
XRX
The Implementation Process under XRX Architecture

Cristina Nemeş, Marius Podean and Lucia Rusu
Faculty of Economics and Business Administration, Babeş-Bolyai University, Cluj-Napoca, Romania

Keywords: Data model, XML, XPath, XQuery, XRX, XSLT.

Abstract: The XRX (XForms - REST - XQuery) architecture is a three tier architecture which uses at each tier data in
XML format. This offers a great advantage because data is not being transformed in different other formats
in order to communicate with other layers. Using this architecture the application becomes more agile,
flexible and simple because there is no need of translations like in the classical architecture. This paper
describes the implementation process of an application developed under the XRX architecture using W3C
standards (XHTML, XML, XPath, XQuery, XSLT, XForms), REST interfaces and a native XML database.

1 INTRODUCTION

Nowadays every company works with databases and
has to constantly improve the way they manage their
data in order to facilitate CRUDS operations
(Create, Read, Update, Delete, Search) on the
database. Many software developers have
implemented in relational databases the possibility
to save data in XML (eXtensible Markup Language)
format.

Databases represent a very important aspect in
web applications because the exchange of data and
documents inside a company and between
companies is essential. To remain competitive on the
market companies have to improve their way of
exchanging data. Organizations have to exchange
data and complex documents in the same format in
order to be understood by other partners.
Collaboration is an important process implemented
by many companies in order to achieve common
goals. An important issue is to ensure the exchange
of complex documents between companies in a way
that is software independent in order to facilitate the
process of collaboration between organizations.

This paper presents a model that integrates these
issues and brings some solutions. The paper presents
a way of developing web applications under a new
architecture called XRX. This architecture works
with data in XML format at each tier unlike the
classical architecture where data is stored in
different formats. The aim of this paper is to make a
comparison between the XRX architecture and the

classical architecture and to emphasize the
advantages of the XRX architecture. In order to
achieve this goal we have implemented a web
application according to XRX architecture.

A new idea for developing and implementing
Web applications is based on W3C standards and
REST interfaces. The W3C standards used are data
format (XML, HTML, XHTML), programming
languages (XQuery, XPath, XSLT), and schema
(XML Schema) (Kaufmann and Kossmann, 2009).
More and more web applications are developed
using RESTful Web services because the complexity
of developing applications that involve Web services
access, data processing, and human interaction are
reduced (Onose et al., 2009, Selonen et al., 2010).

XML is a language used especially on the WEB
because it facilitates the exchange of data between
applications which run on different platforms and
are developed with different technologies. To
provide the same data format we use a XML
vocabulary called UBL (Universal Business
Language) (Bosak and McGrath, 2006) which is a
standard for economic documents like orders,
products catalogs and invoices.

In section 2 we present the collaboration concept,
and in section 3 we provide a brief overview on the
XML stack of languages used for implementing the
application and XRX architecture. The application is
described in section 4. Section 5 presents related
works. In section 6 are presented conclusions and
future work.

103Nemeş C., Podean M. and Rusu L..
XRX - The Implementation Process under XRX Architecture.
DOI: 10.5220/0003931101030109
In Proceedings of the 8th International Conference on Web Information Systems and Technologies (WEBIST-2012), pages 103-109
ISBN: 978-989-8565-08-2
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

2 COLLABORATION

The process of collaboration has emerged due to the
need of communication between companies.

Collaboration is a process in which entities share
information, resources and responsibilities to
achieve a plan, implement and evaluate a program of
activities to achieve the same goal (Camarinha-
Matos and Afsarmanesh, 2008). In order to
collaborate, organizations have to exchange data and
documents in the same format in order to be
understood by other partners. To work,
organizations need a common language that will
enable the implementation process with minimal
effort.

In terms of computing, collaboration is the
integration of different technologies into a single
platform in order to improve the performance of data
and complex documents exchange. The model for
the common language in our case is UBL which is
based on XML. UBL is used in order to create
complex documents that have the same format so
that organizations that use the same standard can
easily exchange data.

UBL is the language used in order to implement
the process of collaboration in our application. In the
following section we describe the XRX architecture
and the W3C standards used in order to develop the
application.

3 XML FAMILY AND XRX
ARCHITECTURE

This section presents the key elements of the XML
stack of languages and the XRX architecture used in
the implementation process.

XRX is a "no-translation" (McCreary, 2010) web
application architecture based on three technologies
(McCreary, 2008):

- XForms on the client;
- REST interfaces;
- XQuery on the server.

According to (McCreary, 2007) this architecture
gives web developers a tenfold increase in
productivity.

XForms is an XML application that separates
content from presentation. After (Boyer, 2007)
XForms is not a document type to be used
independently so it has to be used with XHTML or
SVG, and (Turner and Windauer, 2010) states that
XForms will become the next generation of forms
for World Wide Web. XForms is based on the MVC
(Model-View-Controller) architecture and is
compatible with other W3C standards like CSS,

XPath, XQuery, XML Schema. More and more
companies (Semanta, Volkswagen Financial
Services, Australian Bureau of Statistics, Teleflex,
Manugistics) want to enjoy the XForms benefits so
they are collaborating with Orbeon in order to obtain
very efficient forms (Orbeon, 2012).

REST is a lightweight alternative to mechanisms
like RPC (Remote Procedure Calls) and Web
Services (SOAP, WSDL). Many websites like
Twitter, Yahoo, Flicker, Vimeo, PhotoBucket,
LinkedIn, Amazon S3 use the REST protocol due to
its great characteristics. (Fielding, 2000) defines
REST as a set of architectural constraints that
emphasizes scalability of component interactions,
generality of interfaces, independent deployment of
components and enforces security.

XQuery is a query language which allows to
select information according to one or more criteria,
joining data from multiple documents, mathematical
operations on numeric data type (Walmsle, 2007).
Instead of using XQuery we can use XSLT. XSLT
(Clark, 1999) is a declarative language used to
transform XML documents into text, HTML or
XML. An XSLT stylesheet describes the rules that
transform a source tree into a result tree. XSLT uses
XPath expressions to select the source nodes from
the trees. XSLT is used in general for the
presentation of data, while XQuery is much more for
making queries and working with data. XSLT can be
used instead of XQuery but the code is not so
compact like with XQuery.

XML is a technology used to represent data and
documents. By using XML technologies, a high
portability of documents can be obtained (Bray et
al., 2008). XML allows to define vocabularies that
describe data according to an activity domain in
order to facilitate the exchange of documents
between business partners from the same area. UBL
is a synthesis of existing XML B2B languages
(RosettaNet, cXML, xCBL) that is interoperable
with EDI systems. It can be applied in different
domains like administration, electronic trade.

All these languages are used in the
implementation process described in the next
section.

4 APPLICATION

XRX architecture is a new three tier architecture
which offers the possibility to develop complex
applications. This architecture can very easily be
combined with the MVC (Model-View-Controller)
pattern. In our case the Model is stored in the eXist

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

104

Figure 1: XRX architecture and traditional architecture.

database, the View is generated automatically from
XForms elements and the Controller part can be
implemented in XQuery/XSLT/XProc or as a
combination between these technologies.

4.1 Application Architecture

The application developed under the XRX
architecture uses at each tier W3C standards, that
work with data in XML format (Figure 1).

In this architecture there are no translations
between the languages used at each tier because all
work with data in XML format. On the other hand in
the classical three tier architecture which uses
HTML in the browser, Java/C#/PHP at the business
logic tier and SQL databases there are needed four
types of translations (McCreary, 2010):

- HTML to objects;
- objects to SQL;
- SQL to objects;
- objects to HTML.
To develop an application under the classical

architecture is required hard work to construct, test
and maintain the application, and (Davis and
Maguire, 2011) calls the complex set of
transformation "non-value-added transformations".
The XRX architecture is called a “Zero Translation”
(McCreary, 2010) architecture because there is no
need for transformations between the tiers.

On the presentation tier, which can be seen as the
View in the MVC pattern, we use XHTML and
XForms in order to display the graphical interface to
the user in the browser instead of the classical
HTML forms. XForms is very effective in
processing sets of complex semi-structured data. In
the classical applications JavaScript is used to make
validations on the client, to communicate with the

server and also to make some calculations.
JavaScript is an object oriented language which has
a syntax influenced by that of C (Goodman, 2001).
For very complex and dynamic user interfaces
XForms can be extended with JavaScript. We use
XForms instead of JavaScript in order to process
complex datasets, to make validations on the client,
calculations and constraints. A very important
advantage of XForms is that it processes very well
documents in different formats. Working with
JavaScript for processing and manipulating
documents in XML format requires many lines of
code for inserting, deleting and making some
changes in the XML trees. In Figure 2 is presented
an extract from a JavaScript function which creates
an XML tree using DOM methods.

At the business logic tier we use XQuery and
XPath to manage data in XML format instead of
PHP, Ruby or object oriented languages like Java
and C#. In (Costello, 2008) a problem is solved in
two ways: using XSLT and using Java. The result of
his experiment was that the problem was solved with
XSLT in 10 lines of code and over 100 lines in Java.
In Figure 3 and 4 we present the code for
transforming the order in order-response using an
XSLT stylesheet. These figures show that is much
more easier and simple to implement this
transformation using XQuery instead of PHP.

In a classical architecture at the data tier is used
SQL to manage data stored in relational databases.
We use XQuery to manage data stored in XML
format in the eXist database, which is a native XML
database. Relational databases contain tables where
data is stored as records. A native XML database
contains collections of XML documents.

XML

XML

XML

XML

PRESENTATION TIER
XHTML+XForms

BUSINESS LOGIC TIER
XQuery + XPath + XForms

DATA TIER
XQuery

Native XML Database

HTML

object

relational

DB
specification

PRESENTATION TIER
HTML/XHTML

BUSINESS LOGIC TIER
Java/C#/PHP/Ruby

DATA TIER
SQL

Relational Database

XRX�-�The�Implementation�Process�under�XRX�Architecture

105

Figure 2: Creating a XML document using JavaScript.

Figure 3: Transforming an XML document with XQuery.

Figure 4: Transforming an XML document with PHP.

4.2 Application Description

In this section we describe the application explaining
the content and how the user has to interact with it.

Our application implements the exchange of
economic documents in electronic format between
different companies. The application is composed of
a wizard which represents the order and two
documents: order response and the invoice.

On the first page of the wizard presented in
Figure 5 are displayed the products from which the
client may choose. The client has to activate the
"Add" button corresponding to the desired product.
When the button is pushed below the list of products
appear the selected one with the implicit quantity 1.
The quantity can be changed by typing another, and
in order to remove a selected product the customer
has to type “0” in the quantity field.

On the second page are displayed in a table
details about the customer like full name, address,
work-address, e-mail.

On page three presented in Figure 6 the customer
selects the delivery address. The customer has to
select a radio button which corresponds to the
desired delivery address. Also the customer can add

Figure 5: First page of the wizard.

Figure 6: Selecting the delivery address.

a new address, and the page is dynamically updated
(appears a new radio button for the new address).

The same process applies when choosing the
method of payment except that the client cannot
introduce a new payment mean.

To choose the delivery date the client has to
choose the date using a date picker.

The last page of the wizard presents a table of
selected products that the client wants to order. Are
displayed the product ID, name, quantity, price and
are calculated the value of the products (price *
quantity) and the VAT (value of products * percent
VAT). Finally, is calculated the total amount of the
order as the sum of value of goods and VAT .

At the final step the buyer has to push the
"Submit" button to send the order. If the order has
been submitted successfully the seller receives an
order response that specifies if the order is accepted
or not. If the order has been accepted the buyer will
receive an invoice for the purchased goods.

Each step in the wizard is mandatory. If a
customer does not complete a step or the introduced
data is invalid the customer receives an information
message. For example Figure 7 presents a message
validation informing the user that the selected
delivery date is invalid because it must be greater
than the start date which is the current date or the
date of the order. If a client fails to complete one or
more steps in the wizard when the "Submit" button
is pressed to send the order, the order will not be
sent (Figure 8).

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

106

In this section we presented the interaction of the
user with the application by describing each step of
the wizard. In the next section we present the
implementation process.

4.3 The Implementation Process

In this section we present the implementation
process for our web application developed under the
XRX architecture. This application works with data
in XML format in order to improve the exchange of
information between partners according to the UBL
standard.

The application is implemented under the XRX
architecture and also according to the MVC design
pattern. The model contains the data values, the
view is represented by the screen presentation and
the controller defines the way the user interface
reacts to user input (Gamma, 2009). MVC can use
other design patterns like Decorator to add scrolling
to a view or Factory Method in order to specify the
default controller class for a view (Gamma, 2009).

The model is composed of the XML documents
stored in the eXist database. The XML documents in
the database are validated according to the UBL
standard.

The view represents the user interface which is
composed of XForms elements and XHTML. The
view is the wizard and the two documents: order
response and invoice. The wizard is generated
dynamically from a query. Also the documents are
generated dynamically from an XQuery code using
different eXist specific functions in order to save the
data completed by the user in the database, and
make the XSLT transformations from order in order
response, and then from order response in invoice.

The wizard is created using a switch-case
structure where each case represents a page/step of
the ordering wizard. The client has the possibility to
navigate back and forward to make some changes
using "Back" and "Next" buttons which appear on
each page of the wizard. To implement a button we
use the trigger element. A trigger is an abstraction of
a web button that allows forms to be more portable.
To choose the delivery date we created an input type
element that allows the customer to choose a date.
Because through a bind element we specified the
type of this element as type = "xs:date" at a simple
click in this box appears a calendar that allows the
user to choose the date (date picker).

The controller part is composed of the XQuery
documents that generate the wizard and use the
eXist specific functions to save the customers data
in the database, and to make the XSLT

Figure 7: Delivery date validation.

Figure 8: Error validation in the wizard.

transformations.
We have created a module where we have

implemented the necessary functions that generate
the wizard. The function businessrules presented in
Figure 10 gets all the child elements from the
"bind.xml" document. In this document are
implemented the bind XForms elements. The
function products selects all the "cac:OrderLine"
elements from the "products.xml" document. This
function selects all the products stored in the xml
document.

In the classical architecture instead of XQuery is
used PHP, Java, or other languages. When working
with PHP in general is used a relational database like
MySQL. Making a comparison between the code for
extracting the data using XQuery and using PHP we
can say that using XQuery is more efficient and
simple than using PHP.

According to (McCreary, 2008) the number of
code lines when using XQuery is much smaller than
the number of lines of code when using SQL and
Java.

(Candillon, 2011) presents a comparison that
shows the amount of code lines needed to develop
the same application using different technologies
like Java, PHP and XQuery. The charts present that
using XQuery the number of lines of code can be

Figure 9: Back and Next buttons.

XRX�-�The�Implementation�Process�under�XRX�Architecture

107

Figure 10: Function businessrules.

reduced up to 80% if we refer to Java or with 62% if
we refer to PHP (Figure 11).

The PubZone application was implemented in
Java and in XQuery. The XQuery implementation
ended up to be more compact and elegant than the
version in Java (Kaufmann and Kossmann, 2009,
Candillon, 2011) (Figure 12).

In order to develop complex web applications
using the XRX architecture is needed only one
person who can do the work of ten people
(McCreary, 2010). When developing an application
under a different architecture many persons are
needed in order to implement the application using
different technologies. Thus the costs of developing
an application using the XRX architecture are
smaller than in the case of other type of architecture
(McCreary, 2010).

5 RELATED WORK

Previous work in the field of REST like (Fielding,
2000) has a great impact on the applications that use
this architectural style. Also some important works
related to XML, REST and XQuery are (Kaufmann
and Kossmann, 2009) and (Davis and Maguire,
2011) which have developed applications using
XML technologies.

Regarding the XRX architecture the most
relevant and detailed explanations about this
architecture are given by (McCreary, 2007),
(McCreary, 2008) and (McCreary, 2010).

(Hunter, 2012) presentes the open source
"Corona" project which uses the MarkLogic Server
in order to manage and query XML and JSON using
REST. (Retter, 2012) presents a research regarding
the current approaches for invoking XQuery in a
RESTful manner over HTTP and the standardised
XQuery 3.0 annotations for REST. In (Couthures,
2012) and (Lenz, 2012) are presented different
approaches that are using XQuery and XSLT in
order to develop new applications.

6 CONCLUSIONS

The application presented is developed using XML,
XQuery, XSLT, XForms and UBL standard used to

Figure 11: Java vs. XQuery and PHP vs. XQuery
(Candillon, 2011).

Figure 12: Java vs. XQuery lines of code - PubZone
(Candillon, 2011).

represent economic documents in electronic format.
The application is built on three levels according to
the XRX architecture. This architecture replaces the
traditional three-tier architecture that uses HTML in
the browser, on the logical level languages such as
PHP, Ruby, C #, Java and SQL for relational
databases.

The comparison presented between the XRX
architecture and the classical architecture shows that
applications developed according to the XRX
architecture are more efficient and elegant.
Moreover the XRX architecture increases
productivity and reduces the implementation costs.
In our research one of the main goals was to develop
an application that can ensure a good exchange of
data between companies in order to facilitate the
process of collaboration.

In the future we plan to develop an application
following the same principles but using XProc
(XML Pipeline Language). XProc is a language used
to create pipelines which takes zero or more XML
documents as input and produces zero or more XML
documents as output. An important advantage of
XProc is that allows other technologies from the
XML stack of languages to interact (XML Schema,
XInclude, XQuery, XSLT).

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

108

REFERENCES

Anders, B., Scott, B., Don, C., Mary, F., Michael, K.,
Jonathan, R., Jerome, S., 2010. XML Path Language
(XPath) 2.0 (Second Edition). W3C Recommendation
14 December 2010 http://www.w3.org/TR/xpath20/.

Binemann-Zdanowicz, A., Schewe, K.D., Thalheim, B.,
2005. Development of Collaboration Frameworks for
Distributed Web Information Systems. In Proceedings
of iiWAS'2005. pp.551-562.

Bosak, J., McGrath, T., 2006. Universal Business
Language v2.0. http://docs.oasis-open.org/ubl/os-
UBL-2.0/UBL-2.0.pdf.

Boyer, J. M., 2007. XForms 1.0 (Third Edition). W3C
Recommendation 29 October 2007 http://www.w3.
org/TR/2007/REC-xforms-20071029/.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E.,
Yergeau, F. 2008. Extensible Markup Language
(XML) 1.0 (Fifth Edition). W3C Recommendation 26
November 2008 http://www.w3.org/TR/xml/.

Camarinha-Matos, L. M., Afsarmanesh, H., 2008.
Collaborative Networks: Reference Modeling. http://
www.springerlink.com/content/978-0-387-79425-9#
section=209705&page=7&locus=31.

Candillon, W., 2011. Not your Grandma's XQuery.
http://www.slideshare.net/wcandillon/not-your-grand
mas-xquery.

Clark, J., DeRose, S., 1999. XML Path Language (XPath)
Version 1.0. W3C Recommendation 16 November
1999 http://www.w3.org/TR/xpath/.

Clark, J., 1999. XSL Transformations (XSLT) Version
1.0. W3C Recommendation 16 November 1999 http://
www.w3.org/TR/xslt.

Costello, R., 2008. XML versus Data Binding. http://www
.xfront.com/xml-versus-data-binding/index.html.

Couthures A., 2012. Compiling XQuery code into
Javascript instructions using XSLT Exploiting XQuery
grammar. In Proceedings XML Prague 2012. pp. 125-
139.

Davis, C., Maguire, T., 2011. XML Technologies for
RESTful Services Development. Proceedings of the
Second International Workshop on RESTful Design.

Denise, L., 1999. Collaboration vs. C-Three (Cooperation,
Coordination, and Communication). In Innovating,
Vol.7, Nr.3. http://www.ride.ri.gov/adulteducation/Do
cuments/Tri%20part%201/Collaboration%20vs.%20th
e%203c%27s.pdf.

Fielding, R., 2000. Architectural Styles and the DEsign of
Network-based Software Architectures. http://www.
ics.uci.edu/~fielding/pubs/dissertation/top.htm

Fuks, H., Raposo, A., Gerosa, M. A., Pimental, M.,
Lucena, C. J. P., 2008. Encyclopedia of E-
collaboration. Hershey, PA: Information Science
Reference - Imprint of: IGI Publishing, ch. The 3C
Collaboration Model, pp. 637-644.

Gamma E., Helm R., Johnson R., Vlissides J., 2009.
Design Patterns - Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional
Computing Series. pp. 4-6.

Goodman, D., 2001. JavaScript Bible 4th Edition. Hungry

Minds, New York.
Hunter J., 2012. Corona: Managing and Querying XML

and JSON via REST. In Proceedings XML Prague
2012. pp. 73-80.

Kaufmann, M., Kossmann, D., 2009. Developing an
Enterprise Web Application in XQuery. In
International Conference on Web Engineering.

Lenz E., 2012. Implementing an XQuery/XSLT hybrid
Parsing and compiling Carrot. In Proceedings XML
Prague 2012. pp. 141-170.

McCreary, D., 2007. Introducing the XRX Architecture:
XForms/REST/XQuery.http://datadictionary.blogspot.
com/2007/12/introducing-xrx-architecture.html.

McCreary, D., 2008. XRX: Simple, Elegant, Disruptive.
http://www.oreillynet.com/xml/blog/2008/05/xrx_a_si
mple_elegant_disruptiv_1.html.

McCreary, D., 2008. XRX: XForms, REST and XQuery
Simple, Elegant, Disruptive.http://www.danmccreary.
com/training/xrx/index.html.

McCreary, D., 2010. Using Native XML Systems to
Manage Metadata. http://www.tdan.com/view-articles/
14517.

McCreary, D., 2010. The National Information Exchange
Model and Semantic-Driven Development. http://
semanticweb.com/files/SU/NIEM-Slides-v2.pdf.

Onose, N., Khalaf, R., Rose, K., Siméon, J., 2009. A
Restful Workflow Implementation on Top of
Distributed XQuery.

Orbeon 2012.http://wiki.orbeon.com/forms/welcome/sites-
projects-companies-using-orbeon-forms.

Retter A., 2012. RESTful XQuery Standardised XQuery
3.0 Annotations for REST. In Proceedings XML
Prague 2012. pp. 91-123.

Selonen, P., Belimpasakis, P., You, Y., 2010. Developing
a ReSTful Mixed Reality Web Service Platform. In
Proceedings of the First International Workshop on
RESTful Design. pages 56-63.

Vintilă, B. 2010. Collaborative Applications in the
Knowledge Based Society. In Journal of Applied
Collaborative Systems Vol. 2, No. 1.

Walmsle, P., 2007. XQuery. O’Reilly Media, Inc.
Turner, J., Windauer, L. 2010. betterFORM User Guide.

http://www.betterform.de/doc/betterFormUserGuide.p
df.

XRX�-�The�Implementation�Process�under�XRX�Architecture

109

