

� onMessage called if a SIP Message message or an
SMS was received

� onStatusChange used to communicate status
changes of the endpoint
Functions common for both ico and oco objects:
� endCall to take down the communication session

regardless of its current state
� onCallEnded to inform about the termination of

he session by the communication partner at any
point in time

� onError to inform about call related errors
� audio and video prepared for future releases to

turn on/off media during the session
Functions for ico objects only:
� answerCall used to acknowledge the incoming

call request leading to immediate call establish-
ment

� onRinging to inform the Web page that the call
originator has been signaled a ”free line”
Functions for oco objects only:
� onRingBack to inform that the called party has

signalled a ”free line”
� onCallAnswered to inform that the call has been

answered be the terminator and that the session is
now established
The mixer object (mx) for multi session coordina-

tion is a little different. It does not inherit from the
current base class of the APSINT objects and does not
use its own Websockets. However, the factory for cre-
ating ep, ico and oco objects ties in observation calls
so that the mx object is informed on each incoming
and outgoing message that any of the other objects is
sending towards or receiving from the endpoint. The
mx object can also modify, insert or remove these mes-
sages to perform coordination actions. The member
functions of the mixer object are:

� getCalls to obtain a list of all currently managed
call objects

� getActiveCall to obtain the call object which is
currently active, meaning the call currently trans-
mitting or receiving media

� setActiveCall to make some other connection
(i.e. call session) the active call

� declineAdditionalCall may be used to decline
all incoming calls during an ongoing session

� acceptAdditionalCall makes the new incom-
ing call the active one and terminates the former
active session

� onAdditionalCall may be set to one of the two
functions above or to some other function cus-
tomized by the Web page
All functions/methods starting with ”on” in its

name are notification callbacks meant to be overrid-
den by the Web page. In a minimum configuration
the onIncomingCall of the ep object needs to be pro-
vided to get interaction capabilities with the endpoint.
More callbacks may be customized by the web de-
signer as appropriate (cf. next section).

4.3 Web Application

We have implemented a web application to showcase
the possibilities of our solution. Sushify is a Twitter-
like microblogging platform written in Ruby on Rails.
The main entities of Sushify are:
� User.

� Micropost.

� Relationship.
These are also reflected as Rails models and stored

in a SQLite database. Sushify is fully based on a
REST architecture (Fielding, 2000) thus rendering all
the models as resources that can be manipulated via
standard HTTP methods. Similar to Twitter a user can
create microposts and users can follow each other thus
creating a relationship. Posts from followed users are
shown in an aggregated micropost feed.

Building upon this feature set we have included
the possibility to trigger calls and send messages us-
ing the Javascript API discussed above. Fig. 6 shows
the Sushify UI with an active call window. Basically
three Javascript files are used and included in the file
config/application.rb.

� apsint.js The Javascript library file outline
above

� apsint-vts.js Contains specific call and mes-
sage handling code by overwriting methods of
apsint.js such as answercall().

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

758

� apsint-ui.js Methods of apsint-vts.js usu-
ally call UI-related functions in this file, e.g.
opening a message box with the caller id. User in-
put (like declining a call) is handled here as well,
and the corresponding method in apsint-vts.js
is called (e.g. declinecall()).

Figure 6: Sushify with active call window.

Users can configure a SIP address where they can
be reached. We have also implemented a feature that
allows an auto-reply message to be sent when a user
declines a call. In order to prevent unsolicited calls
a user can only call and message users (and see their
SIP/email address) that are his/her followers.

5 DISCUSSION

The advantages of our approach over other architec-
tures is based on the following two design decisions:
1. Resolve the need for a B2B relationship be-

tween Web provider and communication service
provider.

2. Distribute the Model, View and Control compo-
nents of an application across different processes
and even across the network.
The first point will allow applications to use any

communication service provider the user has sub-
scribed to and hence there is no need for configuration
or contract signing to use the application. Further-
more, the resolution of the B2B relationship will not
only work for delivering communications services via
local device functionality but also to trigger any ser-
vice invocation from the users device instead of from
the providers server towards network provider or any
other 3rd party service the user can authenticate with.

The second point enables mobile applications to
be always up to date while running stable in close in-
tegration with mobile device capabilities. View and
Controller will be downloaded via HTTP and pre-
sented and controlled via HTML, CSS and Javascript
kept up do date on the server. At the same time apps
are executed locally with all the required function-
ality provided natively by the device (in the Model
component running in a separate process). View and
main parts of the controller are downloaded from a
web server and executed in the browser whereas, low
level controller functionality and the Model compo-
nent dealing with the SIP stack are running as a native
background process communicating with the browser.

It is not necessary for the user to share his secrets
with third parties such as authentication credentials,
address book data or calendar information. The re-
quired data may be added only at the time of local
execution in the mobile browser. The user keeps con-
trol over private data. For example, the user wants
to call a friend on a social web platform. The name
or nick name of the friend may be found on the Web
page but not his phone number which is associated to
the friends nick in the local address book of the users
device. During APSINT Javascript execution both are
combined in the browser of the users device. A call is
made via the Web page without the Web page know-
ing the details.

Other real-time communication solutions or native
functionality execution like WebRTC, plugin based
solutions (Adeyeye et al., 2012) or implementation of
a Web app with Googles NativeClient are not capable
of reacting on external stimula, e.g. if no browser is
running it is not possible to take an incoming commu-
nication request. With the APSINT endpoint running
as a service on the local device it is always possible to
start a browser and download a Web page to take an
incoming call.

Also, while experimenting with our prototype, we
introduced a simple method of rendering video di-
rectly in the browser by using the data URI scheme
to put base64 encoded data right into the src attribute
of a plain HTML img tag. Together with this func-
tionality and the Websocket based communication be-
tween browser and communication stack it was pos-
sible to distribute functionality across devices. Do-
ing this, it is possible to communicate via a smart-
phones SIP connection while displaying the related
Web page GUI for communication and video display
on the monitor of a nearby PC (in the same LAN).
One would talk via the phone but control communi-
cation and watch video on the PC.

No plugin, especially no mobile flash support is
required. Our architecture supports multiple commu-

INTEGRATING�COMMUNICATION�SERVICES�INTO�MOBILE�BROWSERS

759

nication sessions to be supported yet limits the us-
age of communication resources to one Web page at a
time. The endpoint will provide its services for other
Web pages if the current using Web app does have no
open sessions and will detect crashes of a Web page or
the browser automatically as reserving the communi-
cation stack is tied to keeping the Websocket session
open.

Unlike other approaches, the APSINT architecture
offers the possibility to communicate with clients of
other type and via telco network features protocols
and networks of other kind. With an APSINT en-
abled Web page one can communicate with any other
SIP client reachable in the network or via breakout
functionality of telco providers with any other party
in the mobile or fixed line network. These solutions
are standardized and available worldwide.

5.1 Security Issues

Security issues have a paramount importance for the
all parties involved in consuming and providing ser-
vices build on top of APSINT architecture. This is
because of the specific setup which allows a Web page
to take control over audio and video sessions started
from the users devices like Smartphone. Hence on the
usability level security requirements revolve around
achieving trust in this new functionality by providing
a reliable solution in term of authentication and au-
thorization of communication sessions started by the
Web pages, as well as, providing privacy and confi-
dentiality. Security measures need to address specific
focus of all parties involved, as discussed below.

Users may be accustomed to the dangers of the
internet and accept the risks because of vital impor-
tance of this platform. However, they may be difficult
to persuade to grant control over their phones to an in-
ternet application unless they can trust their security
requirements are met. The users requirements cover
different areas which stretch from preventing of start-
ing unsolicited communication sessions and possibly
turning their devices to spy on users communication
or hijacking them for SPIT attacks, securing privacy
of communication, up to mitigation of phishing, e.g.
in form of persuading users to call a costly service
numbers.

Similarly, network providers are interested in pre-
venting SPIT or DoS attacks on their customers which
may be caused when malicious Web pages could ob-
tain control over devices connected to the providers
network. They would as well prefer situation when
they could unambiguously identify sessions origi-
nated by the Web pages and associate them with
the specific page. This may be especially important

when APSINT architecture capable devices would be
branded by the operator. In this case users would
surely expect the operator to take at least partial re-
sponsibility in case when allowing Web pages to con-
trol communication sessions would inflict substantial
cost s to the user, e.g. due to phishing attack.

For the owners of the Web pages with capabilities
to control communication sessions on the APSINT
devices winning user trust is very important. User
need to have a guarantee that they do not give con-
trol to start audio or video sessions to the malicious
Web page. Therefore stealing the functionality for
controlling APSINT terminals embedded in a specific
Web page and reusing it in the context of a different
Web page should be prevented. If the revenues from
the voice and video traffic generated by the Web page
need to be shared with the network operator, then un-
ambiguous identification of such sessions is needed.

Traditional architecture for Web-IMS conver-
gence is based on Parlay X interface in the IMS
application server and it has well defined security
framework. Critics of the efficiency of the Parlay X
based architecture brought alternative proposal based
on new functional entity on the IMS network border
named Web Session Controller which shields the IMS
terminal from direct interaction with Web application.
APSINT project gives a new concept to Web and IMS
convergence which takes place mainly in users ter-
minal. Direct interactions between IMS terminal and
Web applications require to explore ways of combin-
ing security solutions for Web applications with IMS
security standards applicable for this novel architec-
ture. Approach taken by the APSINT team tries to
flexibly adapt security restrictions in consuming Web
applications to the degree of trust that user expresses
against a Web page with embedded APSINT applica-
tion. Web applications being consumed in the users
browser will be secured by the known technologies
like SSH or digital signatures, however, user will be
allowed to grant his permit to specific Web pages for
establishing audio and video sessions either perma-
nent or for the actual session only depending on his
trust toward this Web page. IMS security standards
will be fully supported. Additionally a new secu-
rity measure is studied for providing to IMS identity
of Web application which was allowed to start au-
dio/video session from the particular IMS terminal.

6 CONCLUSIONS AND FUTURE
WORK

As the APSINT solution integrates the endpoint on
local device the browser communicates with the end-

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

760

point locally and all signalling is handled by the lo-
cal endpoint. An other approach is to move the end-
point to a remote host as shown in Figure 7 where a
local browser communicates over Websockets with a
remote endpoint. For this solution to be applicable the
local device still needs to implement a local media en-
gine. In such an approach all signalling is handled by
a remote server whereas the media stream is handled
by the respective end devices. Finally the media en-
gine could be integrated in the browser so the media
resources both hardware and software are managed
by the Web browser itself as proposed by WebRTC
(Google, 2011).

local1
Remote
Endpoint
SIP/WS

local2

Media engine Media engine

Browser Browser

Figure 7: Architecture of a remote endpoint.

Extensions to the endpoint could be added by uti-
lizing platform services offered by the operating sys-
tem on user devices like for example on Android
phones. Candidates for such usage are location ser-
vices, camera, phonebook, GSM calls and SMS. A
similar approach is made by Mozilla in WebAPI
project (Mozilla.org, 2011).

6.1 Porting to other Systems

Currently the endpoint is running on the Android plat-
form as well as on Linux and Mac (OS X) desktop
systems. We have also investigated possibilities of
porting the endpoint to other operating systems:

� iOS: The Doubango SIP stack has been already
ported to this platform, thus porting the endpoint
software should be relatively easy.

� Symbian: Should be also relatively straightfor-
ward as the Sofia SIP stack (developed by Nokia
and also used in desktop versions of the endpoint)
is fully supported on that platform.

� Windows Phone 7: To our knowledge it is not pos-
sible to use/compile external libraries for this plat-
form due to security restrictions (mainly caused

by the lack of a multiuser concept in the kernel).
As a consequence the only way for implementa-
tion would be from the ground up with the Sil-
verLight IDE, which is clearly not a feasible ap-
proach.

Finally, we expect no major problems in support-
ing Windows desktops (since all the necessary li-
braries/compilers are available).

6.2 API Evaluation

We are planning to perform an evaluation of our
Javascript library to assess acceptance among the de-
veloper community. As a first step we will review and
simplify our API, write documentation and provide
code examples, best practices and such. The evalua-
tion should be carried out in two phases:

� Laboratory Test: A two-hour test with 8-10 de-
velopers that should solve 2-3 tasks. We are con-
sidering quantitative criteria such as: task com-
pletion time, lines of code, iteration steps needed
(Clarke, 2004). Also think-aloud and maybe
video observation might reveal more hidden is-
sues.

� Real World Test: Developers get the
API/documentation to use it for free
tasks/projects. They give feedback in form
of diaries and are supported by us throughout the
study (4-6 weeks).

Combining both a laboratory test and a longitudi-
nal real-world study (Gerken et al., 2011) is a novel
approach in evaluating a API and we expect richer re-
sults with this two-phase-approach.

ACKNOWLEDGEMENTS

The Competence Center FTW Forschungszentrum
Telekommunikation Wien GmbH is funded within the
program COMET - Competence Centers for Excel-
lent Technologies by BMVIT, BMWA, and the City
of Vienna. The COMET program is managed by the
FFG.

We would like to thank the APSINT project team
and especially our colleagues Vincenzo Scotto di
Carlo and Hans-Heinrich Grusdt from Nokia Siemens
Networks Germany and Marco Happenhofer from Vi-
enna University of Technology for their contributions
to this work.

INTEGRATING�COMMUNICATION�SERVICES�INTO�MOBILE�BROWSERS

761

REFERENCES

Adeyeye, M., Ventura, N., and Foschini, L. (2012). Con-
verged multimedia services in emerging web 2.0 ses-
sion mobility scenarios. Wireless Networks, 18:185–
197. 10.1007/s11276-011-0394-z.

Clarke, S. (2004). Measuring API usability. Dr. Dobbs
Journal, pages 6–9.

Diop, M. (2011). High Quality Video SIP/IMS client for
Google Android. http://code.google.com/p/imsdroid/.
Accessed: 15/11/2011.

Fette, I. and Melnikov, A. (2011). The WebSocket
protocol. http://tools.ietf.org/html/draft-ietf-hybi-
thewebsocketprotocol-17. Accessed: 15/11/2011.

Fielding, R. T. (2000). Architectural Styles and the Design
of Network-based Software Architectures. PhD thesis,
University of California, Irvine.

Gerken, J., Jetter, H.-C., Zöllner, M., Mader, M., and Reit-
erer, H. (2011). The concept maps method as a tool to
evaluate the usability of APIs. In Proceedings of the
2011 annual conference on Human factors in comput-
ing systems, CHI ’11, pages 3373–3382, New York,
NY, USA. ACM.

Google (2011). WebRTC is a free, open project that
enables web browsers with Real-Time Communica-
tions (RTC) capabilities via simple Javascript APIs.
http://www.webrtc.org/home. Accessed: 15/11/2011.

Green, A. (2011). C Websockets Server Library.
http://git.warmcat.com/cgi-bin/cgit/libwebsockets.
Accessed: 15/11/2011.

Mozilla.org (2011). WebAPI is an effort by Mozilla to
bridge together the gap, and have consistent APIs that
will work in all web browsers, no matter the operating
system. https://wiki.mozilla.org/WebAPI. Accessed:
15/11/2011.

Nishimura, H., Ohnimushi, H., and Hirano, M. (2009). Ar-
chitecture for Web-IMS Cooperative Services for Web
Terminals. In Intelligence in Next Generation Net-
works, 2009. ICIN 2009. 13th International Confer-
ence on, ICIN 2009, New York, NY, USA. IEEE.

Pessi, P. et al. (2011). Sofia-SIP - a RFC3261 compliant SIP
User-Agent library. http://sofia-sip.sourceforge.net/.
Accessed: 15/11/2011.

Rajlich, N. (2011). A barebones WebSocket client
and server implementation written in 100% Java.
https://github.com/TooTallNate/Java-WebSocket. Ac-
cessed: 15/11/2011.

Sipgate.com (2011). Move your phones to the cloud.
http://sipgate.com. Accessed: 20/11/2011.

Tropo.com (2011). Tropo - cloud api for voice, sms, and in-
stant messaging services. https://www.tropo.com. Ac-
cessed: 20/11/2011.

Winokur, D. (2011). Flash to Focus on PC
Browsing and Mobile Apps; Adobe to
More Aggressively Contribute to HTML5.
http://blogs.adobe.com/flashplatform/2011/11/flash-
to-focus-on-pc-browsing-and-mobile-apps-adobe-
to-more-aggressively-contribute-to-html5.html.
Accessed: 20/11/2011.

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

762

