
DISTRIBUTED XML PROCESSING OVER VARIOUS TOPOLOGIES
Pipeline and Parallel Processing Characterization

Yoshiyuki Uratani1, Hiroshi Koide2, Dirceu Cavendish3 and Yuji Oie3

1Global Scientific Information and Computing Center, Tokyo Institute of Technology,
O-okayama 2-12-1, Meguroku, Tokyo, 152-8550, Japan

2Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology,
Kawazu 680-4, Iizuka, Fukuoka, 820-8502, Japan

3Network Design Research Center, Kyushu Institute of Technology,
Kawazu 680-4, Iizuka, Fukuoka, 820-8502, Japan

Keywords: Distributed XML Processing, Task Scheduling, Pipelining and Parallel Processing.

Abstract: This paper characterizes distributed XML processing on networking nodes. XML documents are sent from a
client node to a server node through relay nodes, which process the documents before arriving at the server.
According as the node topology, the XML documents are processed in a pipelining manner or a parallel
fashion. We evaluate distributed XML processing with synthetic and realistic XML documents on real and
virtual environments. Characterization of well-formedness and grammar validation processing via pipelining
and parallel models reveals inherent advantages of the parallel processing model.

1 INTRODUCTION

XML technology has become ubiquitous on dis-
tributed systems, as it supports loosely coupled in-
terfaces between servers implementing Web Services.
Large XML data documents, requiring processing at
servers, may soon require distributed processing, for
scalability. On the other hand, virtualization tech-
nology is in rapid development: virtualization brings
benefits such as efficient administration, economic
electricity consumption, small running cost, and ro-
bustness. As current Web Services run on virtual ma-
chines, it is valuable to study distributed XML pro-
cessing on virtual environments, in addition to real
environments.

Recently, distributed XML processing has been
proposed and studied from an algorithmic point of
view for well-formedness, grammar validation, and
filtering (Cavendish and Candan, 2008). In that
work, a Prefix Automata SyStem (PASS) is described,
where PASS nodes opportunistically process frag-
ments of an XML document travelling from a client
to a server, as a data stream. PASS nodes can be ar-
ranged into two basic distributed processing models:
pipelining, and parallel models. We have also studied
task allocation of XML documents over pipeline and
parallel distributed models in (Uratani et al., 2011).

In this paper, we augment processing characteriza-

tion scope by introducing realistic XML documents,
as well as characterization of XML distributed pro-
cessing on virtual machines, in addition to real ma-
chines. We provide a comprehensive characterization
of distributed XML processing by evaluating two dis-
tributed XML processing models - i) pipelining, for
XML data stream processing systems; ii) parallel, for
XML parallel processing systems. We conduct such
evaluation on real and virtual environments using two
types of XML documents; synthetic and realistic doc-
uments. Our results can be summarized as follows.
Parallel processing performs better than pipeline pro-
cessing; there are little differences between real and
virtual environments; document characteristics (e.g.
tags count) and processing environments impact per-
formance of distributed XML processing.

The paper is organized as follows. In section
2, we describe generic models of XML processing
nodes. In section 3, we describe various experimen-
tal environments that implement the distributed XML
processing system, and characterize XML processing
performance of our experiments. In section 4, we ad-
dress related work, then we summarize our findings
and address research directions in section 5.

116 Uratani Y., Koide H., Cavendish D. and Oie Y..
DISTRIBUTED XML PROCESSING OVER VARIOUS TOPOLOGIES - Pipeline and Parallel Processing Characterization.
DOI: 10.5220/0003933601160122
In Proceedings of the 8th International Conference on Web Information Systems and Technologies (WEBIST-2012), pages 116-122
ISBN: 978-989-8565-08-2
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



2 XML PROCESSING ELEMENTS

Distributed XML processing requires some basic
functions to be supported:Document Partition: The
XML document is divided into fragments, to be pro-
cessed at processing nodes.Document Annota-
tion: Each document fragment is annotated with
current processing status upon leaving a processing
node.Document Merging: Document fragments are
merged so as to preserve the original document struc-
ture. For supporting these tasks, we implemented fol-
lowing four types of nodes. The distributed XML pro-
cessing can then be constructed by connecting these
nodes in specific topologies, such as pipelining and
parallel topologies.
StartNode is a source node that executes any pre-

processing needed in preparation for piecewise pro-
cessing of the XML document. This node reads the
document from its local storage, adds some annota-
tion (task allocating information and tag checking in-
formation) which are used for distributed XML pro-
cessing, and sends the fragments to a next node. The
tag checking information is for processing status in-
dication: already matched; unmatched; or yet to be
processed. The StartNode has multiple threads to ex-
ecute these activity.
RelayNode executes XML processing on parts

of an XML document and is placed as an interme-
diate node in paths between the StartNode and the
EndNode. This node has three threads for receiv-
ing/processing/sending fragments of XML data, so it
can process while receiving/sending the data. These
threads share a buffer among each other for collab-
oration. The RelayNodes check allocating informa-
tion first, and process document fragments assigned
to them.
EndNode is a destination node, where XML doc-

uments must reach, and have their XML process-
ing finished. This node receives the XML document
and its annotations for processing from a previous
node. If the tag checking has not been finished yet
the EndNode processes all unchecked tags, in order
to complete XML processing of the entire document.
MergeNode receives data from multiple previous

nodes, serializes it, and sends it to a next node, with-
out performing any XML processing. For smooth
data transfer for each previous node, this node has
multiple threads for receiving data.

XML document processing involves stack data
structures for tag processing. When a node reads a
start tag, it pushes the tag name into a stack. When a
node reads an end tag, it pops a top element from the
stack, and compares the end tag name with the popped
tag name. If both tag names are the same, the tags

match. The XML document is well-formed when all
tags match. In case the pushed and popped tags do not
match, the XML document is declared ill formed. In
addition in validation checking, each node executing
grammar validation reads DTD files, and generates
grammar rules for validation checking. Then each
node processes validation and well-formedness at the
same time, with comparing the popped/pushed tags
and the grammar rules.

3 DISTRIBUTED XML
CHARACTERIZATION

In this section, we characterize distributed XML well-
formedness and grammar validation processing.

3.1 Experimental Environment

We use two types of environments: real and virtual
environments.
PC Env consists of two types of PC cluster. Their

specification is described in Table 1. One of them has
2 CPU cores (It is only assigned to node06); the other
has 6 PC clusters each with 4 CPU cores.
VM Env is based on PCEnv, and consists of a

VMware ESX 4 on a Sun Fire X4640 Server. We use
VMware ESX 4, a virtual machine manager, to imple-
ment virtual machines for using distributed XML pro-
cessing nodes. The server specification is described
in Table 2. We allocate two cores to node06, and four
cores to all other nodes, similar to PCEnv.

Table 1: PC Cluster Specification.

PC 4core PC 2core

CPU
Intel Core 2 Quad
Q965 (3GHz)

Intel Core 2 Duo
E8400(3GHz)

Memory 4G Byte

NIC
1000 BASE-T Intel
8254PI

1000 BASE-T Intel
82571 4 port× 2

OS Fedora13x86 64

JVM JavaTM1.5.022

Table 2: X4640 Server Specification.

CPU
Six-Core AMD Opteron Processor
8435 (2.6GHz)× 8

Memory
256G bytes (DDR2/667 ECC
registered DIMM)

VMM VMware ESX 4

Guest OS Fedora15x86 64

JVM JavaTM 1.5.022

DISTRIBUTED�XML�PROCESSING�OVER�VARIOUS�TOPOLOGIES�-�Pipeline�and�Parallel�Processing
Characterization

117



Table 3: XML Document Characteristics.

doc01 doc02 doc03 doc04 doc05 doc06 doc07 kernel stock scala

Width 10000 5000 2500 100 4 2 1 - - -
Depth 1 2 4 100 2500 5000 10000 - - -

Tag set count
(Empty tag count)

10000(0)
2255
(36708)

66717
(146)

26738
(1206)

Line count 10002 15002 17502 19902 19998 20000 20001 41219 78010 72014
File size [Kbytes] 342 347 342 343 342 3891 2389 2959

3.2 Node Allocation Patterns

We use several topologies and task allocation pat-
terns for characterizing distributed XML process-
ing, within the parallel and pipelining models with
varying the number of RelayNodes and its topol-
ogy. Figure 1 shows 2 RelayNode pipeline topology,
whereas Figure 2 shows 2 RelayNode parallel pat-
terns. In the figures, tasks are shown as light shaded
boxes, underneath nodes allocated to process them.
For example in Figure 1, we divide the XML doc-
uments into three parts: first two lines (it contains
meta tag and root tag), fragment01 and fragment02.
Data flows from StartNode to EndNode via two Re-
layNodes. RelayNode02 is allocated for processing
fragment02, RelayNode03 is allocated for processing
fragment01, and the EndNode is allocated for pro-
cessing the first two lines, as well as processing all
left out unchecked data. In parallel topology, the frag-
ments flow from StartNode to EndNode via each Re-
layNode and MergeNode, and they are concurrently
sent from the StartNode to the RelayNodes. These
document partition and allocation patterns are defined
beforehand as static task scheduling. When a pair of
open and close tags is parted into different fragments,
the pair can not be processed at a single RelayN-
ode. We also experiment four RelayNode topology
for both processing types with the five parted XML
documents.

StartNode
node01

EndNode
node07

RelayNode02
node02

RelayNode03
node03

fragment02 fragment01 first 2 lines

XML Document

fragment01

fragment02

first 2 lines
RelayNode02 checks fragment02,
RelayNode03 checks fragment01,

EndNode checks first line, 
second line, and all unchecked tags

Figure 1: Two Stage Pipeline System.

StartNode
node01

EndNode
node07

RelayNode02
node02

RelayNode03
node03

fragment01

fragment02

first 2 lines

MergeNode
node06

XML Document

fragment01
fragment02

first 2 lines RelayNode02 checks fragment01,
RelayNode03 checks fragment02,

EndNode checks first line, 
second line and all unchecked tags

2core

Figure 2: Two Path Parallel System.

3.3 Tasks and XML Document Types

We use different structures of XML documents to in-
vestigate which distributed processing model yields
the most efficient distributed XML processing. For
that purpose, we create seven types of synthetic XML
documents by changing the XML document depth
from shallow to deep while keeping its size almost
the same. We have also used three types of re-
alistic XML documents, dockernel, docstock and
doc scala. The dockernel encodes directory and file
hierarchy structure of linux kernel 2.6.39.3 in XML
format. The docstock is XML formatted data from
MySQL data base, containing a total of 10000 en-
tries of dummy stock price data. The docscala is
based on “The Scala Language Specification Version
2.8” (http://www.scala-lang.org/), which consists of
191 pages, totalling 1.3M bytes. The original docu-
ment in pdf format was converted to Libre Office odt
format, and from that to XML format. Synthetic and
realistic XML document characteristics are shown in
Table 3.

3.4 Performance Indicators

We use two types performance indicators: system per-
formance indicators and node performance indicators.
System performance indicators characterize the pro-
cessing of a given XML document. Node perfor-
mance indicators characterize XML processing at a
given processing node. The following performance
indicators are used to characterize distributed XML
processing:

Job Execution Time is a system performance in-
dicator that captures the time taken by an instance of
XML document to get processed by the distributed
XML system in its entirety. As several nodes are in-
volved in the processing, the job execution time re-
sults to be the period of time between the last node
(typically EndNode) finishes its processing, and the
first node (typically StartNode) starts its processing.

Node Thread Working Time is a node perfor-
mance indicator that captures the amount of time each
thread of a node performs work. It does not include
thread waiting time when blocked, such as data re-

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

118



0

200

400

600

800

1000

1200

1400

1600

1800

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

PC_Env VM_Env

Env./Scheduling and Processing Type (2 RelayNode)

J
o
b
 
E
x
e
c
u
t
i
o
n
 
T
i
m

e
 
[
m

s
e
c
]

doc01 doc02 doc03 doc04 doc05 doc06 doc07

Figure 3: Job Execution Time (Synthetic Docs: 2RN).

0

200

400

600

800

1000

1200

1400

1600

1800

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

PC_Env VM_Env

Env./Scheduling and Processing Type (4 RelayNode)

J
o
b
 
E
x
e
c
u
t
i
o
n
 
T
i
m

e
 
[
m

s
e
c
]

doc01 doc02 doc03 doc04 doc05 doc06 doc07

Figure 4: Job Execution Time (Synthetic Docs: 4RN).

0

1000

2000

3000

4000

5000

6000

7000

8000

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

PC_Env VM_Env

Env./Scheduling and Processing Type (2 RelayNode)

J
o
b
 
E
x
e
c
u
t
i
o
n
 
T
i
m

e
 
[
m

s
e
c
]

kernel stock scala

Figure 5: Job Execution Time (Realistic Docs: 2RN).

0

1000

2000

3000

4000

5000

6000

7000

8000

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

PC_Env VM_Env

Env./Scheduling and Processing Type (4 RelayNode)

J
o
b
 
E
x
e
c
u
t
i
o
n
 
T
i
m

e
 
[
m

s
e
c
]

kernel stock scala

Figure 6: Job Execution Time (Realistic Docs: 4RN).

0

200

400

600

800

1000

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

PC_Env VM_Env

Env./Scheduling and Processing Type (2 RelayNode)

S
y
s
t
e
m

 
A

c
t
i
v
e
 
T
i
m

e
 
[
m

s
e
c
]

doc01 doc02 doc03 doc04 doc05 doc06 doc07

Figure 7: System Active Time (Synthetic Docs: 2RN).

ceiving wait time. It is defined as the total file reading
time, data receiving time and data sending time a node
incurs. We also derive aSystem Thread Working
Time as a system performance indicator, as the aver-
age of node thread working time indicators across all
nodes of the system.

Node Active Time is a node performance indica-
tor that captures the amount of time each node runs.
The node active time is defined from a node starts re-
ceiving/reading first data until the node finishes send-
ing last data in the node or finishes document process-
ing in the EndNode. Hence, the node active time may

0

200

400

600

800

1000

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

PC_Env VM_Env

Env./Scheduling and Processing Type (4 RelayNode)

S
y
s
t
e
m

 
A

c
t
i
v
e
 
T
i
m

e
 
[
m

s
e
c
]

doc01 doc02 doc03 doc04 doc05 doc06 doc07

Figure 8: System Active Time (Synthetic Docs: 4RN).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

PC_Env VM_Env

Env./Scheduling and Processing Type (2 RelayNode)

S
y
s
t
e
m

 
A

c
t
i
v
e
 
T
i
m

e
 
[
m

s
e
c
]

kernel stock scala

Figure 9: System Active Time (Realistic Docs: 2RN).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

PC_Env VM_Env

Env./Scheduling and Processing Type (4 RelayNode)

S
y
s
t
e
m

 
A

c
t
i
v
e
 
T
i
m

e
 
[
m

s
e
c
]

kernel stock scala

Figure 10: System Active Time (Realistic Docs: 4RN).

contain waiting time (e.g, wait time for data receiv-
ing, thread blocking time). We also defineSystem
Active Time as a system performance indicator, by
averaging the node active time of all nodes across the
system.

Node Processing Time is a node performance in-
dicator that captures the time taken by a node to exe-
cute XML processing only, excluding communication
and processing overheads. We also defineSystem
Processing Time as a system performance indicator,
by averaging node processing time across all nodes of
the system.

Parallelism Efficiency Ratio is a system perfor-
mance indicator defined as “system thread working
time/ system active time”.

3.5 Experimental Results

For each experiment type (scheduling allocation and
distributed processing model), we collect perfor-
mance indicators data over seven types of XML doc-
ument instances. Figures 3–6 report job execution
time; Figures 7–10 report system active time; Figures
11–14 report system processing time; Figures 15–
18 report system parallelism efficiency ratio. On all
graphs, X axis describes scheduling, processing mod-
els and processing environment, for well-formedness
and grammar validation types of XML document
processing, encoded as follows:PIP wel:Pipeline

DISTRIBUTED�XML�PROCESSING�OVER�VARIOUS�TOPOLOGIES�-�Pipeline�and�Parallel�Processing
Characterization

119



0

50

100

150

200

250

300

350

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

PC_Env VM_Env

Env./Scheduling and Processing Type (2 RelayNode)

S
y
s
t
e
m

 
P

r
o
c
e
s
s
i
n
g

T
i
m

e
 
[
m

s
e
c
]

doc01 doc02 doc03 doc04 doc05 doc06 doc07

Figure 11: System Processing Time (Synthetic Docs: 2RN).

0

50

100

150

200

250

300

350

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

PC_Env VM_Env

Env./Scheduling and Processing Type (4 RelayNode)

S
y
s
t
e
m

 
P

r
o
c
e
s
s
i
n
g

T
i
m

e
 
[
m

s
e
c
]

doc01 doc02 doc03 doc04 doc05 doc06 doc07

Figure 12: System Processing Time (Synthetic Docs: 4RN).

0

200

400

600

800

1000

1200

1400

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

PC_Env VM_Env

Env./Scheduling and Processing Type (2 RelayNode)

S
y
s
t
e
m

o
 
P

r
o
c
e
s
s
i
n
g

T
i
m

e
 
[
m

s
e
c
]

kernel stock scala

Figure 13: System Processing Time (Realistic Docs: 2RN).

0

200

400

600

800

1000

1200

1400

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

PC_Env VM_Env

Env./Scheduling and Processing Type (4 RelayNode)

S
y
s
t
e
m

 
P

r
o
c
e
s
s
i
n
g

T
i
m

e
 
[
m

s
e
c
]

kernel stock scala

Figure 14: System Processing Time (Realistic Docs: 4RN).

and Well-formedness checking,PAR wel:Parallel and
Well-formedness checking,PIP val:Pipeline and
Validation checking,PAR val:Parallel and Validation
checking. Y axis denotes specific performance indi-
cator, averaged over 22 XML document instances.

In all indicators, both PCEnv and VMEnv show
similar characteristics. They are similar qualitatively
but different quantitatively, due to differences in doc-
ument processing. Therefore, we can conclude dif-
ferences between real and virtual environments are
small.

Regarding job execution time, parallel processing
is faster than pipeline processing for all documents.
Job execution time gets lengthened in pipeline pro-
cessing due to the fact that the nodes relay extra data
that is not processed locally. In addition, we can see
that the job execution time speeds up faster with in-
creasing number of relay nodes in parallel processing
than in pipeline processing. The extra data transfer

0

0.2

0.4

0.6

0.8

1

1.2

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

PC_Env VM_Env

Env./Scheduling and Processing Type (2 RelayNode)

P
a
r
a
l
l
e
l
i
s
m

 
E
f
f
i
c
i
e
n
c
y
 
R

a
t
i
o

doc01 doc02 doc03 doc04 doc05 doc06 doc07

Figure 15: Parallelism Efficiency Ratio (Synthetic Docs:
2RN).

0

0.2

0.4

0.6

0.8

1

1.2

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

PC_Env VM_Env

Env./Scheduling and Processing Type (4 RelayNode)

P
a
r
a
l
l
e
l
i
s
m

 
E
f
f
i
c
i
e
n
c
y
 
R

a
t
i
o

doc01 doc02 doc03 doc04 doc05 doc06 doc07

Figure 16: Parallelism Efficiency Ratio (Synthetic Docs:
4RN).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

PC_Env VM_Env

Env./Scheduling and Processing Type (2 RelayNode)

P
a
r
a
l
l
e
l
i
s
m

 
E
f
f
i
c
i
e
n
c
y
 
R

a
t
i
o

kernel stock scala

Figure 17: Parallelism Efficiency Ratio (Realistic Docs:
2RN).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

PC_Env VM_Env

Env./Scheduling and Processing Type (4 RelayNode)

P
a
r
a
l
l
e
l
i
s
m

 
E
f
f
i
c
i
e
n
c
y
 
R

a
t
i
o

kernel stock scala

Figure 18: Parallelism Efficiency Ratio (Realistic Docs:
4RN).

time also appears in pipeline processing. Moreover,
increased number of relay nodes reduces further job
execution time of realistic documents (bigger docu-
ments), as compared with that of synthetic documents
(smaller documents) processed with pipeline model.
So, it is more advantageous to process bigger XML
document using the pipeline model with more nodes.
Notice that docstock is smaller than dockernel, and
has more XML tags than the dockernel. As the
doc kernel has smaller job execution time than the
doc stock, we can say that the job execution time is
more sensitive to the number of tags of a document
than its size. This characteristic also appears in some
other indicators: system active time and system pro-
cessing time.

Regarding system active time, parallel process-

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

120



ing is better than pipeline processing in all experi-
ments. The system active time decreases with increas-
ing number of relay nodes in both synthetic and re-
alistic document processing. In addition, the higher
the document depth and the more number of XML
tags, the larger the system active time in both doc-
uments. Useless processing is more pronounced at
each RelayNode for the synthetic documents with
higher depth, because the RelayNodes are not able
to match too many tags within the document part al-
located to them. Hence, the EndNode is left with a
large amount of processing left to be done. We may
reduce useless processing if we divide the document
conveniently according to the document structure and
grammar checking rules. In addition, node activity is
more sensitive to the number of RelayNodes in paral-
lel processing than in pipeline processing. Regarding
task complexity, node activity results in pipeline pro-
cessing are similar, regardless of the task performed.

Processing time is also similar for both parallel
processing and pipeline processing. The results show
the extra activity time in the pipeline processing is
due to extra sending/receiving thread times. Gener-
ally, the system processing time reduces as the num-
ber of RelayNodes increases. However, sometimes
(e.g. synthetic doc06) few RelayNodes are more effi-
cient, due to specific document partition and process-
ing allocation.

Regarding parallelism efficiency ratio, parallel
processing is more efficient than pipeline in every
case, because in parallel case, more threads are op-
erating concurrently on different parts of the docu-
ment. According to the parallelism efficiency ratio,
synthetic documents are more efficient than realis-
tic documents for processing. Moreover, in synthetic
document processing, the efficiency ratio is better in
4 RelayNode than in 2 RelayNode for parallel pro-
cessing only. In realistic document processing, the
efficiency ratio is improved in 4 RelayNode as com-
pared with 2 RelayNode for both pipeline and parallel
processing.

For convenience, we organize our performance
characterization results into Table 4.

4 RELATED WORK

XML parallel processing has been recently addressed
in several papers. (Lu and Gannon, 2007) proposes a
multi-threaded XML parallel processing model where
threads steal work from each other, in order to sup-
port load balancing among threads. They exem-
plify their approach in a parallelized XML serial-
izer. (Head and Govindaraju, 2007) focuses on par-

Table 4: Summary of Experimental Results.

Synthetic docs
(smaller docs)

Realistic docs
(larger docs)

PAR vs
PIP

number
of RN

PAR vs
PIP

number
of RN

Job
execution
time PAR is

better

4 RN is
better in
PAR

PAR is
better

4 RN is
better in
both PIP
and PARSystem

active time
System
processing
time

No
difference

4 RN is
better

No
difference

4 RN is
betterParallelism

efficiency
ratio

PAR is
better

4 RN is
better in
PAR

PAR is
better

allel XML parsing, evaluating multi-threaded parsers
performance versus thread communication overhead.
(Head and Govindaraju, 2009) introduces a parallel
processing library to support parallel processing of
large XML data sets. They explore speculative exe-
cution parallelism, by decomposing Deterministic Fi-
nite Automata (DFA) processing into DFA plus Non-
Deterministic Finite Automata (NFA) processing on
symmetric multi-processing systems. To our knowl-
edge, our work is the first to evaluate and compare
parallel against pipelining XML distributed process-
ing.

5 CONCLUSIONS

In this paper, we have studied two models of dis-
tributed XML document processing, parallel and
pipeline, on two types of environments, virtual and
real machines, using XML documents with various
characteristics. In general, both virtual and real envi-
ronments are similar in streaming data processing of
XML documents. Virtual machines are flexible in re-
source allocation, providing more efficient resource
utilization. Regarding processing models, pipeline
processing is less efficient than parallel processing in
both document type. because parts of the document
that are not to be processed at a specific node needs
to be received and relayed to other nodes, consuming
node resources and increasing processing overhead.
Regardless the distributed model, efficiency of dis-
tributed processing depends on the XML document
characteristics, as well as its task partition. Optimal
partition of XML document for efficient distributed
processing is part of ongoing research.

In this work, we have focused on distributed well-
formedness and validation of single XML documents.
Other XML processing, such as filtering and XML
transformations, as well as multiple XML document
processing, can be studied. We are also interested in

DISTRIBUTED�XML�PROCESSING�OVER�VARIOUS�TOPOLOGIES�-�Pipeline�and�Parallel�Processing
Characterization

121



the impact of increasing number of CPU cores of each
node on the performance of distributed XML process-
ing, as well as the processing of streaming data other
than XML documents at relay nodes (Shimamura
et al., 2010). In such scenario, many web servers, mo-
bile devices, network appliances, are connected with
each other via an intelligent network, which executes
streaming data processing on behalf of connected de-
vices. The type of node processing is different than
XML processing, given the less structured nature of
streaming data, as compared with XML data.

ACKNOWLEDGEMENTS

Part of this study was supported by a Grant-in-Aid for
Scientific Research (KAKENHI:21500039).

REFERENCES

Cavendish, D. and Candan, K. S. (2008). Distributed XML
processing: Theory and applications.Journal of Par-
allel and Distributed Computing, 68(8):1054–1069.

Head, M. R. and Govindaraju, M. (2007). Approaching
a Parallelized XML Parser Optimized for Multi-Core
Processors.SOCP’07, pages 17–22.

Head, M. R. and Govindaraju, M. (2009). Performance En-
hancement with Speculative Execution Based Paral-
lelism for Processing Large-scale XML-based Appli-
cation Data.HPDC’09, pages 21–29.

Lu, W. and Gannon, D. (2007). Parallel XML Processing
by Work Stealing.SOCP’07, pages 31–37.

Shimamura, M., Ikenaga, T., and Tsuru, M. (2010). Ad-
vanced relay nodes for adaptive network services -
concept and prototype experiment.Broadband, Wire-
less Computing, Communication and Applications,
International Conference on, 0:701–707.

Uratani, Y., Koide, H., Cavendish, D., and Oie, Y. (2011).
Characterizing Distributed XML Processing – Mov-
ing XML Processing from Servers to Networking
Nodes. Proc. 7th International Conference on Web
Information Systems and Technologies, pages 41–50.

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

122


